/* $NetBSD: lfs_accessors.h,v 1.35 2015/10/03 08:28:16 dholland Exp $ */ /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */ /* from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp */ /* from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp */ /*- * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Konrad E. Schroder . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)lfs.h 8.9 (Berkeley) 5/8/95 */ /* * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program * * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)dinode.h 8.9 (Berkeley) 3/29/95 */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)dir.h 8.5 (Berkeley) 4/27/95 */ #ifndef _UFS_LFS_LFS_ACCESSORS_H_ #define _UFS_LFS_LFS_ACCESSORS_H_ #if defined(_KERNEL_OPT) #include "opt_lfs.h" #endif #include #if !defined(_KERNEL) && !defined(_STANDALONE) #include #define KASSERT assert #endif /* * STRUCT_LFS is used by the libsa code to get accessors that work * with struct salfs instead of struct lfs, and by the cleaner to * get accessors that work with struct clfs. */ #ifndef STRUCT_LFS #define STRUCT_LFS struct lfs #endif /* * byte order */ /* * For now at least, the bootblocks shall not be endian-independent. * We can see later if it fits in the size budget. Also disable the * byteswapping if LFS_EI is off. * * Caution: these functions "know" that bswap16/32/64 are unsigned, * and if that changes will likely break silently. */ #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI)) #define LFS_SWAP_int16_t(fs, val) (val) #define LFS_SWAP_int32_t(fs, val) (val) #define LFS_SWAP_int64_t(fs, val) (val) #define LFS_SWAP_uint16_t(fs, val) (val) #define LFS_SWAP_uint32_t(fs, val) (val) #define LFS_SWAP_uint64_t(fs, val) (val) #else #define LFS_SWAP_int16_t(fs, val) \ ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val)) #define LFS_SWAP_int32_t(fs, val) \ ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val)) #define LFS_SWAP_int64_t(fs, val) \ ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val)) #define LFS_SWAP_uint16_t(fs, val) \ ((fs)->lfs_dobyteswap ? bswap16(val) : (val)) #define LFS_SWAP_uint32_t(fs, val) \ ((fs)->lfs_dobyteswap ? bswap32(val) : (val)) #define LFS_SWAP_uint64_t(fs, val) \ ((fs)->lfs_dobyteswap ? bswap64(val) : (val)) #endif /* * For handling directories we will need to know if the volume is * little-endian. */ #if BYTE_ORDER == LITTLE_ENDIAN #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap) #else #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap) #endif /* * directories */ #define LFS_DIRHEADERSIZE(fs) \ ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32)) /* * The LFS_DIRSIZ macro gives the minimum record length which will hold * the directory entry. This requires the amount of space in struct lfs_direct * without the d_name field, plus enough space for the name with a terminating * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary. */ #define LFS_DIRECTSIZ(fs, namlen) \ (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3)) /* * The size of the largest possible directory entry. This is * used by ulfs_dirhash to figure the size of an array, so we * need a single constant value true for both lfs32 and lfs64. */ #define LFS_MAXDIRENTRYSIZE \ (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3)) #if (BYTE_ORDER == LITTLE_ENDIAN) #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \ (((oldfmt) && !(needswap)) ? \ LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen)) #else #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \ (((oldfmt) && (needswap)) ? \ LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen)) #endif #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp)) /* Constants for the first argument of LFS_OLDDIRSIZ */ #define LFS_OLDDIRFMT 1 #define LFS_NEWDIRFMT 0 #define LFS_NEXTDIR(fs, dp) \ ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp))) static __unused inline char * lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh) { if (fs->lfs_is64) { return (char *)(&dh->u_64 + 1); } else { return (char *)(&dh->u_32 + 1); } } static __unused inline uint64_t lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) { if (fs->lfs_is64) { uint64_t ino; /* * XXX we can probably write this in a way that's both * still legal and generates better code. */ memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA)); memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA), &dh->u_64.dh_inoB, sizeof(dh->u_64.dh_inoB)); return LFS_SWAP_uint64_t(fs, ino); } else { return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino); } } static __unused inline uint16_t lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) { if (fs->lfs_is64) { return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen); } else { return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen); } } static __unused inline uint8_t lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) { if (fs->lfs_is64) { KASSERT(fs->lfs_hasolddirfmt == 0); return dh->u_64.dh_type; } else if (fs->lfs_hasolddirfmt) { return LFS_DT_UNKNOWN; } else { return dh->u_32.dh_type; } } static __unused inline uint8_t lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) { if (fs->lfs_is64) { KASSERT(fs->lfs_hasolddirfmt == 0); return dh->u_64.dh_type; } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) { /* low-order byte of old 16-bit namlen field */ return dh->u_32.dh_type; } else { return dh->u_32.dh_namlen; } } static __unused inline void lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino) { if (fs->lfs_is64) { ino = LFS_SWAP_uint64_t(fs, ino); /* * XXX we can probably write this in a way that's both * still legal and generates better code. */ memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA)); memcpy(&dh->u_64.dh_inoB, (char *)&ino + sizeof(dh->u_64.dh_inoA), sizeof(dh->u_64.dh_inoB)); } else { dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino); } } static __unused inline void lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen) { if (fs->lfs_is64) { dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen); } else { dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen); } } static __unused inline void lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type) { if (fs->lfs_is64) { KASSERT(fs->lfs_hasolddirfmt == 0); dh->u_64.dh_type = type; } else if (fs->lfs_hasolddirfmt) { /* do nothing */ return; } else { dh->u_32.dh_type = type; } } static __unused inline void lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen) { if (fs->lfs_is64) { KASSERT(fs->lfs_hasolddirfmt == 0); dh->u_64.dh_namlen = namlen; } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) { /* low-order byte of old 16-bit namlen field */ dh->u_32.dh_type = namlen; } else { dh->u_32.dh_namlen = namlen; } } static __unused inline void lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src, unsigned namlen, unsigned reclen) { unsigned spacelen; KASSERT(reclen > LFS_DIRHEADERSIZE(fs)); spacelen = reclen - LFS_DIRHEADERSIZE(fs); /* must always be at least 1 byte as a null terminator */ KASSERT(spacelen > namlen); memcpy(dest, src, namlen); memset(dest + namlen, '\0', spacelen - namlen); } static __unused LFS_DIRHEADER * lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt) { /* XXX blah, be nice to have a way to do this w/o casts */ if (fs->lfs_is64) { return (LFS_DIRHEADER *)&dt->u_64.dotdot_header; } else { return (LFS_DIRHEADER *)&dt->u_32.dotdot_header; } } static __unused char * lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt) { if (fs->lfs_is64) { return dt->u_64.dotdot_name; } else { return dt->u_32.dotdot_name; } } /* * dinodes */ /* * Maximum length of a symlink that can be stored within the inode. */ #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t)) #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t)) #define LFS_MAXSYMLINKLEN(fs) \ ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN) #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode)) #define DINO_IN_BLOCK(fs, base, ix) \ ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix))) static __unused inline void lfs_copy_dinode(STRUCT_LFS *fs, union lfs_dinode *dst, const union lfs_dinode *src) { /* * We can do structure assignment of the structs, but not of * the whole union, as the union is the size of the (larger) * 64-bit struct and on a 32-bit fs the upper half of it might * be off the end of a buffer or otherwise invalid. */ if (fs->lfs_is64) { dst->u_64 = src->u_64; } else { dst->u_32 = src->u_32; } } #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \ static __unused inline type \ lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \ { \ if (fs->lfs_is64) { \ return LFS_SWAP_##type(fs, dip->u_64.di_##field); \ } else { \ return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \ } \ } \ static __unused inline void \ lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \ { \ if (fs->lfs_is64) { \ type *p = &dip->u_64.di_##field; \ (void)p; \ dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \ } else { \ type32 *p = &dip->u_32.di_##field; \ (void)p; \ dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \ } \ } \ LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode); LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink); LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber); LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size); LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime); LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec); LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime); LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec); LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime); LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec); LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags); LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks); LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen); LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid); LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid); /* XXX this should be done differently (it's a fake field) */ LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev); static __unused inline daddr_t lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix) { KASSERT(ix < ULFS_NDADDR); if (fs->lfs_is64) { return dip->u_64.di_db[ix]; } else { return dip->u_32.di_db[ix]; } } static __unused inline daddr_t lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix) { KASSERT(ix < ULFS_NIADDR); if (fs->lfs_is64) { return dip->u_64.di_ib[ix]; } else { return dip->u_32.di_ib[ix]; } } static __unused inline void lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val) { KASSERT(ix < ULFS_NDADDR); if (fs->lfs_is64) { dip->u_64.di_db[ix] = val; } else { dip->u_32.di_db[ix] = val; } } static __unused inline void lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val) { KASSERT(ix < ULFS_NIADDR); if (fs->lfs_is64) { dip->u_64.di_ib[ix] = val; } else { dip->u_32.di_ib[ix] = val; } } /* birthtime is present only in the 64-bit inode */ static __unused inline void lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip, const struct timespec *ts) { if (fs->lfs_is64) { dip->u_64.di_birthtime = ts->tv_sec; dip->u_64.di_birthnsec = ts->tv_nsec; } else { /* drop it on the floor */ } } /* * indirect blocks */ static __unused inline daddr_t lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix) { if (fs->lfs_is64) { // XXX re-enable these asserts after reorging this file //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t)); return (daddr_t)(((int64_t *)block)[ix]); } else { //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t)); /* must sign-extend or UNWRITTEN gets trashed */ return (daddr_t)(int64_t)(((int32_t *)block)[ix]); } } static __unused inline void lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val) { if (fs->lfs_is64) { //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t)); ((int64_t *)block)[ix] = val; } else { //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t)); ((int32_t *)block)[ix] = val; } } /* * "struct buf" associated definitions */ # define LFS_LOCK_BUF(bp) do { \ if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \ mutex_enter(&lfs_lock); \ ++locked_queue_count; \ locked_queue_bytes += bp->b_bufsize; \ mutex_exit(&lfs_lock); \ } \ (bp)->b_flags |= B_LOCKED; \ } while (0) # define LFS_UNLOCK_BUF(bp) do { \ if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \ mutex_enter(&lfs_lock); \ --locked_queue_count; \ locked_queue_bytes -= bp->b_bufsize; \ if (locked_queue_count < LFS_WAIT_BUFS && \ locked_queue_bytes < LFS_WAIT_BYTES) \ cv_broadcast(&locked_queue_cv); \ mutex_exit(&lfs_lock); \ } \ (bp)->b_flags &= ~B_LOCKED; \ } while (0) /* * "struct inode" associated definitions */ #define LFS_SET_UINO(ip, flags) do { \ if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \ lfs_sb_adduinodes((ip)->i_lfs, 1); \ if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \ lfs_sb_adduinodes((ip)->i_lfs, 1); \ if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \ lfs_sb_adduinodes((ip)->i_lfs, 1); \ (ip)->i_flag |= (flags); \ } while (0) #define LFS_CLR_UINO(ip, flags) do { \ if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \ lfs_sb_subuinodes((ip)->i_lfs, 1); \ if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \ lfs_sb_subuinodes((ip)->i_lfs, 1); \ if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \ lfs_sb_subuinodes((ip)->i_lfs, 1); \ (ip)->i_flag &= ~(flags); \ if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \ panic("lfs_uinodes < 0"); \ } \ } while (0) #define LFS_ITIMES(ip, acc, mod, cre) \ while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \ lfs_itimes(ip, acc, mod, cre) /* * On-disk and in-memory checkpoint segment usage structure. */ #define SEGUPB(fs) (lfs_sb_getsepb(fs)) #define SEGTABSIZE_SU(fs) \ ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs)) #ifdef _KERNEL # define SHARE_IFLOCK(F) \ do { \ rw_enter(&(F)->lfs_iflock, RW_READER); \ } while(0) # define UNSHARE_IFLOCK(F) \ do { \ rw_exit(&(F)->lfs_iflock); \ } while(0) #else /* ! _KERNEL */ # define SHARE_IFLOCK(F) # define UNSHARE_IFLOCK(F) #endif /* ! _KERNEL */ /* Read in the block with a specific segment usage entry from the ifile. */ #define LFS_SEGENTRY(SP, F, IN, BP) do { \ int _e; \ SHARE_IFLOCK(F); \ VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \ if ((_e = bread((F)->lfs_ivnode, \ ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \ lfs_sb_getbsize(F), 0, &(BP))) != 0) \ panic("lfs: ifile read: %d", _e); \ if (lfs_sb_getversion(F) == 1) \ (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \ ((IN) & (lfs_sb_getsepb(F) - 1))); \ else \ (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \ UNSHARE_IFLOCK(F); \ } while (0) #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \ if ((SP)->su_nbytes == 0) \ (SP)->su_flags |= SEGUSE_EMPTY; \ else \ (SP)->su_flags &= ~SEGUSE_EMPTY; \ (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \ LFS_BWRITE_LOG(BP); \ } while (0) /* * FINFO (file info) entries. */ /* Size of an on-disk block pointer, e.g. in an indirect block. */ /* XXX: move to a more suitable location in this file */ #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t)) /* Size of an on-disk inode number. */ /* XXX: move to a more suitable location in this file */ #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t)) /* size of a FINFO, without the block pointers */ #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32)) /* Full size of the provided FINFO record, including its block pointers. */ #define FINFO_FULLSIZE(fs, fip) \ (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs)) #define NEXT_FINFO(fs, fip) \ ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip))) #define LFS_DEF_FI_ACCESSOR(type, type32, field) \ static __unused inline type \ lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \ { \ if (fs->lfs_is64) { \ return fip->u_64.fi_##field; \ } else { \ return fip->u_32.fi_##field; \ } \ } \ static __unused inline void \ lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \ { \ if (fs->lfs_is64) { \ type *p = &fip->u_64.fi_##field; \ (void)p; \ fip->u_64.fi_##field = val; \ } else { \ type32 *p = &fip->u_32.fi_##field; \ (void)p; \ fip->u_32.fi_##field = val; \ } \ } \ LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks); LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version); LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino); LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength); static __unused inline daddr_t lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index) { void *firstblock; firstblock = (char *)fip + FINFOSIZE(fs); KASSERT(index < lfs_fi_getnblocks(fs, fip)); if (fs->lfs_is64) { return ((int64_t *)firstblock)[index]; } else { return ((int32_t *)firstblock)[index]; } } static __unused inline void lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk) { void *firstblock; firstblock = (char *)fip + FINFOSIZE(fs); KASSERT(index < lfs_fi_getnblocks(fs, fip)); if (fs->lfs_is64) { ((int64_t *)firstblock)[index] = blk; } else { ((int32_t *)firstblock)[index] = blk; } } /* * inode info entries (in the segment summary) */ #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32)) /* iinfos scroll backward from the end of the segment summary block */ #define SEGSUM_IINFOSTART(fs, buf) \ ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs))) #define NEXTLOWER_IINFO(fs, iip) \ ((IINFO *)((char *)(iip) - IINFOSIZE(fs))) #define NTH_IINFO(fs, buf, n) \ ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs))) static __unused inline uint64_t lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip) { if (fs->lfs_is64) { return iip->u_64.ii_block; } else { return iip->u_32.ii_block; } } static __unused inline void lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block) { if (fs->lfs_is64) { iip->u_64.ii_block = block; } else { iip->u_32.ii_block = block; } } /* * Index file inode entries. */ #define IFILE_ENTRYSIZE(fs) \ ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32)) /* * LFSv1 compatibility code is not allowed to touch if_atime, since it * may not be mapped! */ /* Read in the block with a specific inode from the ifile. */ #define LFS_IENTRY(IP, F, IN, BP) do { \ int _e; \ SHARE_IFLOCK(F); \ VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \ if ((_e = bread((F)->lfs_ivnode, \ (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \ lfs_sb_getbsize(F), 0, &(BP))) != 0) \ panic("lfs: ifile ino %d read %d", (int)(IN), _e); \ if ((F)->lfs_is64) { \ (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \ (IN) % lfs_sb_getifpb(F)); \ } else if (lfs_sb_getversion(F) > 1) { \ (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \ (IN) % lfs_sb_getifpb(F)); \ } else { \ (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \ (IN) % lfs_sb_getifpb(F)); \ } \ UNSHARE_IFLOCK(F); \ } while (0) #define LFS_IENTRY_NEXT(IP, F) do { \ if ((F)->lfs_is64) { \ (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \ } else if (lfs_sb_getversion(F) > 1) { \ (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \ } else { \ (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \ } \ } while (0) #define LFS_DEF_IF_ACCESSOR(type, type32, field) \ static __unused inline type \ lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \ { \ if (fs->lfs_is64) { \ return ifp->u_64.if_##field; \ } else { \ return ifp->u_32.if_##field; \ } \ } \ static __unused inline void \ lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \ { \ if (fs->lfs_is64) { \ type *p = &ifp->u_64.if_##field; \ (void)p; \ ifp->u_64.if_##field = val; \ } else { \ type32 *p = &ifp->u_32.if_##field; \ (void)p; \ ifp->u_32.if_##field = val; \ } \ } \ LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version); LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr); LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree); LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, atime_sec); LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec); /* * Cleaner information structure. This resides in the ifile and is used * to pass information from the kernel to the cleaner. */ #define CLEANSIZE_SU(fs) \ ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \ lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs)) #define LFS_DEF_CI_ACCESSOR(type, type32, field) \ static __unused inline type \ lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \ { \ if (fs->lfs_is64) { \ return cip->u_64.field; \ } else { \ return cip->u_32.field; \ } \ } \ static __unused inline void \ lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \ { \ if (fs->lfs_is64) { \ type *p = &cip->u_64.field; \ (void)p; \ cip->u_64.field = val; \ } else { \ type32 *p = &cip->u_32.field; \ (void)p; \ cip->u_32.field = val; \ } \ } \ LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean); LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty); LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree); LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail); LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head); LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail); LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags); static __unused inline void lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num) { lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num); lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num); } static __unused inline void lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num) { lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num); lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num); } /* Read in the block with the cleaner info from the ifile. */ #define LFS_CLEANERINFO(CP, F, BP) do { \ SHARE_IFLOCK(F); \ VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \ if (bread((F)->lfs_ivnode, \ (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP))) \ panic("lfs: ifile read"); \ (CP) = (CLEANERINFO *)(BP)->b_data; \ UNSHARE_IFLOCK(F); \ } while (0) /* * Synchronize the Ifile cleaner info with current avail and bfree. */ #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \ mutex_enter(&lfs_lock); \ if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \ lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \ fs->lfs_favail) { \ lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \ lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \ fs->lfs_favail); \ if (((bp)->b_flags & B_GATHERED) == 0) { \ fs->lfs_flags |= LFS_IFDIRTY; \ } \ mutex_exit(&lfs_lock); \ (void) LFS_BWRITE_LOG(bp); /* Ifile */ \ } else { \ mutex_exit(&lfs_lock); \ brelse(bp, 0); \ } \ } while (0) /* * Get the head of the inode free list. * Always called with the segment lock held. */ #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \ if (lfs_sb_getversion(FS) > 1) { \ LFS_CLEANERINFO((CIP), (FS), (BP)); \ lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \ brelse(BP, 0); \ } \ *(FREEP) = lfs_sb_getfreehd(FS); \ } while (0) #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \ lfs_sb_setfreehd(FS, VAL); \ if (lfs_sb_getversion(FS) > 1) { \ LFS_CLEANERINFO((CIP), (FS), (BP)); \ lfs_ci_setfree_head(FS, CIP, VAL); \ LFS_BWRITE_LOG(BP); \ mutex_enter(&lfs_lock); \ (FS)->lfs_flags |= LFS_IFDIRTY; \ mutex_exit(&lfs_lock); \ } \ } while (0) #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \ LFS_CLEANERINFO((CIP), (FS), (BP)); \ *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \ brelse(BP, 0); \ } while (0) #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \ LFS_CLEANERINFO((CIP), (FS), (BP)); \ lfs_ci_setfree_tail(FS, CIP, VAL); \ LFS_BWRITE_LOG(BP); \ mutex_enter(&lfs_lock); \ (FS)->lfs_flags |= LFS_IFDIRTY; \ mutex_exit(&lfs_lock); \ } while (0) /* * On-disk segment summary information */ #define SEGSUM_SIZE(fs) \ (fs->lfs_is64 ? sizeof(SEGSUM64) : \ lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1)) /* * The SEGSUM structure is followed by FINFO structures. Get the pointer * to the first FINFO. * * XXX this can't be a macro yet; this file needs to be resorted. */ #if 0 static __unused inline FINFO * segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp) { return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs)); } #else #define SEGSUM_FINFOBASE(fs, ssp) \ ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs))); #endif #define LFS_DEF_SS_ACCESSOR(type, type32, field) \ static __unused inline type \ lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \ { \ if (fs->lfs_is64) { \ return ssp->u_64.ss_##field; \ } else { \ return ssp->u_32.ss_##field; \ } \ } \ static __unused inline void \ lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \ { \ if (fs->lfs_is64) { \ type *p = &ssp->u_64.ss_##field; \ (void)p; \ ssp->u_64.ss_##field = val; \ } else { \ type32 *p = &ssp->u_32.ss_##field; \ (void)p; \ ssp->u_32.ss_##field = val; \ } \ } \ LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum); LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum); LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic); LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident); LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next); LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo); LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos); LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags); LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino); LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial); LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create); static __unused inline size_t lfs_ss_getsumstart(STRUCT_LFS *fs) { /* These are actually all the same. */ if (fs->lfs_is64) { return offsetof(SEGSUM64, ss_datasum); } else /* if (lfs_sb_getversion(fs) > 1) */ { return offsetof(SEGSUM32, ss_datasum); } /* else { return offsetof(SEGSUM_V1, ss_datasum); } */ /* * XXX ^^^ until this file is resorted lfs_sb_getversion isn't * defined yet. */ } static __unused inline uint32_t lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp) { KASSERT(fs->lfs_is64 == 0); /* XXX need to resort this file before we can do this */ //KASSERT(lfs_sb_getversion(fs) == 1); return ssp->u_v1.ss_create; } static __unused inline void lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val) { KASSERT(fs->lfs_is64 == 0); /* XXX need to resort this file before we can do this */ //KASSERT(lfs_sb_getversion(fs) == 1); ssp->u_v1.ss_create = val; } /* * Super block. */ /* * Generate accessors for the on-disk superblock fields with cpp. */ #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \ static __unused inline type \ lfs_sb_get##field(STRUCT_LFS *fs) \ { \ if (fs->lfs_is64) { \ return fs->lfs_dlfs_u.u_64.dlfs_##field; \ } else { \ return fs->lfs_dlfs_u.u_32.dlfs_##field; \ } \ } \ static __unused inline void \ lfs_sb_set##field(STRUCT_LFS *fs, type val) \ { \ if (fs->lfs_is64) { \ fs->lfs_dlfs_u.u_64.dlfs_##field = val; \ } else { \ fs->lfs_dlfs_u.u_32.dlfs_##field = val; \ } \ } \ static __unused inline void \ lfs_sb_add##field(STRUCT_LFS *fs, type val) \ { \ if (fs->lfs_is64) { \ type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \ *p64 += val; \ } else { \ type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \ *p32 += val; \ } \ } \ static __unused inline void \ lfs_sb_sub##field(STRUCT_LFS *fs, type val) \ { \ if (fs->lfs_is64) { \ type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \ *p64 -= val; \ } else { \ type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \ *p32 -= val; \ } \ } #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f) #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \ static __unused inline type \ lfs_sb_get##field(STRUCT_LFS *fs) \ { \ if (fs->lfs_is64) { \ return val64; \ } else { \ return fs->lfs_dlfs_u.u_32.dlfs_##field; \ } \ } #define lfs_magic lfs_dlfs.dlfs_magic LFS_DEF_SB_ACCESSOR(u_int32_t, version); LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size); LFS_DEF_SB_ACCESSOR(u_int32_t, ssize); LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize); LFS_DEF_SB_ACCESSOR(u_int32_t, bsize); LFS_DEF_SB_ACCESSOR(u_int32_t, fsize); LFS_DEF_SB_ACCESSOR(u_int32_t, frag); LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree); LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail); LFS_DEF_SB_ACCESSOR(int32_t, uinodes); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr); LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg); LFS_DEF_SB_ACCESSOR(u_int32_t, inopf); LFS_DEF_SB_ACCESSOR(u_int32_t, minfree); LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize); LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg); LFS_DEF_SB_ACCESSOR(u_int32