/* $NetBSD: pmap.c,v 1.48.2.1 2020/04/20 11:29:14 bouyer Exp $ */ /*- * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center and by Chris G. Demetriou. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and Ralph Campbell. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)pmap.c 8.4 (Berkeley) 1/26/94 */ #include __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.48.2.1 2020/04/20 11:29:14 bouyer Exp $"); /* * Manages physical address maps. * * In addition to hardware address maps, this * module is called upon to provide software-use-only * maps which may or may not be stored in the same * form as hardware maps. These pseudo-maps are * used to store intermediate results from copy * operations to and from address spaces. * * Since the information managed by this module is * also stored by the logical address mapping module, * this module may throw away valid virtual-to-physical * mappings at almost any time. However, invalidations * of virtual-to-physical mappings must be done as * requested. * * In order to cope with hardware architectures which * make virtual-to-physical map invalidates expensive, * this module may delay invalidate or reduced protection * operations until such time as they are actually * necessary. This module is given full information as * to which processors are currently using which maps, * and to when physical maps must be made correct. */ #include "opt_modular.h" #include "opt_multiprocessor.h" #include "opt_sysv.h" #define __PMAP_PRIVATE #include #include #include #include #include #include #include #include #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \ && !defined(PMAP_NO_PV_UNCACHED) #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \ PMAP_NO_PV_UNCACHED to be defined #endif PMAP_COUNTER(remove_kernel_calls, "remove kernel calls"); PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped"); PMAP_COUNTER(remove_user_calls, "remove user calls"); PMAP_COUNTER(remove_user_pages, "user pages unmapped"); PMAP_COUNTER(remove_flushes, "remove cache flushes"); PMAP_COUNTER(remove_tlb_ops, "remove tlb ops"); PMAP_COUNTER(remove_pvfirst, "remove pv first"); PMAP_COUNTER(remove_pvsearch, "remove pv search"); PMAP_COUNTER(prefer_requests, "prefer requests"); PMAP_COUNTER(prefer_adjustments, "prefer adjustments"); PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed"); PMAP_COUNTER(kenter_pa, "kernel fast mapped pages"); PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)"); PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages"); PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages"); PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable"); PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable"); PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)"); PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)"); PMAP_COUNTER(kernel_mappings, "kernel pages mapped"); PMAP_COUNTER(user_mappings, "user pages mapped"); PMAP_COUNTER(user_mappings_changed, "user mapping changed"); PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed"); PMAP_COUNTER(uncached_mappings, "uncached pages mapped"); PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped"); PMAP_COUNTER(managed_mappings, "managed pages mapped"); PMAP_COUNTER(mappings, "pages mapped"); PMAP_COUNTER(remappings, "pages remapped"); PMAP_COUNTER(unmappings, "pages unmapped"); PMAP_COUNTER(primary_mappings, "page initial mappings"); PMAP_COUNTER(primary_unmappings, "page final unmappings"); PMAP_COUNTER(tlb_hit, "page mapping"); PMAP_COUNTER(exec_mappings, "exec pages mapped"); PMAP_COUNTER(exec_synced_mappings, "exec pages synced"); PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)"); PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)"); PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)"); PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)"); PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)"); PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)"); PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)"); PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)"); PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)"); PMAP_COUNTER(create, "creates"); PMAP_COUNTER(reference, "references"); PMAP_COUNTER(dereference, "dereferences"); PMAP_COUNTER(destroy, "destroyed"); PMAP_COUNTER(activate, "activations"); PMAP_COUNTER(deactivate, "deactivations"); PMAP_COUNTER(update, "updates"); #ifdef MULTIPROCESSOR PMAP_COUNTER(shootdown_ipis, "shootdown IPIs"); #endif PMAP_COUNTER(unwire, "unwires"); PMAP_COUNTER(copy, "copies"); PMAP_COUNTER(clear_modify, "clear_modifies"); PMAP_COUNTER(protect, "protects"); PMAP_COUNTER(page_protect, "page_protects"); #define PMAP_ASID_RESERVED 0 CTASSERT(PMAP_ASID_RESERVED == 0); #ifndef PMAP_SEGTAB_ALIGN #define PMAP_SEGTAB_ALIGN /* nothing */ #endif #ifdef _LP64 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */ #endif pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */ #ifdef _LP64 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab, #endif }; struct pmap_kernel kernel_pmap_store = { .kernel_pmap = { .pm_count = 1, .pm_segtab = &pmap_kern_segtab, .pm_minaddr = VM_MIN_KERNEL_ADDRESS, .pm_maxaddr = VM_MAX_KERNEL_ADDRESS, }, }; struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap; struct pmap_limits pmap_limits = { /* VA and PA limits */ .virtual_start = VM_MIN_KERNEL_ADDRESS, }; #ifdef UVMHIST static struct kern_history_ent pmapexechistbuf[10000]; static struct kern_history_ent pmaphistbuf[10000]; UVMHIST_DEFINE(pmapexechist); UVMHIST_DEFINE(pmaphist); #endif /* * The pools from which pmap structures and sub-structures are allocated. */ struct pool pmap_pmap_pool; struct pool pmap_pv_pool; #ifndef PMAP_PV_LOWAT #define PMAP_PV_LOWAT 16 #endif int pmap_pv_lowat = PMAP_PV_LOWAT; bool pmap_initialized = false; #define PMAP_PAGE_COLOROK_P(a, b) \ ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0) u_int pmap_page_colormask; #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa)) #define PMAP_IS_ACTIVE(pm) \ ((pm) == pmap_kernel() || \ (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap) /* Forward function declarations */ void pmap_page_remove(struct vm_page *); static void pmap_pvlist_check(struct vm_page_md *); void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool); void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int); /* * PV