/* $NetBSD: efiblock.c,v 1.10.6.1 2021/05/31 22:15:22 cjep Exp $ */ /*- * Copyright (c) 2016 Kimihiro Nonaka * Copyright (c) 2018 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define FSTYPENAMES #include #include #include #include #include "efiboot.h" #include "efiblock.h" /* * The raidframe support is basic. Ideally, it should be expanded to * consider raid volumes a first-class citizen like the x86 efiboot does, * but for now, we simply assume each RAID is potentially bootable. */ #define RF_PROTECTED_SECTORS 64 /* XXX refer to <.../rf_optnames.h> */ static EFI_HANDLE *efi_block; static UINTN efi_nblock; static struct efi_block_part *efi_block_booted = NULL; static TAILQ_HEAD(, efi_block_dev) efi_block_devs = TAILQ_HEAD_INITIALIZER(efi_block_devs); static int efi_block_parse(const char *fname, struct efi_block_part **pbpart, char **pfile) { struct efi_block_dev *bdev; struct efi_block_part *bpart; char pathbuf[PATH_MAX], *default_device, *ep = NULL; const char *full_path; intmax_t dev; int part; default_device = get_default_device(); if (strchr(fname, ':') == NULL) { if (strlen(default_device) > 0) { snprintf(pathbuf, sizeof(pathbuf), "%s:%s", default_device, fname); full_path = pathbuf; *pfile = __UNCONST(fname); } else { return EINVAL; } } else { full_path = fname; *pfile = strchr(fname, ':') + 1; } if (strncasecmp(full_path, "hd", 2) != 0) return EINVAL; dev = strtoimax(full_path + 2, &ep, 10); if (dev < 0 || dev >= efi_nblock) return ENXIO; if (ep[0] < 'a' || ep[0] >= 'a' + MAXPARTITIONS || ep[1] != ':') return EINVAL; part = ep[0] - 'a'; TAILQ_FOREACH(bdev, &efi_block_devs, entries) { if (bdev->index == dev) { TAILQ_FOREACH(bpart, &bdev->partitions, entries) { if (bpart->index == part) { *pbpart = bpart; return 0; } } } } return ENOENT; } static void efi_block_generate_hash_mbr(struct efi_block_part *bpart, struct mbr_sector *mbr) { MD5_CTX md5ctx; MD5Init(&md5ctx); MD5Update(&md5ctx, (void *)mbr, sizeof(*mbr)); MD5Final(bpart->hash, &md5ctx); } static void * efi_block_allocate_device_buffer(struct efi_block_dev *bdev, UINTN size, void **buf_start) { void *buf; if (bdev->bio->Media->IoAlign <= 1) *buf_start = buf = AllocatePool(size); else { buf = AllocatePool(size + bdev->bio->Media->IoAlign - 1); *buf_start = (buf == NULL) ? NULL : (void *)roundup2((intptr_t)buf, bdev->bio->Media->IoAlign); } return buf; } static int efi_block_find_partitions_cd9660(struct efi_block_dev *bdev) { struct efi_block_part *bpart; struct iso_primary_descriptor *vd; void *buf, *buf_start; EFI_STATUS status; EFI_LBA lba; UINT32 sz; if (bdev->bio->Media->BlockSize != DEV_BSIZE && bdev->bio->Media->BlockSize != ISO_DEFAULT_BLOCK_SIZE) { return ENXIO; } sz = __MAX(sizeof(*vd), bdev->bio->Media->BlockSize); sz = roundup(sz, bdev->bio->Media->BlockSize); if ((buf = efi_block_allocate_device_buffer(bdev, sz, &buf_start)) == NULL) { return ENOMEM; } for (lba = 16;; lba++) { status = uefi_call_wrapper(bdev->bio->ReadBlocks, 5, bdev->bio, bdev->media_id, lba * ISO_DEFAULT_BLOCK_SIZE / bdev->bio->Media->BlockSize, sz, buf_start); if (EFI_ERROR(status)) { goto io_error; } vd = (struct iso_primary_descriptor *)buf_start; if (memcmp(vd->id, ISO_STANDARD_ID, sizeof vd->id) != 0) { goto io_error; } if (isonum_711(vd->type) == ISO_VD_END) { goto io_error; } if (isonum_711(vd->type) == ISO_VD_PRIMARY) { break; } } if (isonum_723(vd->logical_block_size) != ISO_DEFAULT_BLOCK_SIZE) { goto io_error; } bpart = alloc(sizeof(*bpart)); bpart->index = 0; bpart->bdev = bdev; bpart->type = EFI_BLOCK_PART_CD9660; TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries); FreePool(buf); return 0; io_error: FreePool(buf); return EIO; } static int efi_block_find_partitions_disklabel(struct efi_block_dev *bdev, struct mbr_sector *mbr, uint32_t start, uint32_t size) { struct efi_block_part *bpart; struct disklabel d; struct partition *p; EFI_STATUS status; EFI_LBA lba; void *buf, *buf_start; UINT32 sz; int n; sz = __MAX(sizeof(d), bdev->bio->Media->BlockSize); sz = roundup(sz, bdev->bio->Media->BlockSize); if ((buf = efi_block_allocate_device_buffer(bdev, sz, &buf_start)) == NULL) return ENOMEM; lba = (((EFI_LBA)start + LABELSECTOR) * DEV_BSIZE) / bdev->bio->Media->BlockSize; status = uefi_call_wrapper(bdev->bio->ReadBlocks, 5, bdev->bio, bdev->media_id, lba, sz, buf_start); if (EFI_ERROR(status) || getdisklabel(buf_start, &d) != NULL) { FreePool(buf); return EIO; } FreePool(buf); if (le32toh(d.d_magic) != DISKMAGIC || le32toh(d.d_magic2) != DISKMAGIC) return EINVAL; if (le16toh(d.d_npartitions) > MAXPARTITIONS) return EINVAL; for (n = 0; n < le16toh(d.d_npartitions); n++) { p = &d.d_partitions[n]; switch (p->p_fstype) { case FS_BSDFFS: case FS_MSDOS: case FS_BSDLFS: break; case FS_RAID: p->p_size -= RF_PROTECTED_SECTORS; p->p_offset += RF_PROTECTED_SECTORS; break; default: continue; } bpart = alloc(sizeof(*bpart)); bpart->index = n; bpart->bdev = bdev; bpart->type = EFI_BLOCK_PART_DISKLABEL; bpart->disklabel.secsize = d.d_secsize; bpart->disklabel.part = *p; efi_block_generate_hash_mbr(bpart, mbr); TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries); } return 0; } static int efi_block_find_partitions_mbr(struct efi_block_dev *bdev) { struct mbr_sector mbr; struct mbr_partition *mbr_part; EFI_STATUS status; void *buf, *buf_start; UINT32 sz; int n; sz = __MAX(sizeof(mbr), bdev->bio->Media->BlockSize); sz = roundup(sz, bdev->bio->Media->BlockSize); if ((buf = efi_block_allocate_device_buffer(bdev, sz, &buf_start)) == NULL) return ENOMEM; status = uefi_call_wrapper(bdev->bio->ReadBlocks, 5, bdev->bio, bdev->media_id, 0, sz, buf_start); if (EFI_ERROR(status)) { FreePool(buf); return EIO; } memcpy(&mbr, buf_start, sizeof(mbr)); FreePool(buf); if (le32toh(mbr.mbr_magic) != MBR_MAGIC) return ENOENT; for (n = 0; n < MBR_PART_COUNT; n++) { mbr_part = &mbr.mbr_parts[n]; if (le32toh(mbr_part->mbrp_size) == 0) continue; if (mbr_part->mbrp_type == MBR_PTYPE_NETBSD) { efi_block_find_partitions_disklabel(bdev, &mbr, le32toh(mbr_part->mbrp_start), le32toh(mbr_part->mbrp_size)); break; } } return 0; } static const struct { struct uuid guid; uint8_t fstype; } gpt_guid_to_str[] = { { GPT_ENT_TYPE_NETBSD_FFS, FS_BSDFFS }, { GPT_ENT_TYPE_NETBSD_LFS, FS_BSDLFS }, { GPT_ENT_TYPE_NETBSD_RAIDFRAME, FS_RAID }, { GPT_ENT_TYPE_NETBSD_CCD, FS_CCD }, { GPT_ENT_TYPE_NETBSD_CGD, FS_CGD }, { GPT_ENT_TYPE_MS_BASIC_DATA, FS_MSDOS }, /* or NTFS? ambiguous */ { GPT_ENT_TYPE_EFI, FS_MSDOS }, }; static int efi_block_find_partitions_gpt_entry(struct efi_block_dev *bdev, struct gpt_hdr *hdr, struct gpt_ent *ent, UINT32 index) { struct efi_block_part *bpart; uint8_t fstype = FS_UNUSED; struct uuid uuid; int n; memcpy(&uuid, ent->ent_type, sizeof(uuid)); for (n = 0; n < __arraycount(gpt_guid_to_str); n++) if (memcmp(ent->ent_type, &gpt_guid_to_str[n].guid, sizeof(ent->ent_type)) == 0) { fstype = gpt_guid_to_str[n].fstype; break; } if (fstype == FS_UNUSED) return 0; bpart = alloc(sizeof(*bpart)); bpart->index = index; bpart->bdev = bdev; bpart->type = EFI_BLOCK_PART_GPT; bpart->gpt.fstype = fstype; bpart->gpt.ent = *ent; if (fstype == FS_RAID) { bpart->gpt.ent.ent_lba_start += RF_PROTECTED_SECTORS; bpart->gpt.ent.ent_lba_end -= RF_PROTECTED_SECTORS; } memcpy(bpart->hash, ent->ent_guid, sizeof(bpart->hash)); TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries); return 0; } static int efi_block_find_partitions_gpt(struct efi_block_dev *bdev) { struct gpt_hdr hdr; struct gpt_ent ent; EFI_STATUS status; void *buf, *buf_start; UINT32 sz, entry; sz = __MAX(sizeof(hdr), bdev->bio->Media->BlockSize); sz = roundup(sz, bdev->bio->Media->BlockSize); if ((buf = efi_block_allocate_device_buffer(bdev, sz, &buf_start)) == NULL) return ENOMEM; status = uefi_call_wrapper(bdev->bio->ReadBlocks, 5, bdev->bio, bdev->media_id, GPT_HDR_BLKNO, sz, buf_start); if (EFI_ERROR(status)) { FreePool(buf); return EIO; } memcpy(&hdr, buf_start, sizeof(hdr)); FreePool(buf); if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0) return ENOENT; if (le32toh(hdr.hdr_entsz) < sizeof(ent)) return EINVAL; sz = __MAX(le32toh(hdr.hdr_entsz) * le32toh(hdr.hdr_entries), bdev->bio->Media->BlockSize); sz = roundup(sz, bdev->bio->Media->BlockSize); if ((buf = efi_block_allocate_device_buffer(bdev, sz, &buf_start)) == NULL) return ENOMEM; status = uefi_call_wrapper(bdev->bio->ReadBlocks, 5, bdev->bio, bdev->media_id, le64toh(hdr.hdr_lba_table), sz, buf_start); if (EFI_ERROR(status)) { FreePool(buf); return EIO; } for (entry = 0; entry < le32toh(hdr.hdr_entries); entry++) { memcpy(&ent, buf_start + (entry * le32toh(hdr.hdr_entsz)), sizeof(ent)); efi_block_find_partitions_gpt_entry(bdev, &hdr, &ent, entry); } FreePool(buf); return 0; } static int efi_block_find_partitions(struct efi_block_dev *bdev) { int