/* $NetBSD: ffs_inode.c,v 1.75 2005/09/12 20:26:44 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 */ #include __KERNEL_RCSID(0, "$NetBSD: ffs_inode.c,v 1.75 2005/09/12 20:26:44 christos Exp $"); #if defined(_KERNEL_OPT) #include "opt_ffs.h" #include "opt_quota.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ffs_indirtrunc(struct inode *, daddr_t, daddr_t, daddr_t, int, int64_t *); /* * Update the access, modified, and inode change times as specified * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. * The IN_MODIFIED flag is used to specify that the inode needs to be * updated but that the times have already been set. The access * and modified times are taken from the second and third parameters; * the inode change time is always taken from the current time. If * UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing * softupdates, then wait for the disk write of the inode to complete. */ int ffs_update(void *v) { struct vop_update_args /* { struct vnode *a_vp; struct timespec *a_access; struct timespec *a_modify; int a_flags; } */ *ap = v; struct fs *fs; struct buf *bp; struct inode *ip; int error; caddr_t cp; int waitfor, flags; if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) return (0); ip = VTOI(ap->a_vp); FFS_ITIMES(ip, ap->a_access, ap->a_modify, NULL); if (ap->a_flags & UPDATE_CLOSE) flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED); else flags = ip->i_flag & IN_MODIFIED; if (flags == 0) return (0); fs = ip->i_fs; if ((flags & IN_MODIFIED) != 0 && (ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) { waitfor = ap->a_flags & UPDATE_WAIT; if ((ap->a_flags & UPDATE_DIROP) && !DOINGSOFTDEP(ap->a_vp)) waitfor |= UPDATE_WAIT; } else waitfor = 0; /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_magic == FS_UFS1_MAGIC && /* XXX */ fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */ ip->i_ffs1_ouid = ip->i_uid; /* XXX */ ip->i_ffs1_ogid = ip->i_gid; /* XXX */ } /* XXX */ error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { brelse(bp); return (error); } ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED); if (DOINGSOFTDEP(ap->a_vp)) softdep_update_inodeblock(ip, bp, waitfor); else if (ip->i_ffs_effnlink != ip->i_nlink) panic("ffs_update: bad link cnt"); if (fs->fs_magic == FS_UFS1_MAGIC) { cp = (caddr_t)bp->b_data + (ino_to_fsbo(fs, ip->i_number) * DINODE1_SIZE); #ifdef FFS_EI if (UFS_FSNEEDSWAP(fs)) ffs_dinode1_swap(ip->i_din.ffs1_din, (struct ufs1_dinode *)cp); else #endif memcpy(cp, ip->i_din.ffs1_din, DINODE1_SIZE); } else { cp = (caddr_t)bp->b_data + (ino_to_fsbo(fs, ip->i_number) * DINODE2_SIZE); #ifdef FFS_EI if (UFS_FSNEEDSWAP(fs)) ffs_dinode2_swap(ip->i_din.ffs2_din, (struct ufs2_dinode *)cp); else #endif memcpy(cp, ip->i_din.ffs2_din, DINODE2_SIZE); } if (waitfor) { return (bwrite(bp)); } else { bdwrite(bp); return (0); } } #define SINGLE 0 /* index of single indirect block */ #define DOUBLE 1 /* index of double indirect block */ #define TRIPLE 2 /* index of triple indirect block */ /* * Truncate the inode oip to at most length size, freeing the * disk blocks. */ int ffs_truncate(void *v) { struct vop_truncate_args /* { struct vnode *a_vp; off_t a_length; int a_flags; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; struct vnode *ovp = ap->a_vp; struct genfs_node *gp = VTOG(ovp); daddr_t lastblock; struct inode *oip = VTOI(ovp); daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR]; daddr_t blks[NDADDR + NIADDR]; off_t length = ap->a_length; struct fs *fs; int offset, size, level; int64_t count, blocksreleased = 0; int i, ioflag, aflag, nblocks; int error, allerror = 0; off_t osize; int sync; struct ufsmount *ump = oip->i_ump; if (length < 0) return (EINVAL); if (ovp->v_type == VLNK && (oip->i_size < ump->um_maxsymlinklen || (ump->um_maxsymlinklen == 0 && DIP(oip, blocks) == 0))) { KDASSERT(length == 0); memset(SHORTLINK(oip), 0, (size_t)oip->i_size); oip->i_size = 0; DIP_ASSIGN(oip, size, 0); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, NULL, NULL, 0)); } if (oip->i_size == length) { oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, NULL, NULL, 