/* $NetBSD: if.c,v 1.256 2011/10/28 20:11:58 dyoung Exp $ */ /*- * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by William Studenmund and Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 */ #include __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.256 2011/10/28 20:11:58 dyoung Exp $"); #include "opt_inet.h" #include "opt_atalk.h" #include "opt_natm.h" #include "opt_pfil_hooks.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef NETATALK #include #include #endif #include #ifdef INET6 #include #include #include #endif #include "carp.h" #if NCARP > 0 #include #endif #include #include MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); int ifqmaxlen = IFQ_MAXLEN; callout_t if_slowtimo_ch; int netisr; /* scheduling bits for network */ static int if_rt_walktree(struct rtentry *, void *); static struct if_clone *if_clone_lookup(const char *, int *); static int if_clone_list(struct if_clonereq *); static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); static int if_cloners_count; static uint64_t index_gen; static kmutex_t index_gen_mtx; #ifdef PFIL_HOOKS struct pfil_head if_pfil; /* packet filtering hook for interfaces */ #endif static kauth_listener_t if_listener; static int ifioctl_attach(struct ifnet *); static void ifioctl_detach(struct ifnet *); static void ifnet_lock_enter(struct ifnet_lock *); static void ifnet_lock_exit(struct ifnet_lock *); static void if_detach_queues(struct ifnet *, struct ifqueue *); static void sysctl_sndq_setup(struct sysctllog **, const char *, struct ifaltq *); #if defined(INET) || defined(INET6) static void sysctl_net_ifq_setup(struct sysctllog **, int, const char *, int, const char *, int, struct ifqueue *); #endif static int if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, void *arg0, void *arg1, void *arg2, void *arg3) { int result; enum kauth_network_req req; result = KAUTH_RESULT_DEFER; req = (enum kauth_network_req)arg1; if (action != KAUTH_NETWORK_INTERFACE) return result; if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) result = KAUTH_RESULT_ALLOW; return result; } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ void ifinit(void) { #ifdef INET {extern struct ifqueue ipintrq; sysctl_net_ifq_setup(NULL, PF_INET, "inet", IPPROTO_IP, "ip", IPCTL_IFQ, &ipintrq);} #endif /* INET */ #ifdef INET6 {extern struct ifqueue ip6intrq; sysctl_net_ifq_setup(NULL, PF_INET6, "inet6", IPPROTO_IPV6, "ip6", IPV6CTL_IFQ, &ip6intrq);} #endif /* INET6 */ callout_init(&if_slowtimo_ch, 0); if_slowtimo(NULL); if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, if_listener_cb, NULL); } /* * XXX Initialization before configure(). * XXX hack to get pfil_add_hook working in autoconf. */ void ifinit1(void) { mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE); #ifdef PFIL_HOOKS if_pfil.ph_type = PFIL_TYPE_IFNET; if_pfil.ph_ifnet = NULL; if (pfil_head_register(&if_pfil) != 0) printf("WARNING: unable to register pfil hook\n"); #endif } struct ifnet * if_alloc(u_char type) { return malloc(sizeof(struct ifnet), M_DEVBUF, M_WAITOK|M_ZERO); } void if_free(struct ifnet *ifp) { free(ifp, M_DEVBUF); } void if_initname(struct ifnet *ifp, const char *name, int unit) { (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", name, unit); } /* * Null routines used while an interface is going away. These routines * just return an error. */ int if_nulloutput(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *so, struct rtentry *rt) { return ENXIO; } void if_nullinput(struct ifnet *ifp, struct mbuf *m) { /* Nothing. */ } void if_nullstart(struct ifnet *ifp) { /* Nothing. */ } int if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) { /* Wake ifioctl_detach(), who may wait for all threads to * quit the critical section. */ cv_signal(&ifp->if_ioctl_lock->il_emptied); return ENXIO; } int if_nullinit(struct ifnet *ifp) { return ENXIO; } void if_nullstop(struct ifnet *ifp, int disable) { /* Nothing. */ } void if_nullwatchdog(struct ifnet *ifp) { /* Nothing. */ } void if_nulldrain(struct ifnet *ifp) { /* Nothing. */ } static u_int if_index = 1; struct ifnet_head ifnet; size_t if_indexlim = 0; struct ifaddr **ifnet_addrs = NULL; struct ifnet **ifindex2ifnet = NULL; struct ifnet *lo0ifp; void if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) { struct ifaddr *ifa; struct sockaddr_dl *sdl; ifp->if_addrlen = addrlen; if_alloc_sadl(ifp); ifa = ifp->if_dl; sdl = satosdl(ifa->ifa_addr); (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); if (factory) { ifp->if_hwdl = ifp->if_dl; IFAREF(ifp->if_hwdl); } /* TBD routing socket */ } struct ifaddr * if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) { unsigned socksize, ifasize; int addrlen, namelen; struct sockaddr_dl *mask, *sdl; struct ifaddr *ifa; namelen = strlen(ifp->if_xname); addrlen = ifp->if_addrlen; socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); sdl = (struct sockaddr_dl *)(ifa + 1); mask = (struct sockaddr_dl *)(socksize + (char *)sdl); sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, ifp->if_xname, namelen, NULL, addrlen); mask->sdl_len = sockaddr_dl_measure(namelen, 0); memset(&mask->sdl_data[0], 0xff, namelen); ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; ifa->ifa_netmask = (struct sockaddr *)mask; *sdlp = sdl; return ifa; } static void if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) { const struct sockaddr_dl *sdl; ifnet_addrs[ifp->if_index] = ifa; IFAREF(ifa); ifp->if_dl = ifa; IFAREF(ifa); sdl = satosdl(ifa->ifa_addr); ifp->if_sadl = sdl; } /* * Allocate the link level name for the specified interface. This * is an attachment helper. It must be called after ifp->if_addrlen * is initialized, which may not be the case when if_attach() is * called. */ void if_alloc_sadl(struct ifnet *ifp) { struct ifaddr *ifa; const struct sockaddr_dl *sdl; /* * If the interface already has a link name, release it * now. This is useful for interfaces that can change * link types, and thus switch link names often. */ if (ifp->if_sadl != NULL) if_free_sadl(ifp); ifa = if_dl_create(ifp, &sdl); ifa_insert(ifp, ifa); if_sadl_setrefs(ifp, ifa); } static void if_deactivate_sadl(struct ifnet *ifp) { struct ifaddr *ifa; KASSERT(ifp->if_dl != NULL); ifa = ifp->if_dl; ifp->if_sadl = NULL; ifnet_addrs[ifp->if_index] = NULL; IFAFREE(ifa); ifp->if_dl = NULL; IFAFREE(ifa); } void if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa, const struct sockaddr_dl *sdl) { int s; s = splnet(); if_deactivate_sadl(ifp); if_sadl_setrefs(ifp, ifa); IFADDR_FOREACH(ifa, ifp) rtinit(ifa, RTM_LLINFO_UPD, 0); splx(s); } /* * Free the link level name for the specified interface. This is * a detach helper. This is called from if_detach() or from * link layer type specific detach functions. */ void if_free_sadl(struct ifnet *ifp) { struct ifaddr *ifa; int s; ifa = ifnet_addrs[ifp->if_index]; if (ifa == NULL) { KASSERT(ifp->if_sadl == NULL); KASSERT(ifp->if_dl == NULL); return; } KASSERT(ifp->if_sadl != NULL); KASSERT(ifp->if_dl != NULL); s = splnet(); rtinit(ifa, RTM_DELETE, 0); ifa_remove(ifp, ifa); if_deactivate_sadl(ifp); if (ifp->if_hwdl == ifa) { IFAFREE(ifa); ifp->if_hwdl = NULL; } splx(s); } /* * Attach an interface to the * list of "active" interfaces. */ void if_attach(struct ifnet *ifp) { int indexlim = 0; if (if_indexlim == 0) { TAILQ_INIT(&ifnet); if_indexlim = 8; } TAILQ_INIT(&ifp->if_addrlist); TAILQ_INSERT_TAIL(&ifnet, ifp, if_list); if (ifioctl_attach(ifp) != 0) panic("%s: ifioctl_attach() failed", __func__); mutex_enter(&index_gen_mtx); ifp->if_index_gen = index_gen++; mutex_exit(&index_gen_mtx); ifp->if_index = if_index; if (ifindex2ifnet == NULL) if_index++; else while (ifp->if_index < if_indexlim && ifindex2ifnet[ifp->if_index] != NULL) { ++if_index; if (if_index == 0) if_index = 1; /* * If we hit USHRT_MAX, we skip back to 0 since * there are a number of places where the value * of if_index or if_index itself is compared * to or stored in an unsigned short. By * jumping back, we won't botch those assignments * or comparisons. */ else if (if_index == USHRT_MAX) { /* * However, if we have to jump back to * zero *twice* without finding an empty * slot in ifindex2ifnet[], then there * there are too many (>65535) interfaces. */ if (indexlim++) panic("too many interfaces"); else if_index = 1; } ifp->if_index = if_index; } /* * We have some arrays that should be indexed by if_index. * since if_index will grow dynamically, they should grow too. * struct ifadd **ifnet_addrs * struct ifnet **ifindex2ifnet */ if (ifnet_addrs == NULL || ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { size_t m, n, oldlim; void *q; oldlim = if_indexlim; while (ifp->if_index >= if_indexlim) if_indexlim <<= 1; /* grow ifnet_addrs */ m = oldlim * sizeof(struct ifaddr *); n = if_indexlim * sizeof(struct ifaddr *); q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); if (ifnet_addrs != NULL) { memcpy(q, ifnet_addrs, m); free(ifnet_addrs, M_IFADDR); } ifnet_addrs = (struct ifaddr **)q; /* grow ifindex2ifnet */ m = oldlim * sizeof(struct ifnet *); n = if_indexlim * sizeof(struct ifnet *); q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); if (ifindex2ifnet != NULL) { memcpy(q, ifindex2ifnet, m); free(ifindex2ifnet, M_IFADDR); } ifindex2ifnet = (struct ifnet **)q; } ifindex2ifnet[ifp->if_index] = ifp; /* * Link level name is allocated later by a separate call to * if_alloc_sadl(). */ if (ifp->if_snd.ifq_maxlen == 0) ifp->if_snd.ifq_maxlen = ifqmaxlen; sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ ifp->if_link_state = LINK_STATE_UNKNOWN; ifp->if_capenable = 0; ifp->if_csum_flags_tx = 0; ifp->if_csum_flags_rx = 0; #ifdef ALTQ ifp->if_snd.altq_type = 0; ifp->if_snd.altq_disc = NULL; ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; ifp->if_snd.altq_tbr = NULL; ifp->if_snd.altq_ifp = ifp; #endif #ifdef PFIL_HOOKS ifp->if_pfil.ph_type = PFIL_TYPE_IFNET; ifp->if_pfil.ph_ifnet = ifp; if (pfil_head_register(&ifp->if_pfil) != 0) printf("%s: WARNING: unable to register pfil hook\n", ifp->if_xname); (void)pfil_run_hooks(&if_pfil, (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET); #endif if (!STAILQ_EMPTY(&domains)) if_attachdomain1(ifp); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } void if_attachdomain(void) { struct ifnet *ifp; int s; s = splnet(); IFNET_FOREACH(ifp) if_attachdomain1(ifp); splx(s); } void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; int s; s = splnet(); /* address family dependent data region */ memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); DOMAIN_FOREACH(dp) { if (dp->dom_ifattach != NULL) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } splx(s); } /* * Deactivate an interface. This points all of the procedure * handles at error stubs. May be called from interrupt context. */ void if_deactivate(struct ifnet *ifp) { int s; s = splnet(); ifp->if_output = if_nulloutput; ifp->if_input = if_nullinput; ifp->if_start = if_nullstart; ifp->if_ioctl = if_nullioctl; ifp->if_init = if_nullinit; ifp->if_stop = if_nullstop; ifp->if_watchdog = if_nullwatchdog; ifp->if_drain = if_nulldrain; /* No more packets may be enqueued. */ ifp->if_snd.ifq_maxlen = 0; splx(s); } void if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) { struct ifaddr *ifa, *nifa; for (ifa = IFADDR_FIRST(ifp); ifa != NULL; ifa = nifa) { nifa = IFADDR_NEXT(ifa); if (ifa->ifa_addr->sa_family != family) continue; (*purgeaddr)(ifa); } } /* * Detach an interface from the list of "active" interfaces, * freeing any resources as we go along. * * NOTE: This routine must be called with a valid thread context, * as it may block. */ void if_detach(struct ifnet *ifp) { struct socket so; struct ifaddr *ifa; #ifdef IFAREF_DEBUG struct ifaddr *last_ifa = NULL; #endif struct domain *dp; const struct protosw *pr; int s, i, family, purged; /* * XXX It's kind of lame that we have to have the * XXX socket structure... */ memset(&so, 0, sizeof(so)); s = splnet(); /* * Do an if_down() to give protocols a chance to do something. */ if_down(ifp); #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif sysctl_teardown(&ifp->if_sysctl_log); #if NCARP > 0 /* Remove the interface from any carp group it is a part of. */ if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) carp_ifdetach(ifp); #endif /* * Rip all the addresses off the interface. This should make * all of the routes go away. * * pr_usrreq calls can remove an arbitrary number of ifaddrs * from the list, including our "cursor", ifa. For safety, * and to honor the TAILQ abstraction, I just restart the * loop after each removal. Note that the loop will exit * when all of the remaining ifaddrs belong to the AF_LINK * family. I am counting on the historical fact that at * least one pr_usrreq in each address domain removes at * least one ifaddr. */ again: IFADDR_FOREACH(ifa, ifp) { family = ifa->ifa_addr->sa_family; #ifdef IFAREF_DEBUG printf("if_detach: ifaddr %p, family %d, refcnt %d\n", ifa, family, ifa->ifa_refcnt); if (last_ifa != NULL && ifa == last_ifa) panic("if_detach: loop detected"); last_ifa = ifa; #endif if (family == AF_LINK) continue; dp = pffinddomain(family); #ifdef DIAGNOSTIC if (dp == NULL) panic("if_detach: no domain for AF %d", family); #endif /* * XXX These PURGEIF calls are redundant with the * purge-all-families calls below, but are left in for * now both to make a smaller change, and to avoid * unplanned interactions with clearing of * ifp->if_addrlist. */ purged = 0; for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { so.so_proto = pr; if (pr->pr_usrreq != NULL) { (void) (*pr->pr_usrreq)(&so, PRU_PURGEIF, NULL, NULL, (struct mbuf *) ifp, curlwp); purged = 1; } } if (purged == 0) { /* * XXX What's really the best thing to do * XXX here? --thorpej@NetBSD.org */ printf("if_detach: WARNING: AF %d not purged\n", family); ifa_remove(ifp, ifa); } goto again; } if_free_sadl(ifp); /* Walk the routing table looking for stragglers. */ for (i = 0; i <= AF_MAX; i++) { while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART) ; } DOMAIN_FOREACH(dp) { if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); /* * One would expect multicast memberships (INET and * INET6) on UDP sockets to be purged by the PURGEIF * calls above, but if all addresses were removed from * the interface prior to destruction, the calls will * not be made (e.g. ppp, for which pppd(8) generally * removes addresses before destroying the interface). * Because there is no invariant that multicast * memberships only exist for interfaces with IPv4 * addresses, we must call PURGEIF regardless of * addresses. (Protocols which might store ifnet * pointers are marked with PR_PURGEIF.) */ for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { so.so_proto = pr; if (pr->pr_usrreq != NULL && pr->pr_flags & PR_PURGEIF) (void)(*pr->pr_usrreq)(&so, PRU_PURGEIF, NULL, NULL, (struct mbuf *)ifp, curlwp); } } #ifdef PFIL_HOOKS (void)pfil_run_hooks(&if_pfil, (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET); (void)pfil_head_unregister(&ifp->if_pfil); #endif /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); ifindex2ifnet[ifp->if_index] = NULL; TAILQ_REMOVE(&ifnet, ifp, if_list); ifioctl_detach(ifp); /* * remove packets that came from ifp, from software interrupt queues. */ DOMAIN_FOREACH(dp) { for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { if (dp->dom_ifqueues[i] == NULL) break; if_detach_queues(ifp, dp->dom_ifqueues[i]); } } splx(s); } static void if_detach_queues(struct ifnet *ifp, struct ifqueue *q) { struct mbuf *m, *prev, *next; prev = NULL; for (m = q->ifq_head; m != NULL; m = next) { next = m->m_nextpkt; #ifdef DIAGNOSTIC if ((m->m_flags & M_PKTHDR) == 0) { prev = m; continue; } #endif if (m->m_pkthdr.rcvif != ifp) { prev = m; continue; } if (prev != NULL) prev->m_nextpkt = m->m_nextpkt; else q->ifq_head = m->m_nextpkt; if (q->ifq_tail == m) q->ifq_tail = prev; q->ifq_len--; m->m_nextpkt = NULL; m_freem(m); IF_DROP(q); } } /* * Callback for a radix tree walk to delete all references to an * ifnet. */ static int if_rt_walktree(struct rtentry *rt, void *v) { struct ifnet *ifp = (struct ifnet *)v; int error; if (rt->rt_ifp != ifp) return 0; /* Delete the