table management functions. */ void *pmap_pv_page_alloc(struct pool *, int); void pmap_pv_page_free(struct pool *, void *); struct pool_allocator pmap_pv_page_allocator = { pmap_pv_page_alloc, pmap_pv_page_free, 0, }; #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT) #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv)) #ifndef PMAP_NEED_TLB_MISS_LOCK #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG) #define PMAP_NEED_TLB_MISS_LOCK #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */ #endif /* PMAP_NEED_TLB_MISS_LOCK */ #ifdef PMAP_NEED_TLB_MISS_LOCK #ifdef PMAP_MD_NEED_TLB_MISS_LOCK #define pmap_tlb_miss_lock_init() __nothing /* MD code deals with this */ #define pmap_tlb_miss_lock_enter() pmap_md_tlb_miss_lock_enter() #define pmap_tlb_miss_lock_exit() pmap_md_tlb_miss_lock_exit() #else kmutex_t pmap_tlb_miss_lock __cacheline_aligned; static void pmap_tlb_miss_lock_init(void) { mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH); } static inline void pmap_tlb_miss_lock_enter(void) { mutex_spin_enter(&pmap_tlb_miss_lock); } static inline void pmap_tlb_miss_lock_exit(void) { mutex_spin_exit(&pmap_tlb_miss_lock); } #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */ #else #define pmap_tlb_miss_lock_init() __nothing #define pmap_tlb_miss_lock_enter() __nothing #define pmap_tlb_miss_lock_exit() __nothing #endif /* PMAP_NEED_TLB_MISS_LOCK */ #ifndef MULTIPROCESSOR kmutex_t pmap_pvlist_mutex __cacheline_aligned; #endif /* * Debug functions. */ #ifdef DEBUG static inline void pmap_asid_check(pmap_t pm, const char *func) { if (!PMAP_IS_ACTIVE(pm)) return; struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu())); tlb_asid_t asid = tlb_get_asid(); if (asid != pai->pai_asid) panic("%s: inconsistency for active TLB update: %u <-> %u", func, asid, pai->pai_asid); } #endif static void pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func) { #ifdef DEBUG if (pmap == pmap_kernel()) { if (sva < VM_MIN_KERNEL_ADDRESS) panic("%s: kva %#"PRIxVADDR" not in range", func, sva); if (eva >= pmap_limits.virtual_end) panic("%s: kva %#"PRIxVADDR" not in range", func, eva); } else { if (eva > VM_MAXUSER_ADDRESS) panic("%s: uva %#"PRIxVADDR" not in range", func, eva); pmap_asid_check(pmap, func); } #endif } /* * Misc. functions. */ bool pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes) { volatile unsigned long * const attrp = &mdpg->mdpg_attrs; #ifdef MULTIPROCESSOR for (;;) { u_int old_attr = *attrp; if ((old_attr & clear_attributes) == 0) return false; u_int new_attr = old_attr & ~clear_attributes; if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr)) return true; } #else unsigned long old_attr = *attrp; if ((old_attr & clear_attributes) == 0) return false; *attrp &= ~clear_attributes; return true; #endif } void pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes) { #ifdef MULTIPROCESSOR atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes); #else mdpg->mdpg_attrs |= set_attributes; #endif } static void pmap_page_syncicache(struct vm_page *pg) { #ifndef MULTIPROCESSOR struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap; #endif struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); pv_entry_t pv = &mdpg->mdpg_first; kcpuset_t *onproc; #ifdef MULTIPROCESSOR kcpuset_create(&onproc, true); KASSERT(onproc != NULL); #else onproc = NULL; #endif VM_PAGEMD_PVLIST_READLOCK(mdpg); pmap_pvlist_check(mdpg); if (pv->pv_pmap != NULL) { for (; pv != NULL; pv = pv->pv_next) { #ifdef MULTIPROCESSOR kcpuset_merge(onproc, pv->pv_pmap->pm_onproc); if (kcpuset_match(onproc, kcpuset_running)) { break; } #else if (pv->pv_pmap == curpmap) { onproc = curcpu()->ci_data.cpu_kcpuset; break; } #endif } } pmap_pvlist_check(mdpg); VM_PAGEMD_PVLIST_UNLOCK(mdpg); kpreempt_disable(); pmap_md_page_syncicache(pg, onproc); kpreempt_enable(); #ifdef MULTIPROCESSOR kcpuset_destroy(onproc); #endif } /* * Define the initial bounds of the kernel virtual address space. */ void pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp) { *vstartp = pmap_limits.virtual_start; *vendp = pmap_limits.virtual_end; } vaddr_t pmap_growkernel(vaddr_t maxkvaddr) { vaddr_t virtual_end = pmap_limits.virtual_end; maxkvaddr = pmap_round_seg(maxkvaddr) - 1; /* * Reserve PTEs for the new KVA space. */ for (; virtual_end < maxkvaddr; virtual_end += NBSEG) { pmap_pte_reserve(pmap_kernel(), virtual_end, 0); } /* * Don't exceed VM_MAX_KERNEL_ADDRESS! */ if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS) virtual_end = VM_MAX_KERNEL_ADDRESS; /* * Update new end. */ pmap_limits.virtual_end = virtual_end; return virtual_end; } /* * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()). * This function allows for early dynamic memory allocation until the virtual * memory system has been bootstrapped. After that point, either kmem_alloc * or malloc should be used. This function works by stealing pages from the * (to be) managed page pool, then implicitly mapping the pages (by using * their direct mapped addresses) and zeroing them. * * It may be used once the physical memory segments have been pre-loaded * into the vm_physmem[] array. Early memory allocation MUST use this * interface! This cannot be used after vm_page_startup(), and will * generate a panic if tried. * * Note that this memory will never be freed, and in essence it is wired * down. * * We must adjust *vstartp and/or *vendp iff we use address space * from the kernel virtual address range defined by pmap_virtual_space(). */ vaddr_t pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp) { size_t npgs; paddr_t pa; vaddr_t va; uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID; size = round_page(size); npgs = atop(size); aprint_debug("%s: need %zu pages\n", __func__, npgs); for (uvm_physseg_t bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank); bank = uvm_physseg_get_next(bank)) { if (uvm.page_init_done == true) panic("pmap_steal_memory: called _after_ bootstrap"); aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n", __func__, bank, uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank), uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank)); if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank) || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) { aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank); continue; } if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) { aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n", __func__, bank, npgs); continue; } if (!pmap_md_ok_to_steal_p(bank, npgs)) { continue; } /* * Always try to allocate from the segment with the least * amount of space left. */ #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b))) if (uvm_physseg_valid_p(maybe_bank) == false || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) { maybe_bank = bank; } } if (uvm_physseg_valid_p(maybe_bank)) { const uvm_physseg_t bank = maybe_bank; /* * There are enough pages here; steal them! */ pa = ptoa(uvm_physseg_get_start(bank)); uvm_physseg_unplug(atop(pa), npgs); aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n", __func__, bank, npgs, VM_PHYSMEM_SPACE(bank)); va = pmap_md_map_poolpage(pa, size); memset((void *)va, 0, size); return va; } /* * If we got here, there was no memory left. */ panic("pmap_steal_memory: no memory to steal %zu pages", npgs); } /* * Bootstrap the system enough to run with virtual memory. * (Common routine called by machine-dependent bootstrap code.) */ void pmap_bootstrap_common(void) { pmap_tlb_miss_lock_init(); } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ void pmap_init(void) { UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf); UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf); UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist); /* * Initialize the segtab lock. */ mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH); /* * Set a low water mark on the pv_entry pool, so that we are * more likely to have these around even in extreme memory * starvation. */ pool_setlowat(&pmap_pv_pool, pmap_pv_lowat); /* * Set the page colormask but allow pmap_md_init to override it. */ pmap_page_colormask = ptoa(uvmexp.colormask); pmap_md_init(); /* * Now it is safe to enable pv entry recording. */ pmap_initialized = true; } /* * Create and return a physical map. * * If the size specified for the map * is zero, the map is an actual physical * map, and may be referenced by the * hardware. * * If the size specified is non-zero, * the map will be used in software only, and * is bounded by that size. */ pmap_t pmap_create(void) { UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist); PMAP_COUNT(create); pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK); memset(pmap, 0, PMAP_SIZE); KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL); pmap->pm_count = 1; pmap->pm_minaddr = VM_MIN_ADDRESS; pmap->pm_maxaddr = VM_MAXUSER_ADDRESS; pmap_segtab_init(pmap); #ifdef MULTIPROCESSOR kcpuset_create(&pmap->pm_active, true); kcpuset_create(&pmap->pm_onproc, true); KASSERT(pmap->pm_active != NULL); KASSERT(pmap->pm_onproc != NULL); #endif UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0); return pmap; } /* * Retire the given physical map from service. * Should only be called if the map contains * no valid mappings. */ void pmap_destroy(pmap_t pmap) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0); if (atomic_dec_uint_nv(&pmap->pm_count) > 0) { PMAP_COUNT(dereference); UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0); return; } PMAP_COUNT(destroy); KASSERT(pmap->pm_count == 0); kpreempt_disable(); pmap_tlb_miss_lock_enter(); pmap_tlb_asid_release_all(pmap); pmap_segtab_destroy(pmap, NULL, 0); pmap_tlb_miss_lock_exit(); #ifdef MULTIPROCESSOR kcpuset_destroy(pmap->pm_active); kcpuset_destroy(pmap->pm_onproc); pmap->pm_active = NULL; pmap->pm_onproc = NULL; #endif pool_put(&pmap_pmap_pool, pmap); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0); } /* * Add a reference to the specified pmap. */ void pmap_reference(pmap_t pmap) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0); PMAP_COUNT(reference); if (pmap != NULL) { atomic_inc_uint(&pmap->pm_count); } UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } /* * Make a new pmap (vmspace) active for the given process. */ void pmap_activate(struct lwp *l) { pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l, (uintptr_t)pmap, 0, 0); PMAP_COUNT(activate); kpreempt_disable(); pmap_tlb_miss_lock_enter(); pmap_tlb_asid_acquire(pmap, l); if (l == curlwp) { pmap_segtab_activate(pmap, l); } pmap_tlb_miss_lock_exit(); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid, l->l_lid, 0, 0); } /* * Remove this page from all physical maps in which it resides. * Reflects back modify bits to the pager. */ void pmap_page_remove(struct vm_page *pg) { struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); kpreempt_disable(); VM_PAGEMD_PVLIST_LOCK(mdpg); pmap_pvlist_check(mdpg); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmapexechist, "pg %#jx (pa %#jx) [page removed]: " "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0); #ifdef PMAP_VIRTUAL_CACHE_ALIASES pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED); #else pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE); #endif PMAP_COUNT(exec_uncached_remove); pv_entry_t pv = &mdpg->mdpg_first; if (pv->pv_pmap == NULL) { VM_PAGEMD_PVLIST_UNLOCK(mdpg); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0); return; } pv_entry_t npv; pv_entry_t pvp = NULL; for (; pv != NULL; pv = npv) { npv = pv->pv_next; #ifdef PMAP_VIRTUAL_CACHE_ALIASES if (PV_ISKENTER_P(pv)) { UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx" " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap, pv->pv_va, 0); KASSERT(pv->pv_pmap == pmap_kernel()); /* Assume no more - it'll get fixed if there are */ pv->pv_next = NULL; /* * pvp is non-null when we already have a PV_KENTER * pv in pvh_first; otherwise we haven't seen a * PV_KENTER pv and we need to copy this one to * pvh_first */ if (pvp) { /* * The previous PV_KENTER pv needs to point to * this PV_KENTER pv */ pvp->pv_next = pv; } else { pv_entry_t fpv = &mdpg->mdpg_first; *fpv = *pv; KASSERT(fpv->pv_pmap == pmap_kernel()); } pvp = pv; continue; } #endif const pmap_t pmap = pv->pv_pmap; vaddr_t va = trunc_page(pv->pv_va); pt_entry_t * const ptep = pmap_pte_lookup(pmap, va); KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va, pmap_limits.virtual_end); pt_entry_t pte = *ptep; UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx" " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va, pte_value(pte)); if (!pte_valid_p(pte)) continue; const bool is_kernel_pmap_p = (pmap == pmap_kernel()); if (is_kernel_pmap_p) { PMAP_COUNT(remove_kernel_pages); } else { PMAP_COUNT(remove_user_pages); } if (pte_wired_p(pte)) pmap->pm_stats.wired_count--; pmap->pm_stats.resident_count--; pmap_tlb_miss_lock_enter(); const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p); pte_set(ptep, npte); if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) { /* * Flush the TLB for the given address. */ pmap_tlb_invalidate_addr(pmap, va); } pmap_tlb_miss_lock_exit(); /* * non-null means this is a non-pvh_first pv, so we should * free it. */ if (pvp) { KASSERT(pvp->pv_pmap == pmap_kernel()); KASSERT(pvp->pv_next == NULL); pmap_pv_free(pv); } else { pv->pv_pmap = NULL; pv->pv_next = NULL; } } pmap_pvlist_check(mdpg); VM_PAGEMD_PVLIST_UNLOCK(mdpg); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } /* * Make a previously active pmap (vmspace) inactive. */ void pmap_deactivate(struct lwp *l) { pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l, (uintptr_t)pmap, 0, 0); PMAP_COUNT(deactivate); kpreempt_disable(); KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu); pmap_tlb_miss_lock_enter(); curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS; #ifdef _LP64 curcpu()->ci_pmap_user_seg0tab = NULL; #endif pmap_tlb_asid_deactivate(pmap); pmap_tlb_miss_lock_exit(); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid, l->l_lid, 0, 0); } void pmap_update(struct pmap *pmap) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0); PMAP_COUNT(update); kpreempt_disable(); #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0); if (pending && pmap_tlb_shootdown_bystanders(pmap)) PMAP_COUNT(shootdown_ipis); #endif pmap_tlb_miss_lock_enter(); #if defined(DEBUG) && !defined(MULTIPROCESSOR) pmap_tlb_check(pmap, pmap_md_tlb_check_entry); #endif /* DEBUG */ /* * If pmap_remove_all was called, we deactivated ourselves and nuked * our ASID. Now we have to reactivate ourselves. */ if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) { pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE; pmap_tlb_asid_acquire(pmap, curlwp); pmap_segtab_activate(pmap, curlwp); } pmap_tlb_miss_lock_exit(); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)", (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ static bool pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep, uintptr_t flags) { const pt_entry_t npte = flags; const bool is_kernel_pmap_p = (pmap == pmap_kernel()); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)", (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva); UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)", (uintptr_t)ptep, flags, 0, 0); KASSERT(kpreempt_disabled()); for (; sva < eva; sva += NBPG, ptep++) { const pt_entry_t pte = *ptep; if (!pte_valid_p(pte)) continue; if (is_kernel_pmap_p) { PMAP_COUNT(remove_kernel_pages); } else { PMAP_COUNT(remove_user_pages); } if (pte_wired_p(pte)) pmap->pm_stats.wired_count--; pmap->pm_stats.resident_count--; struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte)); if (__predict_true(pg != NULL)) { pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte)); } pmap_tlb_miss_lock_enter(); pte_set(ptep, npte); if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) { /* * Flush the TLB for the given address. */ pmap_tlb_invalidate_addr(pmap, sva); } pmap_tlb_miss_lock_exit(); } UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); return false; } void pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva) { const bool is_kernel_pmap_p = (pmap == pmap_kernel()); const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)", (uintptr_t)pmap, sva, eva, 0); if (is_kernel_pmap_p) { PMAP_COUNT(remove_kernel_calls); } else { PMAP_COUNT(remove_user_calls); } #ifdef PMAP_FAULTINFO curpcb->pcb_faultinfo.pfi_faultaddr = 0; curpcb->pcb_faultinfo.pfi_repeats = 0; curpcb->pcb_faultinfo.pfi_faultpte = NULL; #endif kpreempt_disable(); pmap_addr_range_check(pmap, sva, eva, __func__); pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } /* * pmap_page_protect: * * Lower the permission for all mappings to a given page. */ void pmap_page_protect(struct vm_page *pg, vm_prot_t prot) { struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); pv_entry_t pv; vaddr_t va; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0); PMAP_COUNT(page_protect); switch (prot) { case VM_PROT_READ|VM_PROT_WRITE: case VM_PROT_ALL: break; /* copy_on_write */ case VM_PROT_READ: case VM_PROT_READ|VM_PROT_EXECUTE: pv = &mdpg->mdpg_first; kpreempt_disable(); VM_PAGEMD_PVLIST_READLOCK(mdpg); pmap_pvlist_check(mdpg); /* * Loop over all current mappings setting/clearing as * appropriate. */ if (pv->pv_pmap != NULL) { while (pv != NULL) { #ifdef PMAP_VIRTUAL_CACHE_ALIASES if (PV_ISKENTER_P(pv)) { pv = pv->pv_next; continue; } #endif const pmap_t pmap = pv->pv_pmap; va = trunc_page(pv->pv_va); const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg); pmap_protect(pmap, va, va + PAGE_SIZE, prot); KASSERT(pv->pv_pmap == pmap); pmap_update(pmap); if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) { pv = &mdpg->mdpg_first; } else { pv = pv->pv_next; } pmap_pvlist_check(mdpg); } } pmap_pvlist_check(mdpg); VM_PAGEMD_PVLIST_UNLOCK(mdpg); kpreempt_enable(); break; /* remove_all */ default: pmap_page_remove(pg); } UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } static bool pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep, uintptr_t flags) { const vm_prot_t prot = (flags & VM_PROT_ALL); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)", (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva); UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)", (uintptr_t)ptep, flags, 0, 0); KASSERT(kpreempt_disabled()); /* * Change protection on every valid mapping within this segment. */ for (; sva < eva; sva += NBPG, ptep++) { pt_entry_t pte = *ptep; if (!pte_valid_p(pte)) continue; struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte)); if (pg != NULL && pte_modified_p(pte)) { struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); if (VM_PAGEMD_EXECPAGE_P(mdpg)) { KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg)); #ifdef PMAP_VIRTUAL_CACHE_ALIASES if (VM_PAGEMD_CACHED_P(mdpg)) { #endif UVMHIST_LOG(pmapexechist, "pg %#jx (pa %#jx): " "syncicached performed", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0); pmap_page_syncicache(pg); PMAP_COUNT(exec_synced_protect); #ifdef PMAP_VIRTUAL_CACHE_ALIASES } #endif } } pte = pte_prot_downgrade(pte, prot); if (*ptep != pte) { pmap_tlb_miss_lock_enter(); pte_set(ptep, pte); /* * Update the TLB if needed. */ pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI); pmap_tlb_miss_lock_exit(); } } UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); return false; } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)", (uintptr_t)pmap, sva, eva, prot); PMAP_COUNT(protect); if ((prot & VM_PROT_READ) == VM_PROT_NONE) { pmap_remove(pmap, sva, eva); UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); return; } /* * Change protection on every valid mapping within this segment. */ kpreempt_disable(); pmap_addr_range_check(pmap, sva, eva, __func__); pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED) /* * pmap_page_cache: * * Change all mappings of a managed page to cached/uncached. */ void pmap_page_cache(struct vm_page *pg, bool cached) { struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0); KASSERT(kpreempt_disabled()); KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg)); if (cached) { pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED); PMAP_COUNT(page_cache_restorations); } else { pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED); PMAP_COUNT(page_cache_evictions); } for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) { pmap_t pmap = pv->pv_pmap; vaddr_t va = trunc_page(pv->pv_va); KASSERT(pmap != NULL); KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va)); pt_entry_t * const ptep = pmap_pte_lookup(pmap, va); if (ptep == NULL) continue; pt_entry_t pte = *ptep; if (pte_valid_p(pte)) { pte = pte_cached_change(pte, cached); pmap_tlb_miss_lock_enter(); pte_set(ptep, pte); pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI); pmap_tlb_miss_lock_exit(); } } UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */ /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ int pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) { const bool wired = (flags & PMAP_WIRED) != 0; const bool is_kernel_pmap_p = (pmap == pmap_kernel()); u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0; #ifdef UVMHIST struct kern_history * const histp = ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist); #endif UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx", (uintptr_t)pmap, va, pa, 0); UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0); const bool good_color = PMAP_PAGE_COLOROK_P(pa, va); if (is_kernel_pmap_p) { PMAP_COUNT(kernel_mappings); if (!good_color) PMAP_COUNT(kernel_mappings_bad); } else { PMAP_COUNT(user_mappings); if (!good_color) PMAP_COUNT(user_mappings_bad); } pmap_addr_range_check(pmap, va, va, __func__); KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x", VM_PROT_READ, prot); struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL); if (pg) { /* Set page referenced/modified status based on flags */ if (flags & VM_PROT_WRITE) { pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED); } else if (flags & VM_PROT_ALL) { pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED); } #ifdef PMAP_VIRTUAL_CACHE_ALIASES if (!VM_PAGEMD_CACHED_P(mdpg)) { flags |= PMAP_NOCACHE; PMAP_COUNT(uncached_mappings); } #endif PMAP_COUNT(managed_mappings); } else { /* * Assumption: if it is not part of our managed memory * then it must be device memory which may be volatile. */ if ((flags & PMAP_CACHE_MASK) == 0) flags |= PMAP_NOCACHE; PMAP_COUNT(unmanaged_mappings); } pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags, is_kernel_pmap_p); kpreempt_disable(); pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags); if (__predict_false(ptep == NULL)) { kpreempt_enable(); UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0); return ENOMEM; } const pt_entry_t opte = *ptep; const bool resident = pte_valid_p(opte); bool remap = false; if (resident) { if (pte_to_paddr(opte) != pa) { KASSERT(!is_kernel_pmap_p); const pt_entry_t rpte = pte_nv_entry(false); pmap_addr_range_check(pmap, va, va + NBPG, __func__); pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove, rpte); PMAP_COUNT(user_mappings_changed); remap = true; } update_flags |= PMAP_TLB_NEED_IPI; } if (!resident || remap) { pmap->pm_stats.resident_count++; } /* Done after case that may sleep/return. */ if (pg) pmap_enter_pv(pmap, va, pg, &npte, 0); /* * Now validate mapping with desired protection/wiring. * Assume uniform modified and referenced status for all * MIPS pages in a MACH page. */ if (wired) { pmap->pm_stats.wired_count++; npte = pte_wire_entry(npte); } UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)", pte_value(npte), pa, 0, 0); KASSERT(pte_valid_p(npte)); pmap_tlb_miss_lock_enter(); pte_set(ptep, npte); pmap_tlb_update_addr(pmap, va, npte, update_flags); pmap_tlb_miss_lock_exit(); kpreempt_enable(); if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) { KASSERT(mdpg != NULL); PMAP_COUNT(exec_mappings); if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) { if (!pte_deferred_exec_p(npte)) { UVMHIST_LOG(*histp, "va=%#jx pg %#jx: " "immediate syncicache", va, (uintptr_t)pg, 0, 0); pmap_page_syncicache(pg); pmap_page_set_attributes(mdpg, VM_PAGEMD_EXECPAGE); PMAP_COUNT(exec_synced_mappings); } else { UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer " "syncicache: pte %#jx", va, (uintptr_t)pg, npte, 0); } } else { UVMHIST_LOG(*histp, "va=%#jx pg %#jx: no syncicache cached %jd", va, (uintptr_t)pg, pte_cached_p(npte), 0); } } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) { KASSERT(mdpg != NULL); KASSERT(prot & VM_PROT_WRITE); PMAP_COUNT(exec_mappings); pmap_page_syncicache(pg); pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE); UVMHIST_LOG(*histp, "va=%#jx pg %#jx: immediate syncicache (writeable)", va, (uintptr_t)pg, 0, 0); } UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0); return 0; } void pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) { pmap_t pmap = pmap_kernel(); struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)", va, pa, prot, flags); PMAP_COUNT(kenter_pa); if (mdpg == NULL) { PMAP_COUNT(kenter_pa_unmanaged); if ((flags & PMAP_CACHE_MASK) == 0) flags |= PMAP_NOCACHE; } else { if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va)) PMAP_COUNT(kenter_pa_bad); } pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags); kpreempt_disable(); pt_entry_t * const ptep = pmap_pte_lookup(pmap, va); KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va, pmap_limits.virtual_end); KASSERT(!pte_valid_p(*ptep)); /* * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases */ #ifdef PMAP_VIRTUAL_CACHE_ALIASES if (pg != NULL && (flags & PMAP_KMPAGE) == 0 && pmap_md_virtual_cache_aliasing_p()) { pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER); } #endif /* * We have the option to force this mapping into the TLB but we * don't. Instead let the next reference to the page do it. */ pmap_tlb_miss_lock_enter(); pte_set(ptep, npte); pmap_tlb_update_addr(pmap_kernel(), va, npte, 0); pmap_tlb_miss_lock_exit(); kpreempt_enable(); #if DEBUG > 1 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) { if (((long *)va)[i] != ((long *)pa)[i]) panic("%s: contents (%lx) of va %#"PRIxVADDR " != contents (%lx) of pa %#"PRIxPADDR, __func__, ((long *)va)[i], va, ((long *)pa)[i], pa); } #endif UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0, 0); } /* * Remove the given range of addresses from the kernel map. * * It is assumed that the start and end are properly * rounded to the page size. */ static bool pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep, uintptr_t flags) { const pt_entry_t new_pte = pte_nv_entry(true); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)", (uintptr_t)pmap, sva, eva, (uintptr_t)ptep); KASSERT(kpreempt_disabled()); for (; sva < eva; sva += NBPG, ptep++) { pt_entry_t pte = *ptep; if (!pte_valid_p(pte)) continue; PMAP_COUNT(kremove_pages); #ifdef PMAP_VIRTUAL_CACHE_ALIASES struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte)); if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) { pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte)); } #endif pmap_tlb_miss_lock_enter(); pte_set(ptep, new_pte); pmap_tlb_invalidate_addr(pmap, sva); pmap_tlb_miss_lock_exit(); } UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); return false; } void pmap_kremove(vaddr_t va, vsize_t len) { const vaddr_t sva = trunc_page(va); const vaddr_t eva = round_page(va + len); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0); kpreempt_disable(); pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } bool pmap_remove_all(struct pmap *pmap) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0); KASSERT(pmap != pmap_kernel()); kpreempt_disable(); /* * Free all of our ASIDs which means we can skip doing all the * tlb_invalidate_addrs(). */ pmap_tlb_miss_lock_enter(); #ifdef MULTIPROCESSOR // This should be the last CPU with this pmap onproc KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu()))); if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu()))) #endif pmap_tlb_asid_deactivate(pmap); #ifdef MULTIPROCESSOR KASSERT(kcpuset_iszero(pmap->pm_onproc)); #endif pmap_tlb_asid_release_all(pmap); pmap_tlb_miss_lock_exit(); pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE; #ifdef PMAP_FAULTINFO curpcb->pcb_faultinfo.pfi_faultaddr = 0; curpcb->pcb_faultinfo.pfi_repeats = 0; curpcb->pcb_faultinfo.pfi_faultpte = NULL; #endif kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); return false; } /* * Routine: pmap_unwire * Function: Clear the wired attribute for a map/virtual-address * pair. * In/out conditions: * The mapping must already exist in the pmap. */ void pmap_unwire(pmap_t pmap, vaddr_t va) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va, 0, 0); PMAP_COUNT(unwire); /* * Don't need to flush the TLB since PG_WIRED is only in software. */ kpreempt_disable(); pmap_addr_range_check(pmap, va, va, __func__); pt_entry_t * const ptep = pmap_pte_lookup(pmap, va); KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE", pmap, va); pt_entry_t pte = *ptep; KASSERTMSG(pte_valid_p(pte), "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p", pmap, va, pte_value(pte), ptep); if (pte_wired_p(pte)) { pmap_tlb_miss_lock_enter(); pte_set(ptep, pte_unwire_entry(pte)); pmap_tlb_miss_lock_exit(); pmap->pm_stats.wired_count--; } #ifdef DIAGNOSTIC else { printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n", __func__, pmap, va); } #endif kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ bool pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap) { paddr_t pa; if (pmap == pmap_kernel()) { if (pmap_md_direct_mapped_vaddr_p(va)) { pa = pmap_md_direct_mapped_vaddr_to_paddr(va); goto done; } if (pmap_md_io_vaddr_p(va)) panic("pmap_extract: io address %#"PRIxVADDR"", va); if (va >= pmap_limits.virtual_end) panic("%s: illegal kernel mapped address %#"PRIxVADDR, __func__, va); } kpreempt_disable(); const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va); if (ptep == NULL || !pte_valid_p(*ptep)) { kpreempt_enable(); return false; } pa = pte_to_paddr(*ptep) | (va & PGOFSET); kpreempt_enable(); done: if (pap != NULL) { *pap = pa; } return true; } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len, vaddr_t src_addr) { UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist); PMAP_COUNT(copy); } /* * pmap_clear_reference: * * Clear the reference bit on the specified physical page. */ bool pmap_clear_reference(struct vm_page *pg) { struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0); bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED); UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0); return rv; } /* * pmap_is_referenced: * * Return whether or not the specified physical page is referenced * by any physical maps. */ bool pmap_is_referenced(struct vm_page *pg) { return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg)); } /* * Clear the modify bits on the specified physical page. */ bool pmap_clear_modify(struct vm_page *pg) { struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); pv_entry_t pv = &mdpg->mdpg_first; pv_entry_t pv_next; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0); PMAP_COUNT(clear_modify); if (VM_PAGEMD_EXECPAGE_P(mdpg)) { if (pv->pv_pmap == NULL) { UVMHIST_LOG(pmapexechist, "pg %#jx (pa %#jx): execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0); pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE); PMAP_COUNT(exec_uncached_clear_modify); } else { UVMHIST_LOG(pmapexechist, "pg %#jx (pa %#jx): syncicache performed", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0); pmap_page_syncicache(pg); PMAP_COUNT(exec_synced_clear_modify); } } if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) { UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0); return