0)); } #ifdef QUOTA if ((error = getinoquota(oip)) != 0) return (error); #endif fs = oip->i_fs; if (length > ump->um_maxfilesize) return (EFBIG); if ((oip->i_flags & SF_SNAPSHOT) != 0) ffs_snapremove(ovp); osize = oip->i_size; ioflag = ap->a_flags; aflag = ioflag & IO_SYNC ? B_SYNC : 0; /* * Lengthen the size of the file. We must ensure that the * last byte of the file is allocated. Since the smallest * value of osize is 0, length will be at least 1. */ if (osize < length) { if (lblkno(fs, osize) < NDADDR && lblkno(fs, osize) != lblkno(fs, length) && blkroundup(fs, osize) != osize) { off_t eob; eob = blkroundup(fs, osize); error = ufs_balloc_range(ovp, osize, eob - osize, ap->a_cred, aflag); if (error) return error; if (ioflag & IO_SYNC) { ovp->v_size = eob; simple_lock(&ovp->v_interlock); VOP_PUTPAGES(ovp, trunc_page(osize & fs->fs_bmask), round_page(eob), PGO_CLEANIT | PGO_SYNCIO); } } error = ufs_balloc_range(ovp, length - 1, 1, ap->a_cred, aflag); if (error) { (void) VOP_TRUNCATE(ovp, osize, ioflag & IO_SYNC, ap->a_cred, ap->a_p); return (error); } uvm_vnp_setsize(ovp, length); oip->i_flag |= IN_CHANGE | IN_UPDATE; KASSERT(ovp->v_size == oip->i_size); return (VOP_UPDATE(ovp, NULL, NULL, 0)); } /* * When truncating a regular file down to a non-block-aligned size, * we must zero the part of last block which is past the new EOF. * We must synchronously flush the zeroed pages to disk * since the new pages will be invalidated as soon as we * inform the VM system of the new, smaller size. * We must do this before acquiring the GLOCK, since fetching * the pages will acquire the GLOCK internally. * So there is a window where another thread could see a whole * zeroed page past EOF, but that's life. */ offset = blkoff(fs, length); if (ovp->v_type == VREG && offset != 0 && osize > length) { daddr_t lbn; voff_t eoz; error = ufs_balloc_range(ovp, length - 1, 1, ap->a_cred, aflag); if (error) return error; lbn = lblkno(fs, length); size = blksize(fs, oip, lbn); eoz = MIN(lblktosize(fs, lbn) + size, osize); uvm_vnp_zerorange(ovp, length, eoz - length); if (round_page(eoz) > round_page(length)) { simple_lock(&ovp->v_interlock); error = VOP_PUTPAGES(ovp, round_page(length), round_page(eoz), PGO_CLEANIT | PGO_DEACTIVATE | ((ioflag & IO_SYNC) ? PGO_SYNCIO : 0)); if (error) return error; } } lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); if (DOINGSOFTDEP(ovp)) { if (length > 0) { /* * If a file is only partially truncated, then * we have to clean up the data structures * describing the allocation past the truncation * point. Finding and deallocating those structures * is a lot of work. Since partial truncation occurs * rarely, we solve the problem by syncing the file * so that it will have no data structures left. */ if ((error = VOP_FSYNC(ovp, ap->a_cred, FSYNC_WAIT, 0, 0, ap->a_p)) != 0) { lockmgr(&gp->g_glock, LK_RELEASE, NULL); return (error); } if (oip->i_flag & IN_SPACECOUNTED) fs->fs_pendingblocks -= DIP(oip, blocks); } else { uvm_vnp_setsize(ovp, length); #ifdef QUOTA (void) chkdq(oip, -DIP(oip, blocks), NOCRED, 0); #endif softdep_setup_freeblocks(oip, length, 0); (void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0); lockmgr(&gp->g_glock, LK_RELEASE, NULL); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, NULL, NULL, 0)); } } oip->i_size = length; DIP_ASSIGN(oip, size, length); uvm_vnp_setsize(ovp, length); /* * Calculate index into inode's block list of * last direct and indirect blocks (if any) * which we want to keep. Lastblock is -1 when * the file is truncated to 0. */ lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastiblock[SINGLE] = lastblock - NDADDR; lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); nblocks = btodb(fs->fs_bsize); /* * Update file and block pointers on disk before we start freeing * blocks. If we crash before free'ing blocks below, the blocks * will be returned to the free list. lastiblock values are also * normalized to -1 for calls to ffs_indirtrunc below. */ sync = 0; for (level = TRIPLE; level >= SINGLE; level--) { blks[NDADDR + level] = DIP(oip, ib[level]); if (lastiblock[level] < 0 && blks[NDADDR + level] != 0) { sync = 1; DIP_ASSIGN(oip, ib[level], 0); lastiblock[level] = -1; } } for (i = 0; i < NDADDR; i++) { blks[i] = DIP(oip, db[i]); if (i > lastblock && blks[i] != 0) { sync = 1; DIP_ASSIGN(oip, db[i], 0); } } oip->i_flag |= IN_CHANGE | IN_UPDATE; if (sync) { error = VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT); if (error && !allerror) allerror = error; } /* * Having written the new inode to disk, save its new configuration * and put back the old block pointers long enough to process them. * Note that we save the new block configuration so we can check it * when we are done. */ for (i = 0; i < NDADDR; i++) { bn = DIP(oip, db[i]); DIP_ASSIGN(oip, db[i], blks[i]); blks[i] = bn; } for (i = 0; i < NIADDR; i++) { bn = DIP(oip, ib[i]); DIP_ASSIGN(oip, ib[i], blks[NDADDR + i]); blks[NDADDR + i] = bn; } oip->i_size = osize; DIP_ASSIGN(oip, size, osize); error = vtruncbuf(ovp, lastblock + 1, 0, 0); if (error && !allerror) allerror = error; /* * Indirect blocks first. */ indir_lbn[SINGLE] = -NDADDR; indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; for (level = TRIPLE; level >= SINGLE; level--) { if (oip->i_ump->um_fstype == UFS1) bn = ufs_rw32(oip->i_ffs1_ib[level],UFS_FSNEEDSWAP(fs)); else bn = ufs_rw64(oip->i_ffs2_ib[level],UFS_FSNEEDSWAP(fs)); if (bn != 0) { error = ffs_indirtrunc(oip, indir_lbn[level], fsbtodb(fs, bn), lastiblock[level], level, &count); if (error) allerror = error; blocksreleased += count; if (lastiblock[level] < 0) { DIP_ASSIGN(oip, ib[level], 0); ffs_blkfree(fs, oip->i_devvp, bn, fs->fs_bsize, oip->i_number); blocksreleased += nblocks; } } if (lastiblock[level] >= 0) goto done; } /* * All whole direct blocks or frags. */ for (i = NDADDR - 1; i > lastblock; i--) { long bsize; if (oip->i_ump->um_fstype == UFS1) bn = ufs_rw32(oip->i_ffs1_db[i], UFS_FSNEEDSWAP(fs)); else bn = ufs_rw64(oip->i_ffs2_db[i], UFS_FSNEEDSWAP(fs)); if (bn == 0) continue; DIP_ASSIGN(oip, db[i], 0); bsize = blksize(fs, oip, i); ffs_blkfree(fs, oip->i_devvp, bn, bsize, oip->i_number); blocksreleased += btodb(bsize); } if (lastblock < 0) goto done; /* * Finally, look for a change in size of the * last direct block; release any frags. */ if (oip->i_ump->um_fstype == UFS1) bn = ufs_rw32(oip->i_ffs1_db[lastblock], UFS_FSNEEDSWAP(fs)); else bn = ufs_rw64(oip->i_ffs2_db[lastblock], UFS_FSNEEDSWAP(fs)); if (bn != 0) { long oldspace, newspace; /* * Calculate amount of space we're giving * back as old block size minus new block size. */ oldspace = blksize(fs, oip, lastblock); oip->i_size = length; DIP_ASSIGN(oip, size, length); newspace = blksize(fs, oip, lastblock); if (newspace == 0) panic("itrunc: newspace"); if (oldspace - newspace > 0) { /* * Block number of space to be free'd is * the old block # plus the number of frags * required for the storage we're keeping. */ bn += numfrags(fs, newspace); ffs_blkfree(fs, oip->i_devvp, bn, oldspace - newspace, oip->i_number); blocksreleased += btodb(oldspace - newspace); } } done: #ifdef DIAGNOSTIC for (level = SINGLE; level <= TRIPLE; level++) if (blks[NDADDR + level] != DIP(oip, ib[level])) panic("itrunc1"); for (i = 0; i < NDADDR; i++) if (blks[i] != DIP(oip, db[i])) panic("itrunc2"); if (length == 0 && (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd))) panic("itrunc3"); #endif /* DIAGNOSTIC */ /* * Put back the real size. */ oip->i_size = length; DIP_ASSIGN(oip, size, length); DIP_ADD(oip, blocks, -blocksreleased); lockmgr(&gp->g_glock, LK_RELEASE, NULL); oip->i_flag |= IN_CHANGE; #ifdef QUOTA (void) chkdq(oip, -blocksreleased, NOCRED, 0); #endif KASSERT(ovp->v_type != VREG || ovp->v_size == oip->i_size); return (allerror); } /* * Release blocks associated with the inode ip and stored in the indirect * block bn. Blocks are free'd in LIFO order up to (but not including) * lastbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. * * NB: triple indirect blocks are untested. */ static int ffs_indirtrunc(struct inode *ip, daddr_t lbn, daddr_t dbn, daddr_t lastbn, int level, int64_t *countp) { int i; struct buf *bp; struct fs *fs = ip->i_fs; int32_t *bap1 = NULL; int64_t *bap2 = NULL; struct vnode *vp; daddr_t nb, nlbn, last; char *copy = NULL; int64_t blkcount, factor, blocksreleased = 0; int nblocks; int error = 0, allerror = 0; #ifdef FFS_EI const int needswap = UFS_FSNEEDSWAP(fs); #endif #define RBAP(ip, i) (((ip)->i_ump->um_fstype == UFS1) ? \ ufs_rw32(bap1[i], needswap) : ufs_rw64(bap2[i], needswap)) #define BAP_ASSIGN(ip, i, value) \ do { \ if ((ip)->i_ump->um_fstype == UFS1) \ bap1[i] = (value); \ else \ bap2[i] = (value); \ } while(0) /* * Calculate index in current block of last * block to be kept. -1 indicates the entire * block so we need not calculate the index. */ factor = 1; for (i = SINGLE; i < level; i++) factor *= NINDIR(fs); last = lastbn; if (lastbn > 0) last /= factor; nblocks = btodb(fs->fs_bsize); /* * Get buffer of block pointers, zero those entries corresponding * to blocks to be free'd, and update on disk copy first. Since * double(triple) indirect before single(double) indirect, calls * to bmap on these blocks will fail. However, we already have * the on disk address, so we have to set the b_blkno field * explicitly instead of letting bread do everything for us. */ vp = ITOV(ip); bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0); if (bp->b_flags & (B_DONE | B_DELWRI)) { /* Braces must be here in case trace evaluates to nothing. */ trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn); } else { trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn); curproc->p_stats->p_ru.ru_inblock++; /* pay for read */ bp->b_flags |= B_READ; if (bp->b_bcount > bp->b_bufsize) panic("ffs_indirtrunc: bad buffer size"); bp->b_blkno = dbn; BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); VOP_STRATEGY(vp, bp); error = biowait(bp); } if (error) { brelse(bp); *countp = 0; return (error); } if (ip->i_ump->um_fstype == UFS1) bap1 = (int32_t *)bp->b_data; else bap2 = (int64_t *)bp->b_data; if (lastbn >= 0) { copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK); memcpy((caddr_t)copy, bp->b_data, (u_int)fs->fs_bsize); for (i = last + 1; i < NINDIR(fs); i++) BAP_ASSIGN(ip, i, 0); error = bwrite(bp); if (error) allerror = error; if (ip->i_ump->um_fstype == UFS1) bap1 = (int32_t *)copy; else bap2 = (int64_t *)copy; } /* * Recursively free totally unused blocks. */ for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; i--, nlbn += factor) { nb = RBAP(ip, i); if (nb == 0) continue; if (level > SINGLE) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), (daddr_t)-1, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } ffs_blkfree(fs, ip->i_devvp, nb, fs->fs_bsize, ip->i_number); blocksreleased += nblocks; } /* * Recursively free last partial block. */ if (level > SINGLE && lastbn >= 0) { last = lastbn % factor; nb = RBAP(ip, i); if (nb != 0) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), last, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } } if (copy != NULL) { FREE(copy, M_TEMP); } else { bp->b_flags |= B_INVAL; brelse(bp); } *countp = blocksreleased; return (allerror); } void ffs_itimes(struct inode *ip, const struct timespec *acc, const struct timespec *mod, const struct timespec *cre) { struct timespec *ts = NULL, tsb; KASSERT(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)); if (ip->i_flag & IN_ACCESS) { if (acc == NULL) acc = ts == NULL ? (ts = nanotime(&tsb)) : ts; DIP_ASSIGN(ip, atime, acc->tv_sec); DIP_ASSIGN(ip, atimensec, acc->tv_nsec); } if (ip->i_flag & (IN_UPDATE | IN_MODIFY)) { if ((ip->i_flags & SF_SNAPSHOT) == 0) { if (mod == NULL) mod = ts == NULL ? (ts = nanotime(&tsb)) : ts; DIP_ASSIGN(ip, mtime, mod->tv_sec); DIP_ASSIGN(ip, mtimensec, mod->tv_nsec); } ip->i_modrev++; } if (ip->i_flag & (IN_CHANGE | IN_MODIFY)) { if (cre == NULL) cre = ts == NULL ? (ts = nanotime(&tsb)) : ts; DIP_ASSIGN(ip, ctime, cre->tv_sec); DIP_ASSIGN(ip, ctimensec, cre->tv_nsec); } if (ip->i_flag & (IN_ACCESS | IN_MODIFY)) ip->i_flag |= IN_ACCESSED; if (ip->i_flag & (IN_UPDATE | IN_CHANGE)) ip->i_flag |= IN_MODIFIED; ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); }