entry. */ ++rt->rt_refcnt; error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); KASSERT((rt->rt_flags & RTF_UP) == 0); rt->rt_ifp = NULL; RTFREE(rt); if (error != 0) printf("%s: warning: unable to delete rtentry @ %p, " "error = %d\n", ifp->if_xname, rt, error); return ERESTART; } /* * Create a clone network interface. */ int if_clone_create(const char *name) { struct if_clone *ifc; int unit; ifc = if_clone_lookup(name, &unit); if (ifc == NULL) return EINVAL; if (ifunit(name) != NULL) return EEXIST; return (*ifc->ifc_create)(ifc, unit); } /* * Destroy a clone network interface. */ int if_clone_destroy(const char *name) { struct if_clone *ifc; struct ifnet *ifp; ifc = if_clone_lookup(name, NULL); if (ifc == NULL) return EINVAL; ifp = ifunit(name); if (ifp == NULL) return ENXIO; if (ifc->ifc_destroy == NULL) return EOPNOTSUPP; return (*ifc->ifc_destroy)(ifp); } /* * Look up a network interface cloner. */ static struct if_clone * if_clone_lookup(const char *name, int *unitp) { struct if_clone *ifc; const char *cp; int unit; /* separate interface name from unit */ for (cp = name; cp - name < IFNAMSIZ && *cp && (*cp < '0' || *cp > '9'); cp++) continue; if (cp == name || cp - name == IFNAMSIZ || !*cp) return NULL; /* No name or unit number */ LIST_FOREACH(ifc, &if_cloners, ifc_list) { if (strlen(ifc->ifc_name) == cp - name && strncmp(name, ifc->ifc_name, cp - name) == 0) break; } if (ifc == NULL) return NULL; unit = 0; while (cp - name < IFNAMSIZ && *cp) { if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { /* Bogus unit number. */ return NULL; } unit = (unit * 10) + (*cp++ - '0'); } if (unitp != NULL) *unitp = unit; return ifc; } /* * Register a network interface cloner. */ void if_clone_attach(struct if_clone *ifc) { LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); if_cloners_count++; } /* * Unregister a network interface cloner. */ void if_clone_detach(struct if_clone *ifc) { LIST_REMOVE(ifc, ifc_list); if_cloners_count--; } /* * Provide list of interface cloners to userspace. */ static int if_clone_list(struct if_clonereq *ifcr) { char outbuf[IFNAMSIZ], *dst; struct if_clone *ifc; int count, error = 0; ifcr->ifcr_total = if_cloners_count; if ((dst = ifcr->ifcr_buffer) == NULL) { /* Just asking how many there are. */ return 0; } if (ifcr->ifcr_count < 0) return EINVAL; count = (if_cloners_count < ifcr->ifcr_count) ? if_cloners_count : ifcr->ifcr_count; for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); if (outbuf[sizeof(outbuf) - 1] != '\0') return ENAMETOOLONG; error = copyout(outbuf, dst, sizeof(outbuf)); if (error != 0) break; } return error; } void ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) { ifa->ifa_ifp = ifp; TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); IFAREF(ifa); } void ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) { KASSERT(ifa->ifa_ifp == ifp); TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); IFAFREE(ifa); } static inline int equal(const struct sockaddr *sa1, const struct sockaddr *sa2) { return sockaddr_cmp(sa1, sa2) == 0; } /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_FOREACH(ifp) { if (ifp->if_output == if_nulloutput) continue; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (equal(addr, ifa->ifa_addr)) return ifa; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && /* IP6 doesn't have broadcast */ ifa->ifa_broadaddr->sa_len != 0 && equal(ifa->ifa_broadaddr, addr)) return ifa; } } return NULL; } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_FOREACH(ifp) { if (ifp->if_output == if_nulloutput) continue; if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != addr->sa_family || ifa->ifa_dstaddr == NULL) continue; if (equal(addr, ifa->ifa_dstaddr)) return ifa; } } return NULL; } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; const struct sockaddr_dl *sdl; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; const char *addr_data = addr->sa_data, *cplim; if (af == AF_LINK) { sdl = satocsdl(addr); if (sdl->sdl_index && sdl->sdl_index < if_indexlim && ifindex2ifnet[sdl->sdl_index] && ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) return ifnet_addrs[sdl->sdl_index]; } #ifdef NETATALK if (af == AF_APPLETALK) { const struct sockaddr_at *sat, *sat2; sat = (const struct sockaddr_at *)addr; IFNET_FOREACH(ifp) { if (ifp->if_output == if_nulloutput) continue; ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); if (ifa == NULL) continue; sat2 = (struct sockaddr_at *)ifa->ifa_addr; if (sat2->sat_addr.s_net == sat->sat_addr.s_net) return ifa; /* exact match */ if (ifa_maybe == NULL) { /* else keep the if with the right range */ ifa_maybe = ifa; } } return ifa_maybe; } #endif IFNET_FOREACH(ifp) { if (ifp->if_output == if_nulloutput) continue; IFADDR_FOREACH(ifa, ifp) { const char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af || ifa->ifa_netmask == NULL) next: continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = (const char *)ifa->ifa_netmask + ifa->ifa_netmask->sa_len; while (cp3 < cplim) { if ((*cp++ ^ *cp2++) & *cp3++) { /* want to continue for() loop */ goto next; } } if (ifa_maybe == NULL || rn_refines((void *)ifa->ifa_netmask, (void *)ifa_maybe->ifa_netmask)) ifa_maybe = ifa; } } return ifa_maybe; } /* * Find the interface of the addresss. */ struct ifaddr * ifa_ifwithladdr(const struct sockaddr *addr) { struct ifaddr *ia; if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || (ia = ifa_ifwithnet(addr))) return ia; return NULL; } /* * Find an interface using a specific address family */ struct ifaddr * ifa_ifwithaf(int af) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_FOREACH(ifp) { if (ifp->if_output == if_nulloutput) continue; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family == af) return ifa; } } return NULL; } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; const char *cp, *cp2, *cp3; const char *cplim; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; if (ifp->if_output == if_nulloutput) return NULL; if (af >= AF_MAX) return NULL; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != af) continue; ifa_maybe = ifa; if (ifa->ifa_netmask == NULL) { if (equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))) return ifa; continue; } cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) { if ((*cp++ ^ *cp2++) & *cp3) break; } if (cp3 == cplim) return ifa; } return ifa_maybe; } /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ void link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) { struct ifaddr *ifa; const struct sockaddr *dst; struct ifnet *ifp; if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) return; if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) { rt_replace_ifa(rt, ifa); if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, info); } } /* * Handle a change in the interface link state. */ void if_link_state_change(struct ifnet *ifp, int link_state) { if (ifp->if_link_state == link_state) return; ifp->if_link_state = link_state; /* Notify that the link state has changed. */ rt_ifmsg(ifp); #if NCARP > 0 if (ifp->if_carp) carp_carpdev_state(ifp); #endif } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splsoftnet or equivalent. */ void if_down(struct ifnet *ifp) { struct ifaddr *ifa; ifp->if_flags &= ~IFF_UP; nanotime(&ifp->if_lastchange); IFADDR_FOREACH(ifa, ifp) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); IFQ_PURGE(&ifp->if_snd); #if NCARP > 0 if (ifp->if_carp) carp_carpdev_state(ifp); #endif rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splsoftnet or equivalent. */ void if_up(struct ifnet *ifp) { #ifdef notyet struct ifaddr *ifa; #endif ifp->if_flags |= IFF_UP; nanotime(&ifp->if_lastchange); #ifdef notyet /* this has no effect on IP, and will kill all ISO connections XXX */ IFADDR_FOREACH(ifa, ifp) pfctlinput(PRC_IFUP, ifa->ifa_addr); #endif #if NCARP > 0 if (ifp->if_carp) carp_carpdev_state(ifp); #endif rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } /* * Handle interface watchdog timer routines. Called * from softclock, we decrement timers (if set) and * call the appropriate interface