false; } if (pv->pv_pmap == NULL) { UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0); return true; } /* * remove write access from any pages that are dirty * so we can tell if they are written to again later. * flush the VAC first if there is one. */ kpreempt_disable(); VM_PAGEMD_PVLIST_READLOCK(mdpg); pmap_pvlist_check(mdpg); for (; pv != NULL; pv = pv_next) { pmap_t pmap = pv->pv_pmap; vaddr_t va = trunc_page(pv->pv_va); pv_next = pv->pv_next; #ifdef PMAP_VIRTUAL_CACHE_ALIASES if (PV_ISKENTER_P(pv)) continue; #endif pt_entry_t * const ptep = pmap_pte_lookup(pmap, va); KASSERT(ptep); pt_entry_t pte = pte_prot_nowrite(*ptep); if (*ptep == pte) { continue; } KASSERT(pte_valid_p(pte)); const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg); pmap_tlb_miss_lock_enter(); pte_set(ptep, pte); pmap_tlb_invalidate_addr(pmap, va); pmap_tlb_miss_lock_exit(); pmap_update(pmap); if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) { /* * The list changed! So restart from the beginning. */ pv_next = &mdpg->mdpg_first; pmap_pvlist_check(mdpg); } } pmap_pvlist_check(mdpg); VM_PAGEMD_PVLIST_UNLOCK(mdpg); kpreempt_enable(); UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0); return true; } /* * pmap_is_modified: * * Return whether or not the specified physical page is modified * by any physical maps. */ bool pmap_is_modified(struct vm_page *pg) { return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg)); } /* * pmap_set_modified: * * Sets the page modified reference bit for the specified page. */ void pmap_set_modified(paddr_t pa) { struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED); } /******************** pv_entry management ********************/ static void pmap_pvlist_check(struct vm_page_md *mdpg) { #ifdef DEBUG pv_entry_t pv = &mdpg->mdpg_first; if (pv->pv_pmap != NULL) { #ifdef PMAP_VIRTUAL_CACHE_ALIASES const u_int colormask = uvmexp.colormask; u_int colors = 0; #endif for (; pv != NULL; pv = pv->pv_next) { KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va)); #ifdef PMAP_VIRTUAL_CACHE_ALIASES colors |= __BIT(atop(pv->pv_va) & colormask); #endif } #ifdef PMAP_VIRTUAL_CACHE_ALIASES // Assert that if there is more than 1 color mapped, that the // page is uncached. KASSERTMSG(!pmap_md_virtual_cache_aliasing_p() || colors == 0 || (colors & (colors-1)) == 0 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u", colors, VM_PAGEMD_UNCACHED_P(mdpg)); #endif } else { KASSERT(pv->pv_next == NULL); } #endif /* DEBUG */ } /* * Enter the pmap and virtual address into the * physical to virtual map table. */ void pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep, u_int flags) { struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); pv_entry_t pv, npv, apv; #ifdef UVMHIST bool first = false; #endif UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)", (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg)); UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))", (uintptr_t)nptep, pte_value(*nptep), 0, 0); KASSERT(kpreempt_disabled()); KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va)); KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va), "va %#"PRIxVADDR, va); apv = NULL; VM_PAGEMD_PVLIST_LOCK(mdpg); again: pv = &mdpg->mdpg_first; pmap_pvlist_check(mdpg); if (pv->pv_pmap == NULL) { KASSERT(pv->pv_next == NULL); /* * No entries yet, use header as the first entry */ PMAP_COUNT(primary_mappings); PMAP_COUNT(mappings); #ifdef UVMHIST first = true; #endif #ifdef PMAP_VIRTUAL_CACHE_ALIASES KASSERT(VM_PAGEMD_CACHED_P(mdpg)); // If the new mapping has an incompatible color the last // mapping of this page, clean the page before using it. if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) { pmap_md_vca_clean(pg, PMAP_WBINV); } #endif pv->pv_pmap = pmap; pv->pv_va = va | flags; } else { #ifdef PMAP_VIRTUAL_CACHE_ALIASES if (pmap_md_vca_add(pg, va, nptep)) { goto again; } #endif /* * There is at least one other VA mapping this page. * Place this entry after the header. * * Note: the entry may already be in the table if * we are only changing the protection bits. */ #ifdef PARANOIADIAG const paddr_t pa = VM_PAGE_TO_PHYS(pg); #endif for (npv = pv; npv; npv = npv->pv_next) { if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va)) { #ifdef PARANOIADIAG pt_entry_t *ptep = pmap_pte_lookup(pmap, va); pt_entry_t pte = (ptep != NULL) ? *ptep : 0; if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa) printf("%s: found va %#"PRIxVADDR " pa %#"PRIxPADDR " in pv_table but != %#"PRIxPTE"\n", __func__, va, pa, pte_value(pte)); #endif PMAP_COUNT(remappings); VM_PAGEMD_PVLIST_UNLOCK(mdpg); if (__predict_false(apv != NULL)) pmap_pv_free(apv); UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (reused)", (uintptr_t)pv, 0, 0, 0); return; } } if (__predict_true(apv == NULL)) { /* * To allocate a PV, we have to release the PVLIST lock * so get the page generation. We allocate the PV, and * then reacquire the lock. */ pmap_pvlist_check(mdpg); const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg); apv = (pv_entry_t)pmap_pv_alloc(); if (apv == NULL) panic("pmap_enter_pv: pmap_pv_alloc() failed"); /* * If the generation has changed, then someone else * tinkered with this page so we should start over. */ if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg)) goto again; } npv = apv; apv = NULL; #ifdef PMAP_VIRTUAL_CACHE_ALIASES /* * If need to deal with virtual cache aliases, keep mappings * in the kernel pmap at the head of the list. This allows * the VCA code to easily use them for cache operations if * present. */ pmap_t kpmap = pmap_kernel(); if (pmap != kpmap) { while (pv->pv_pmap == kpmap && pv->pv_next != NULL) { pv = pv->pv_next; } } #endif npv->pv_va = va | flags; npv->pv_pmap = pmap; npv->pv_next = pv->pv_next; pv->pv_next = npv; PMAP_COUNT(mappings); } pmap_pvlist_check(mdpg); VM_PAGEMD_PVLIST_UNLOCK(mdpg); if (__predict_false(apv != NULL)) pmap_pv_free(apv); UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv, first, 0, 0); } /* * Remove a physical to virtual address translation. * If cache was inhibited on this page, and there are no more cache * conflicts, restore caching. * Flush the cache if the last page is removed (should always be cached * at this point). */ void pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty) { struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); pv_entry_t pv, npv; bool last; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)", (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg)); UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0); KASSERT(kpreempt_disabled()); KASSERT((va & PAGE_MASK) == 0); pv = &mdpg->mdpg_first; VM_PAGEMD_PVLIST_LOCK(mdpg); pmap_pvlist_check(mdpg); /* * If it is the first entry on the list, it is actually * in the header and we must copy the following entry up * to the header. Otherwise we must search the list for * the entry. In either case we free the now unused entry. */ last = false; if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) { npv = pv->pv_next; if (npv) { *pv = *npv; KASSERT(pv->pv_pmap != NULL); } else { #ifdef PMAP_VIRTUAL_CACHE_ALIASES pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED); #endif pv->pv_pmap = NULL; last = true; /* Last mapping removed */ } PMAP_COUNT(remove_pvfirst); } else { for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) { PMAP_COUNT(remove_pvsearch); if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va)) break; } if (npv) { pv->pv_next = npv->pv_next; } } pmap_pvlist_check(mdpg); VM_PAGEMD_PVLIST_UNLOCK(mdpg); #ifdef PMAP_VIRTUAL_CACHE_ALIASES pmap_md_vca_remove(pg, va, dirty, last); #endif /* * Free the pv_entry if needed. */ if (npv) pmap_pv_free(npv); if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) { if (last) { /* * If this was the page's last mapping, we no longer * care about its execness. */ UVMHIST_LOG(pmapexechist, "pg %#jx (pa %#jx)last %ju: execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0); pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE); PMAP_COUNT(exec_uncached_remove); } else { /* * Someone still has it mapped as an executable page * so we must sync it. */ UVMHIST_LOG(pmapexechist, "pg %#jx (pa %#jx) last %ju: performed syncicache", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0); pmap_page_syncicache(pg); PMAP_COUNT(exec_synced_remove); } } UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0); } #if defined(MULTIPROCESSOR) struct pmap_pvlist_info { kmutex_t *pli_locks[PAGE_SIZE / 32]; volatile u_int pli_lock_refs[PAGE_SIZE / 32]; volatile u_int pli_lock_index; u_int pli_lock_mask; } pmap_pvlist_info; void pmap_pvlist_lock_init(size_t cache_line_size) { struct pmap_pvlist_info * const pli = &pmap_pvlist_info; const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE); vaddr_t lock_va = lock_page; if (sizeof(kmutex_t) > cache_line_size) { cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size); } const size_t nlocks = PAGE_SIZE / cache_line_size; KASSERT((nlocks & (nlocks - 1)) == 0); /* * Now divide the page into a number of mutexes, one per cacheline. */ for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) { kmutex_t * const lock = (kmutex_t *)lock_va; mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH); pli->pli_locks[i] = lock; } pli->pli_lock_mask = nlocks - 1; } kmutex_t * pmap_pvlist_lock_addr(struct vm_page_md *mdpg) { struct pmap_pvlist_info * const pli = &pmap_pvlist_info; kmutex_t *lock = mdpg->mdpg_lock; /* * Allocate a lock on an as-needed basis. This will hopefully give us * semi-random distribution not based on page color. */ if (__predict_false(lock == NULL)) { size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37); size_t lockid = locknum & pli->pli_lock_mask; kmutex_t * const new_lock = pli->pli_locks[lockid]; /* * Set the lock. If some other thread already did, just use * the one they assigned. */ lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock); if (lock == NULL) { lock = new_lock; atomic_inc_uint(&pli->pli_lock_refs[lockid]); } } /* * Now finally provide the lock. */ return lock; } #else /* !MULTIPROCESSOR */ void pmap_pvlist_lock_init(size_t cache_line_size) { mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH); } #ifdef MODULAR kmutex_t * pmap_pvlist_lock_addr(struct vm_page_md *mdpg) { /* * We just use a global lock. */ if (__predict_false(mdpg->mdpg_lock == NULL)) { mdpg->mdpg_lock = &pmap_pvlist_mutex; } /* * Now finally provide the lock. */ return mdpg->mdpg_lock; } #endif /* MODULAR */ #endif /* !MULTIPROCESSOR */ /* * pmap_pv_page_alloc: * * Allocate a page for the pv_entry pool. */ void * pmap_pv_page_alloc(struct pool *pp, int flags) { struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE); if (pg == NULL) return NULL; return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg)); } /* * pmap_pv_page_free: * * Free a pv_entry pool page. */ void pmap_pv_page_free(struct pool *pp, void *v) { vaddr_t va = (vaddr_t)v; KASSERT(pmap_md_direct_mapped_vaddr_p(va)); const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va); struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); KASSERT(pg != NULL); #ifdef PMAP_VIRTUAL_CACHE_ALIASES kpreempt_disable(); pmap_md_vca_remove(pg, va, true, true); kpreempt_enable(); #endif pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE); KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg))); uvm_pagefree(pg); } #ifdef PMAP_PREFER /* * Find first virtual address >= *vap that doesn't cause * a cache alias conflict. */ void pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td) { vsize_t prefer_mask = ptoa(uvmexp.colormask); PMAP_COUNT(prefer_requests); prefer_mask |= pmap_md_cache_prefer_mask(); if (prefer_mask) { vaddr_t va = *vap; vsize_t d = (foff - va) & prefer_mask; if (d) { if (td) *vap = trunc_page(va - ((-d) & prefer_mask)); else *vap = round_page(va + d); PMAP_COUNT(prefer_adjustments); } } } #endif /* PMAP_PREFER */ #ifdef PMAP_MAP_POOLPAGE vaddr_t pmap_map_poolpage(paddr_t pa) { struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); KASSERT(pg); struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg)); pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE); return pmap_md_map_poolpage(pa, NBPG); } paddr_t pmap_unmap_poolpage(vaddr_t va) { KASSERT(pmap_md_direct_mapped_vaddr_p(va)); paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va); struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); KASSERT(pg != NULL); KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg))); pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE); pmap_md_unmap_poolpage(va, NBPG); return pa; } #endif /* PMAP_MAP_POOLPAGE */