_t, inopb); LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb); LFS_DEF_SB_ACCESSOR(u_int32_t, sepb); LFS_DEF_SB_ACCESSOR(u_int32_t, nindir); LFS_DEF_SB_ACCESSOR(u_int32_t, nseg); LFS_DEF_SB_ACCESSOR(u_int32_t, nspf); LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz); LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz); LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0); LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0); LFS_DEF_SB_ACCESSOR(u_int64_t, bmask); LFS_DEF_SB_ACCESSOR(u_int32_t, bshift); LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask); LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift); LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask); LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift); LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb); LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb); LFS_DEF_SB_ACCESSOR(u_int32_t, sushift); LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen); LFS_DEF_SB_ACCESSOR(u_int32_t, cksum); LFS_DEF_SB_ACCESSOR(u_int16_t, pflags); LFS_DEF_SB_ACCESSOR(u_int32_t, nclean); LFS_DEF_SB_ACCESSOR(int32_t, dmeta); LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg); LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize); LFS_DEF_SB_ACCESSOR(u_int64_t, serial); LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize); LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr); LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp); LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt); LFS_DEF_SB_ACCESSOR(u_int32_t, interleave); LFS_DEF_SB_ACCESSOR(u_int32_t, ident); LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg); /* special-case accessors */ /* * the v1 otstamp field lives in what's now dlfs_inopf */ #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs) #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val) /* * lfs_sboffs is an array */ static __unused inline int32_t lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n) { #ifdef KASSERT /* ugh */ KASSERT(n < LFS_MAXNUMSB); #endif if (fs->lfs_is64) { return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n]; } else { return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n]; } } static __unused inline void lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val) { #ifdef KASSERT /* ugh */ KASSERT(n < LFS_MAXNUMSB); #endif if (fs->lfs_is64) { fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val; } else { fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val; } } /* * lfs_fsmnt is a string */ static __unused inline const char * lfs_sb_getfsmnt(STRUCT_LFS *fs) { if (fs->lfs_is64) { return fs->lfs_dlfs_u.u_64.dlfs_fsmnt; } else { return fs->lfs_dlfs_u.u_32.dlfs_fsmnt; } } static __unused inline void lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str) { if (fs->lfs_is64) { (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str, sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt)); } else { (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str, sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt)); } } /* Highest addressable fsb */ #define LFS_MAX_DADDR(fs) \ ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff) /* LFS_NINDIR is the number of indirects in a file system block. */ #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs)) /* LFS_INOPB is the number of inodes in a secondary storage block. */ #define LFS_INOPB(fs) (lfs_sb_getinopb(fs)) /* LFS_INOPF is the number of inodes in a fragment. */ #define LFS_INOPF(fs) (lfs_sb_getinopf(fs)) #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs))) #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \ ((int)((loc) & lfs_sb_getffmask(fs))) /* XXX: lowercase these as they're no longer macros */ /* Frags to diskblocks */ static __unused inline uint64_t LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b) { #if defined(_KERNEL) return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT); #else return b << lfs_sb_getfsbtodb(fs); #endif } /* Diskblocks to frags */ static __unused inline uint64_t LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b) { #if defined(_KERNEL) return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT); #else return b >> lfs_sb_getfsbtodb(fs); #endif } #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs)) #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs)) /* Frags to bytes */ static __unused inline uint64_t lfs_fsbtob(STRUCT_LFS *fs, uint64_t b) { return b << lfs_sb_getffshift(fs); } /* Bytes to frags */ static __unused inline uint64_t lfs_btofsb(STRUCT_LFS *fs, uint64_t b) { return b >> lfs_sb_getffshift(fs); } #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \ ((loc) >> lfs_sb_getffshift(fs)) #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \ ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs)))) #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \ ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs)))) #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \ ((frags) >> lfs_sb_getfbshift(fs)) #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \ ((blks) << lfs_sb_getfbshift(fs)) #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \ ((fsb) & ((fs)->lfs_frag - 1)) #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \ ((fsb) &~ ((fs)->lfs_frag - 1)) #define lfs_dblksize(fs, dp, lbn) \ (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \ ? lfs_sb_getbsize(fs) \ : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp))))) #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \ lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \ lfs_sb_getssize(fs)) /* XXX segtod produces a result in frags despite the 'd' */ #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg)) #define lfs_dtosn(fs, daddr) /* block address to segment number */ \ ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1))) #define lfs_sntod(fs, sn) /* segment number to disk address */ \ ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs))) /* XXX, blah. make this appear only if struct inode is defined */ #ifdef _UFS_LFS_LFS_INODE_H_ static __unused inline uint32_t lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn) { if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) { return lfs_sb_getbsize(fs); } else { return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din))); } } #endif /* * union lfs_blocks */ static __unused inline void lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p) { if (fs->lfs_is64) { bp->b64 = p; } else { bp->b32 = p; } } static __unused inline void lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip) { void *firstblock; firstblock = (char *)fip + FINFOSIZE(fs); if (fs->lfs_is64) { bp->b64 = (int64_t *)firstblock; } else { bp->b32 = (int32_t *)firstblock; } } static __unused inline daddr_t lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index) { if (fs->lfs_is64) { return bp->b64[index]; } else { return bp->b32[index]; } } static __unused inline void lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val) { if (fs->lfs_is64) { bp->b64[index] = val; } else { bp->b32[index] = val; } } static __unused inline void lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp) { if (fs->lfs_is64) { bp->b64++; } else { bp->b32++; } } static __unused inline int lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2) { if (fs->lfs_is64) { return bp1->b64 == bp2->b64; } else { return bp1->b32 == bp2->b32; } } static __unused inline int lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2) { /* (remember that the pointers are typed) */ if (fs->lfs_is64) { return bp1->b64 - bp2->b64; } else { return bp1->b32 - bp2->b32; } } /* * struct segment */ /* * Macros for determining free space on the disk, with the variable metadata * of segment summaries and inode blocks taken into account. */ /* * Estimate number of clean blocks not available for writing because * they will contain metadata or overhead. This is calculated as * * E = ((C * M / D) * D + (0) * (T - D)) / T * or more simply * E = (C * M) / T * * where * C is the clean space, * D is the dirty space, * M is the dirty metadata, and * T = C + D is the total space on disk. * * This approximates the old formula of E = C * M / D when D is close to T, * but avoids falsely reporting "disk full" when the sample size (D) is small. */ #define LFS_EST_CMETA(F) (( \ (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \ (lfs_sb_getnseg(F)))) /* Estimate total size of the disk not including metadata */ #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F)) /* Estimate number of blocks actually available for writing */ #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \ lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0) /* Amount of non-meta space not available to mortal man */ #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \ (u_int64_t)lfs_sb_getminfree(F)) / \ 100) /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */ #define ISSPACE(F, BB, C) \ ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \ LFS_EST_BFREE(F) >= (BB)) || \ (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB))) /* Can an ordinary user write BB blocks */ #define IS_FREESPACE(F, BB) \ (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F)) /* * The minimum number of blocks to create a new inode. This is: * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) + * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks. */ #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F))) #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */