/* $NetBSD: ffs_inode.c,v 1.109 2012/01/27 19:22:49 para Exp $ */ /*- * Copyright (c) 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 */ #include __KERNEL_RCSID(0, "$NetBSD: ffs_inode.c,v 1.109 2012/01/27 19:22:49 para Exp $"); #if defined(_KERNEL_OPT) #include "opt_ffs.h" #include "opt_quota.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ffs_indirtrunc(struct inode *, daddr_t, daddr_t, daddr_t, int, int64_t *); /* * Update the access, modified, and inode change times as specified * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. * The IN_MODIFIED flag is used to specify that the inode needs to be * updated but that the times have already been set. The access * and modified times are taken from the second and third parameters; * the inode change time is always taken from the current time. If * UPDATE_WAIT flag is set, or UPDATE_DIROP is set then wait for the * disk write of the inode to complete. */ int ffs_update(struct vnode *vp, const struct timespec *acc, const struct timespec *mod, int updflags) { struct fs *fs; struct buf *bp; struct inode *ip; int error; void *cp; int waitfor, flags; if (vp->v_mount->mnt_flag & MNT_RDONLY) return (0); ip = VTOI(vp); FFS_ITIMES(ip, acc, mod, NULL); if (updflags & UPDATE_CLOSE) flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED); else flags = ip->i_flag & IN_MODIFIED; if (flags == 0) return (0); fs = ip->i_fs; if ((flags & IN_MODIFIED) != 0 && (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) { waitfor = updflags & UPDATE_WAIT; if ((updflags & UPDATE_DIROP) != 0) waitfor |= UPDATE_WAIT; } else waitfor = 0; /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_magic == FS_UFS1_MAGIC && /* XXX */ fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */ ip->i_ffs1_ouid = ip->i_uid; /* XXX */ ip->i_ffs1_ogid = ip->i_gid; /* XXX */ } /* XXX */ error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, B_MODIFY, &bp); if (error) { brelse(bp, 0); return (error); } ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED); /* Keep unlinked inode list up to date */ KDASSERT(DIP(ip, nlink) == ip->i_nlink); if (ip->i_mode) { if (ip->i_nlink > 0) { UFS_WAPBL_UNREGISTER_INODE(ip->i_ump->um_mountp, ip->i_number, ip->i_mode); } else { UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, ip->i_number, ip->i_mode); } } if (fs->fs_magic == FS_UFS1_MAGIC) { cp = (char *)bp->b_data + (ino_to_fsbo(fs, ip->i_number) * DINODE1_SIZE); #ifdef FFS_EI if (UFS_FSNEEDSWAP(fs)) ffs_dinode1_swap(ip->i_din.ffs1_din, (struct ufs1_dinode *)cp); else #endif memcpy(cp, ip->i_din.ffs1_din, DINODE1_SIZE); } else { cp = (char *)bp->b_data + (ino_to_fsbo(fs, ip->i_number) * DINODE2_SIZE); #ifdef FFS_EI if (UFS_FSNEEDSWAP(fs)) ffs_dinode2_swap(ip->i_din.ffs2_din, (struct ufs2_dinode *)cp); else #endif memcpy(cp, ip->i_din.ffs2_din, DINODE2_SIZE); } if (waitfor) { return (bwrite(bp)); } else { bdwrite(bp); return (0); } } #define SINGLE 0 /* index of single indirect block */ #define DOUBLE 1 /* index of double indirect block */ #define TRIPLE 2 /* index of triple indirect block */ /* * Truncate the inode oip to at most length size, freeing the * disk blocks. */ int ffs_truncate(struct vnode *ovp, off_t length, int ioflag, kauth_cred_t cred) { daddr_t lastblock; struct inode *oip = VTOI(ovp); daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR]; daddr_t blks[NDADDR + NIADDR]; struct fs *fs; int offset, pgoffset, level; int64_t count, blocksreleased = 0; int i, aflag, nblocks; int error, allerror = 0; off_t osize; int sync; struct ufsmount *ump = oip->i_ump; if (ovp->v_type == VCHR || ovp->v_type == VBLK || ovp->v_type == VFIFO || ovp->v_type == VSOCK) { KASSERT(oip->i_size == 0); return 0; } if (length < 0) return (EINVAL); if (ovp->v_type == VLNK && (oip->i_size < ump->um_maxsymlinklen || (ump->um_maxsymlinklen == 0 && DIP(oip, blocks) == 0))) { KDASSERT(length == 0); memset(SHORTLINK(oip), 0, (size_t)oip->i_size); oip->i_size = 0; DIP_ASSIGN(oip, size, 0); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (ffs_update(ovp, NULL, NULL, 0)); } if (oip->i_size == length) { /* still do a uvm_vnp_setsize() as writesize may be larger */ uvm_vnp_setsize(ovp, length); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (ffs_update(ovp, NULL, NULL, 0)); } fs = oip->i_fs; if (length > ump->um_maxfilesize) return (EFBIG); if ((oip->i_flags & SF_SNAPSHOT) != 0) ffs_snapremove(ovp); osize = oip->i_size; aflag = ioflag & IO_SYNC ? B_SYNC : 0; /* * Lengthen the size of the file. We must ensure that the * last byte of the file is allocated. Since the smallest * value of osize is 0, length will be at least 1. */ if (osize < length) { if (lblkno(fs, osize) < NDADDR && lblkno(fs, osize) != lblkno(fs, length) && blkroundup(fs, osize) != osize) { off_t eob; eob = blkroundup(fs, osize); uvm_vnp_setwritesize(ovp, eob); error = ufs_balloc_range(ovp, osize, eob - osize, cred, aflag); if (error) { (void) ffs_truncate(ovp, osize, ioflag & IO_SYNC, cred); return error; } if (ioflag & IO_SYNC) { mutex_enter(ovp->v_interlock); VOP_PUTPAGES(ovp, trunc_page(osize & fs->fs_bmask), round_page(eob), PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED); } } uvm_vnp_setwritesize(ovp, length); error = ufs_balloc_range(ovp, length - 1, 1, cred, aflag); if (error) { (void) ffs_truncate(ovp, osize, ioflag & IO_SYNC, cred); return (error); } uvm_vnp_setsize(ovp, length); oip->i_flag |= IN_CHANGE | IN_UPDATE; KASSERT(ovp->v_size == oip->i_size); return (ffs_update(ovp, NULL, NULL, 0)); } /* * When truncating a regular file down to a non-block-aligned size, * we must zero the part of last block which is past the new EOF. * We must synchronously flush the zeroed pages to disk * since the new pages will be invalidated as soon as we * inform the VM system of the new, smaller size. * We must do this before acquiring the GLOCK, since fetching * the pages will acquire the GLOCK internally. * So there is a window where another thread could see a whole * zeroed page past EOF, but that's life. */ offset = blkoff(fs, length); pgoffset = length & PAGE_MASK; if (ovp->v_type == VREG && (pgoffset != 0 || offset != 0) && osize > length) { daddr_t lbn; voff_t eoz; int size; if (offset != 0) { error = ufs_balloc_range(ovp, length - 1, 1, cred, aflag); if (error) return error; } lbn = lblkno(fs, length); size = blksize(fs, oip, lbn); eoz = MIN(MAX(lblktosize(fs, lbn) + size, round_page(pgoffset)), osize); ubc_zerorange(&ovp->v_uobj, length, eoz - length, UBC_UNMAP_FLAG(ovp)); if (round_page(eoz) > round_page(length)) { mutex_enter(ovp->v_interlock); error = VOP_PUTPAGES(ovp, round_page(length), round_page(eoz), PGO_CLEANIT | PGO_DEACTIVATE | PGO_JOURNALLOCKED | ((ioflag & IO_SYNC) ? PGO_SYNCIO : 0)); if (error) return error; } } genfs_node_wrlock(ovp); oip->i_size = length; DIP_ASSIGN(oip, size, length); uvm_vnp_setsize(ovp, length); /* * Calculate index into inode's block list of * last direct and indirect blocks (if any) * which we want to keep. Lastblock is -1 when * the file is truncated to 0. */ lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastiblock[SINGLE] = lastblock - NDADDR; lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); nblocks = btodb(fs->fs_bsize); /* * Update file and block pointers on disk before we start freeing * blocks. If we crash before free'ing blocks below, the blocks * will be returned to the free list. lastiblock values are also * normalized to -1 for calls to ffs_indirtrunc below. */ sync = 0; for (level = TRIPLE; level >= SINGLE; level--) { blks[NDADDR + level] = DIP(oip, ib[level]); if (lastiblock[level] < 0 && blks[NDADDR + level] != 0) { sync = 1; DIP_ASSIGN(oip, ib[level], 0); lastiblock[level] = -1; } } for (i = 0; i < NDADDR; i++) { blks[i] = DIP(oip, db[i]); if (i > lastblock && blks[i] != 0) { sync = 1; DIP_ASSIGN(oip, db[i], 0); } } oip->i_flag |= IN_CHANGE | IN_UPDATE; if (sync) { error = ffs_update(ovp, NULL, NULL, UPDATE_WAIT); if (error && !allerror) allerror = error; } /* * Having written the new inode to disk, save its new configuration * and put back the old block pointers long enough to process them. * Note that we save the new block configuration so we can check it * when we are done. */ for (i = 0; i < NDADDR; i++) { bn = DIP(oip, db[i]); DIP_ASSIGN(oip, db[i], blks[i]); blks[i] = bn; } for (i = 0; i < NIADDR; i++) { bn = DIP(oip, ib[i]); DIP_ASSIGN(oip, ib[i], blks[NDADDR + i]); blks[NDADDR + i] = bn; } oip->i_size = osize; DIP_ASSIGN(oip, size, osize); error = vtruncbuf(ovp, lastblock + 1, 0, 0); if (error && !allerror) allerror = error; /* * Indirect blocks first. */ indir_lbn[SINGLE] = -NDADDR; indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; for (level = TRIPLE; level >= SINGLE; level--) { if (oip->i_ump->um_fstype == UFS1) bn = ufs_rw32(oip->i_ffs1_ib[level],UFS_FSNEEDSWAP(fs)); else bn = ufs_rw64(oip->i_ffs2_ib[level],UFS_FSNEEDSWAP(fs)); if (bn != 0) { error = ffs_indirtrunc(oip, indir_lbn[level], fsbtodb(fs, bn), lastiblock[level], level, &count); if (error) allerror = error; blocksreleased += count; if (lastiblock[level] < 0) { DIP_ASSIGN(oip, ib[level], 0); if (oip->i_ump->um_mountp->mnt_wapbl) { UFS_WAPBL_REGISTER_DEALLOCATION( oip->i_ump->um_mountp, fsbtodb(fs, bn), fs->fs_bsize); } else ffs_blkfree(fs, oip->i_devvp, bn, fs->fs_bsize, oip->i_number); blocksreleased += nblocks; } } if (lastiblock[level] >= 0) goto done; } /* * All whole direct blocks or frags. */ for (i = NDADDR - 1; i > lastblock; i--) { long bsize; if (oip->i_ump->um_fstype == UFS1) bn = ufs_rw32(oip->i_ffs1_db[i], UFS_FSNEEDSWAP(fs)); else bn = ufs_rw64(oip->i_ffs2_db[i], UFS_FSNEEDSWAP(fs)); if (bn == 0) continue; DIP_ASSIGN(oip, db[i], 0); bsize = blksize(fs, oip, i); if ((oip->i_ump->um_mountp->mnt_wapbl) && (ovp->v_type != VREG)) { UFS_WAPBL_REGISTER_DEALLOCATION(oip->i_ump->um_mountp, fsbtodb(fs, bn), bsize); } else ffs_blkfree(fs, oip->i_devvp, bn, bsize, oip->i_number); blocksreleased += btodb(bsize); } if (lastblock < 0) goto done; /* * Finally, look for a change in size of the * last direct block; release any frags. */ if (oip->i_ump->um_fstype == UFS1) bn = ufs_rw32(oip->i_ffs1_db[lastblock], UFS_FSNEEDSWAP(fs)); else bn = ufs_rw64(oip->i_ffs2_db[lastblock], UFS_FSNEEDSWAP(fs)); if (bn != 0) { long oldspace, newspace; /* * Calculate amount of space we're giving * back as old block size minus new block size. */ oldspace = blksize(fs, oip, lastblock); oip->i_size = length; DIP_ASSIGN(oip, size, length); newspace = blksize(fs, oip, lastblock); if (newspace == 0) panic("itrunc: newspace"); if (oldspace - newspace > 0) { /* * Block number of space to be free'd is * the old block # plus the number of frags * required for the storage we're keeping. */ bn += numfrags(fs, newspace); if ((oip->i_ump->um_mountp->mnt_wapbl) && (ovp->v_type != VREG)) { UFS_WAPBL_REGISTER_DEALLOCATION( oip->i_ump->um_mountp, fsbtodb(fs, bn), oldspace - newspace); } else ffs_blkfree(fs, oip->i_devvp, bn, oldspace - newspace, oip->i_number); blocksreleased += btodb(oldspace - newspace); } } done: #ifdef DIAGNOSTIC for (level = SINGLE; level <= TRIPLE; level++) if (blks[NDADDR + level] != DIP(oip, ib[level])) panic("itrunc1"); for (i = 0; i < NDADDR; i++) if (blks[i] != DIP(oip, db[i])) panic("itrunc2"); if (length == 0 && (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd))) panic("itrunc3"); #endif /* DIAGNOSTIC */ /* * Put back the real size. */ oip->i_size = length; DIP_ASSIGN(oip, size, length); DIP_ADD(oip, blocks, -blocksreleased); genfs_node_unlock(ovp); oip->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(ovp, NULL, NULL, 0); #if defined(QUOTA) || defined(QUOTA2) (void) chkdq(oip, -blocksreleased, NOCRED, 0); #endif KASSERT(ovp->v_type != VREG || ovp->v_size == oip->i_size); return (allerror); } /* * Release blocks associated with the inode ip and stored in the indirect * block bn. Blocks are free'd in LIFO order up to (but not including) * lastbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. * * NB: triple indirect blocks are untested. */ static int ffs_indirtrunc(struct inode *ip, daddr_t lbn, daddr_t dbn, daddr_t lastbn, int level, int64_t *countp) { int i; struct buf *bp; struct fs *fs = ip->i_fs; int32_t *bap1 = NULL; int64_t *bap2 = NULL; struct vnode *vp; daddr_t nb, nlbn, last; char *copy = NULL; int64_t blkcount, factor, blocksreleased = 0; int nblocks; int error = 0, allerror = 0; #ifdef FFS_EI const int needswap = UFS_FSNEEDSWAP(fs); #endif #define RBAP(ip, i) (((ip)->i_ump->um_fstype == UFS1) ? \ ufs_rw32(bap1[i], needswap) : ufs_rw64(bap2[i], needswap)) #define BAP_ASSIGN(ip, i, value) \ do { \ if ((ip)->i_ump->um_fstype == UFS1) \ bap1[i] = (value); \ else \ bap2[i] = (value); \ } while(0) /* * Calculate index in current block of last * block to be kept. -1 indicates the entire * block so we need not calculate the index. */ factor = 1; for (i = SINGLE; i < level; i++) factor *= NINDIR(fs); last = lastbn; if (lastbn > 0) last /= factor; nblocks = btodb(fs->fs_bsize); /* * Get buffer of block pointers, zero those entries corresponding * to blocks to be free'd, and update on disk copy first. Since * double(triple) indirect before single(double) indirect, calls * to bmap on these blocks will fail. However, we already have * the on disk address, so we have to set the b_blkno field * explicitly instead of letting bread do everything for us. */ vp = ITOV(ip); error = ffs_getblk(vp, lbn, FFS_NOBLK, fs->fs_bsize, false, &bp); if (error) { *countp = 0; return error; } if (bp->b_oflags & (BO_DONE | BO_DELWRI)) { /* Braces must be here in case trace evaluates to nothing. */ trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn); } else { trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn); curlwp->l_ru.ru_inblock++; /* pay for read */ bp->b_flags |= B_READ; bp->b_flags &= ~B_COWDONE; /* we change blkno below */ if (bp->b_bcount > bp->b_bufsize) panic("ffs_indirtrunc: bad buffer size"); bp->b_blkno = dbn; BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); VOP_STRATEGY(vp, bp); error = biowait(bp); if (error == 0) error = fscow_run(bp, true); } if (error) { brelse(bp, 0); *countp = 0; return (error); } if (ip->i_ump->um_fstype == UFS1) bap1 = (int32_t *)bp->b_data; else bap2 = (int64_t *)bp->b_data; if (lastbn >= 0) { copy = kmem_alloc(fs->fs_bsize, KM_SLEEP); memcpy((void *)copy, bp->b_data, (u_int)fs->fs_bsize); for (i = last + 1; i < NINDIR(fs); i++) BAP_ASSIGN(ip, i, 0); error = bwrite(bp); if (error) allerror = error; if (ip->i_ump->um_fstype == UFS1) bap1 = (int32_t *)copy; else bap2 = (int64_t *)copy; } /* * Recursively free totally unused blocks. */ for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; i--, nlbn += factor) { nb = RBAP(ip, i); if (nb == 0) continue; if (level > SINGLE) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), (daddr_t)-1, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } if ((ip->i_ump->um_mountp->mnt_wapbl) && ((level > SINGLE) || (ITOV(ip)->v_type != VREG))) { UFS_WAPBL_REGISTER_DEALLOCATION(ip->i_ump->um_mountp, fsbtodb(fs, nb), fs->fs_bsize); } else ffs_blkfree(fs, ip->i_devvp, nb, fs->fs_bsize, ip->i_number); blocksreleased += nblocks; } /* * Recursively free last partial block. */ if (level > SINGLE && lastbn >= 0) { last = lastbn % factor; nb = RBAP(ip, i); if (nb != 0) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), last, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } } if (copy != NULL) { kmem_free(copy, fs->fs_bsize); } else { brelse(bp, BC_INVAL); } *countp = blocksreleased; return (allerror); } void ffs_itimes(struct inode *ip, const struct timespec *acc, const struct timespec *mod, const struct timespec *cre) { struct timespec now; if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY))) { return; } vfs_timestamp(&now); if (ip->i_flag & IN_ACCESS) { if (acc == NULL) acc = &now; DIP_ASSIGN(ip, atime, acc->tv_sec); DIP_ASSIGN(ip, atimensec, acc->tv_nsec); } if (ip->i_flag & (IN_UPDATE | IN_MODIFY)) { if ((ip->i_flags & SF_SNAPSHOT) == 0) { if (mod == NULL) mod = &now; DIP_ASSIGN(ip, mtime, mod->tv_sec); DIP_ASSIGN(ip, mtimensec, mod->tv_nsec); } ip->i_modrev++; } if (ip->i_flag & (IN_CHANGE | IN_MODIFY)) { if (cre == NULL) cre = &now; DIP_ASSIGN(ip, ctime, cre->tv_sec); DIP_ASSIGN(ip, ctimensec, cre->tv_nsec); } if (ip->i_flag & (IN_ACCESS | IN_MODIFY)) ip->i_flag |= IN_ACCESSED; if (ip->i_flag & (IN_UPDATE | IN_CHANGE)) ip->i_flag |= IN_MODIFIED; ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); }