error; error = efi_block_find_partitions_gpt(bdev); if (error) error = efi_block_find_partitions_mbr(bdev); if (error) error = efi_block_find_partitions_cd9660(bdev); return error; } void efi_block_probe(void) { struct efi_block_dev *bdev; struct efi_block_part *bpart; EFI_BLOCK_IO *bio; EFI_STATUS status; uint16_t devindex = 0; int depth = -1; int n; status = LibLocateHandle(ByProtocol, &BlockIoProtocol, NULL, &efi_nblock, &efi_block); if (EFI_ERROR(status)) return; if (efi_bootdp) { depth = efi_device_path_depth(efi_bootdp, MEDIA_DEVICE_PATH); if (depth == 0) depth = 1; else if (depth == -1) depth = 2; } for (n = 0; n < efi_nblock; n++) { status = uefi_call_wrapper(BS->HandleProtocol, 3, efi_block[n], &BlockIoProtocol, (void **)&bio); if (EFI_ERROR(status) || !bio->Media->MediaPresent) continue; if (bio->Media->LogicalPartition) continue; bdev = alloc(sizeof(*bdev)); bdev->index = devindex++; bdev->bio = bio; bdev->media_id = bio->Media->MediaId; bdev->path = DevicePathFromHandle(efi_block[n]); TAILQ_INIT(&bdev->partitions); TAILQ_INSERT_TAIL(&efi_block_devs, bdev, entries); efi_block_find_partitions(bdev); if (depth > 0 && efi_device_path_ncmp(efi_bootdp, DevicePathFromHandle(efi_block[n]), depth) == 0) { TAILQ_FOREACH(bpart, &bdev->partitions, entries) { uint8_t fstype = FS_UNUSED; switch (bpart->type) { case EFI_BLOCK_PART_DISKLABEL: fstype = bpart->disklabel.part.p_fstype; break; case EFI_BLOCK_PART_GPT: fstype = bpart->gpt.fstype; break; case EFI_BLOCK_PART_CD9660: fstype = FS_ISO9660; break; } if (fstype == FS_BSDFFS || fstype == FS_ISO9660 || fstype == FS_RAID) { char devname[9]; snprintf(devname, sizeof(devname), "hd%u%c", bdev->index, bpart->index + 'a'); set_default_device(devname); set_default_fstype(fstype); break; } } } } } static void print_guid(const uint8_t *guid) { const int index[] = { 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15 }; int i; for (i = 0; i < 16; i++) { printf("%02x", guid[index[i]]); if (i == 3 || i == 5 || i == 7 || i == 9) printf("-"); } } void efi_block_show(void) { struct efi_block_dev *bdev; struct efi_block_part *bpart; uint64_t size; CHAR16 *path; TAILQ_FOREACH(bdev, &efi_block_devs, entries) { printf("hd%u (", bdev->index); /* Size in MB */ size = ((bdev->bio->Media->LastBlock + 1) * bdev->bio->Media->BlockSize) / (1024 * 1024); if (size >= 10000) printf("%"PRIu64" GB", size / 1024); else printf("%"PRIu64" MB", size); printf("): "); path = DevicePathToStr(bdev->path); Print(L"%s", path); FreePool(path); printf("\n"); TAILQ_FOREACH(bpart, &bdev->partitions, entries) { switch (bpart->type) { case EFI_BLOCK_PART_DISKLABEL: printf(" hd%u%c (", bdev->index, bpart->index + 'a'); /* Size in MB */ size = ((uint64_t)bpart->disklabel.secsize * bpart->disklabel.part.p_size) / (1024 * 1024); if (size >= 10000) printf("%"PRIu64" GB", size / 1024); else printf("%"PRIu64" MB", size); printf("): "); printf("%s\n", fstypenames[bpart->disklabel.part.p_fstype]); break; case EFI_BLOCK_PART_GPT: printf(" hd%u%c ", bdev->index, bpart->index + 'a'); if (bpart->gpt.ent.ent_name[0] == 0x0000) { printf("\""); print_guid(bpart->gpt.ent.ent_guid); printf("\""); } else { Print(L"\"%s\"", bpart->gpt.ent.ent_name); } /* Size in MB */ size = (le64toh(bpart->gpt.ent.ent_lba_end) - le64toh(bpart->gpt.ent.ent_lba_start)) * bdev->bio->Media->BlockSize; size /= (1024 * 1024); if (size >= 10000) printf(" (%"PRIu64" GB): ", size / 1024); else printf(" (%"PRIu64" MB): ", size); printf("%s\n", fstypenames[bpart->gpt.fstype]); break; case EFI_BLOCK_PART_CD9660: printf(" hd%u%c %s\n", bdev->index, bpart->index + 'a', fstypenames[FS_ISO9660]); break; default: break; } } } } struct efi_block_part * efi_block_boot_part(void) { return efi_block_booted; } int efi_block_open(struct open_file *f, ...) { struct efi_block_part *bpart; const char *fname; char **file; char *path; va_list ap; int rv, n; va_start(ap, f); fname = va_arg(ap, const char *); file = va_arg(ap, char **); va_end(ap); rv = efi_block_parse(fname, &bpart, &path); if (rv != 0) return rv; for (n = 0; n < ndevs; n++) if (strcmp(DEV_NAME(&devsw[n]), "efiblock") == 0) { f->f_dev = &devsw[n]; break; } if (n == ndevs) return ENXIO; f->f_devdata = bpart; *file = path; efi_block_booted = bpart; return 0; } int efi_block_close(struct open_file *f) { return 0; } int efi_block_strategy(void *devdata, int rw, daddr_t dblk, size_t size, void *buf, size_t *rsize) { struct efi_block_part *bpart = devdata; EFI_STATUS status; void *allocated_buf, *aligned_buf; if (rw != F_READ) return EROFS; switch (bpart->type) { case EFI_BLOCK_PART_DISKLABEL: if (bpart->bdev->bio->Media->BlockSize != bpart->disklabel.secsize) { printf("%s: unsupported block size %d (expected %d)\n", __func__, bpart->bdev->bio->Media->BlockSize, bpart->disklabel.secsize); return EIO; } dblk += bpart->disklabel.part.p_offset; break; case EFI_BLOCK_PART_GPT: if (bpart->bdev->bio->Media->BlockSize != DEV_BSIZE) { printf("%s: unsupported block size %d (expected %d)\n", __func__, bpart->bdev->bio->Media->BlockSize, DEV_BSIZE); return EIO; } dblk += le64toh(bpart->gpt.ent.ent_lba_start); break; case EFI_BLOCK_PART_CD9660: dblk *= ISO_DEFAULT_BLOCK_SIZE / bpart->bdev->bio->Media->BlockSize; break; default: return EINVAL; } if ((bpart->bdev->bio->Media->IoAlign <= 1) || ((intptr_t)buf & (bpart->bdev->bio->Media->IoAlign - 1)) == 0) { allocated_buf = NULL; aligned_buf = buf; } else if ((allocated_buf = efi_block_allocate_device_buffer(bpart->bdev, size, &aligned_buf)) == NULL) { return ENOMEM; } status = uefi_call_wrapper(bpart->bdev->bio->ReadBlocks, 5, bpart->bdev->bio, bpart->bdev->media_id, dblk, size, aligned_buf); if (EFI_ERROR(status)) { if (allocated_buf != NULL) FreePool(allocated_buf); return EIO; } if (allocated_buf != NULL) { memcpy(buf, aligned_buf, size); FreePool(allocated_buf); } *rsize = size; return 0; }