routine on expiration. */ void if_slowtimo(void *arg) { struct ifnet *ifp; int s = splnet(); IFNET_FOREACH(ifp) { if (ifp->if_timer == 0 || --ifp->if_timer) continue; if (ifp->if_watchdog != NULL) (*ifp->if_watchdog)(ifp); } splx(s); callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { int pcount, ret; short flags, nflags; pcount = ifp->if_pcount; flags = ifp->if_flags; if (pswitch) { /* * Allow the device to be "placed" into promiscuous * mode even if it is not configured up. It will * consult IFF_PROMISC when it is brought up. */ if (ifp->if_pcount++ != 0) return 0; nflags = ifp->if_flags | IFF_PROMISC; if ((nflags & IFF_UP) == 0) return 0; } else { if (--ifp->if_pcount > 0) return 0; nflags = ifp->if_flags & ~IFF_PROMISC; /* * If the device is not configured up, we should not need to * turn off promiscuous mode (device should have turned it * off when interface went down; and will look at IFF_PROMISC * again next time interface comes up). */ if ((nflags & IFF_UP) == 0) return 0; } ret = if_flags_set(ifp, nflags); /* Restore interface state if not successful. */ if (ret != 0) { ifp->if_pcount = pcount; } return ret; } /* * Map interface name to * interface structure pointer. */ struct ifnet * ifunit(const char *name) { struct ifnet *ifp; const char *cp = name; u_int unit = 0; u_int i; /* * If the entire name is a number, treat it as an ifindex. */ for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { unit = unit * 10 + (*cp - '0'); } /* * If the number took all of the name, then it's a valid ifindex. */ if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { if (unit >= if_indexlim) return NULL; ifp = ifindex2ifnet[unit]; if (ifp == NULL || ifp->if_output == if_nulloutput) return NULL; return ifp; } IFNET_FOREACH(ifp) { if (ifp->if_output == if_nulloutput) continue; if (strcmp(ifp->if_xname, name) == 0) return ifp; } return NULL; } ifnet_t * if_byindex(u_int idx) { return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL; } /* common */ int ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) { int s; struct ifreq *ifr; struct ifcapreq *ifcr; struct ifdatareq *ifdr; switch (cmd) { case SIOCSIFCAP: ifcr = data; if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) return EINVAL; if (ifcr->ifcr_capenable == ifp->if_capenable) return 0; ifp->if_capenable = ifcr->ifcr_capenable; /* Pre-compute the checksum flags mask. */ ifp->if_csum_flags_tx = 0; ifp->if_csum_flags_rx = 0; if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { ifp->if_csum_flags_tx |= M_CSUM_IPv4; } if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { ifp->if_csum_flags_rx |= M_CSUM_IPv4; } if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { ifp->if_csum_flags_tx |= M_CSUM_TCPv4; } if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { ifp->if_csum_flags_rx |= M_CSUM_TCPv4; } if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { ifp->if_csum_flags_tx |= M_CSUM_UDPv4; } if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { ifp->if_csum_flags_rx |= M_CSUM_UDPv4; } if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { ifp->if_csum_flags_tx |= M_CSUM_TCPv6; } if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { ifp->if_csum_flags_rx |= M_CSUM_TCPv6; } if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { ifp->if_csum_flags_tx |= M_CSUM_UDPv6; } if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { ifp->if_csum_flags_rx |= M_CSUM_UDPv6; } if (ifp->if_flags & IFF_UP) return ENETRESET; return 0; case SIOCSIFFLAGS: ifr = data; if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { s = splnet(); if_down(ifp); splx(s); } if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { s = splnet(); if_up(ifp); splx(s); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (ifr->ifr_flags &~ IFF_CANTCHANGE); break; case SIOCGIFFLAGS: ifr = data; ifr->ifr_flags = ifp->if_flags; break; case SIOCGIFMETRIC: ifr = data; ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr = data; ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFDLT: ifr = data; ifr->ifr_dlt = ifp->if_dlt; break; case SIOCGIFCAP: ifcr = data; ifcr->ifcr_capabilities = ifp->if_capabilities; ifcr->ifcr_capenable = ifp->if_capenable; break; case SIOCSIFMETRIC: ifr = data; ifp->if_metric = ifr->ifr_metric; break; case SIOCGIFDATA: ifdr = data; ifdr->ifdr_data = ifp->if_data; break; case SIOCZIFDATA: ifdr = data; ifdr->ifdr_data = ifp->if_data; /* * Assumes that the volatile counters that can be * zero'ed are at the end of if_data. */ memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - offsetof(struct if_data, ifi_ipackets)); break; case SIOCSIFMTU: ifr = data; if (ifp->if_mtu == ifr->ifr_mtu) break; ifp->if_mtu = ifr->ifr_mtu; /* * If the link MTU changed, do network layer specific procedure. */ #ifdef INET6 nd6_setmtu(ifp); #endif return ENETRESET; default: return ENOTTY; } return 0; } int ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp, lwp_t *l) { struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; struct ifaddr *ifa; const struct sockaddr *any, *sa; union { struct sockaddr sa; struct sockaddr_storage ss; } u, v; switch (cmd) { case SIOCSIFADDRPREF: if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL) != 0) return EPERM; case SIOCGIFADDRPREF: break; default: return EOPNOTSUPP; } /* sanity checks */ if (data == NULL || ifp == NULL) { panic("invalid argument to %s", __func__); /*NOTREACHED*/ } /* address must be specified on ADD and DELETE */ sa = sstocsa(&ifap->ifap_addr); if (sa->sa_family != sofamily(so)) return EINVAL; if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) return EINVAL; sockaddr_externalize(&v.sa, sizeof(v.ss), sa); IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != sa->sa_family) continue; sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); if (sockaddr_cmp(&u.sa, &v.sa) == 0) break; } if (ifa == NULL) return EADDRNOTAVAIL; switch (cmd) { case SIOCSIFADDRPREF: ifa->ifa_preference = ifap->ifap_preference; return 0; case SIOCGIFADDRPREF: /* fill in the if_laddrreq structure */ (void)sockaddr_copy(sstosa(&ifap->ifap_addr), sizeof(ifap->ifap_addr), ifa->ifa_addr); ifap->ifap_preference = ifa->ifa_preference; return 0; default: return EOPNOTSUPP; } } static void ifnet_lock_enter(struct ifnet_lock *il) { uint64_t *nenter; /* Before trying to acquire the mutex, increase the count of threads * who have entered or who wait to enter the critical section. * Avoid one costly locked memory transaction by keeping a count for * each CPU. */ nenter = percpu_getref(il->il_nenter); (*nenter)++; percpu_putref(il->il_nenter); mutex_enter(&il->il_lock); } static void ifnet_lock_exit(struct ifnet_lock *il) { /* Increase the count of threads who have exited the critical * section. Increase while we still hold the lock. */ il->il_nexit++; mutex_exit(&il->il_lock); } /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) { struct ifnet *ifp; struct ifreq *ifr; int error = 0; #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) u_long ocmd = cmd; #endif short oif_flags; #ifdef COMPAT_OIFREQ struct ifreq ifrb; struct oifreq *oifr = NULL; #endif switch (cmd) { #ifdef COMPAT_OIFREQ case OSIOCGIFCONF: case OOSIOCGIFCONF: return compat_ifconf(cmd, data); #endif #ifdef COMPAT_OIFDATA case OSIOCGIFDATA: case OSIOCZIFDATA: return compat_ifdatareq(l, cmd, data); #endif case SIOCGIFCONF: return ifconf(cmd, data); case SIOCINITIFADDR: return EPERM; } #ifdef COMPAT_OIFREQ cmd = compat_cvtcmd(cmd); if (cmd != ocmd) { oifr = data; data = ifr = &ifrb; ifreqo2n(oifr, ifr); } else #endif ifr = data; ifp = ifunit(ifr->ifr_name); switch (cmd) { case SIOCIFCREATE: case SIOCIFDESTROY: if (l != NULL) { error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL); if (error != 0) return error; } return (cmd == SIOCIFCREATE) ? if_clone_create(ifr->ifr_name) : if_clone_destroy(ifr->ifr_name); case SIOCIFGCLONERS: return if_clone_list((struct if_clonereq *)data); } if (ifp == NULL) return ENXIO; switch (cmd) { case SIOCALIFADDR: case SIOCDLIFADDR: case SIOCSIFADDRPREF: case SIOCSIFFLAGS: case SIOCSIFCAP: case SIOCSIFMETRIC: case SIOCZIFDATA: case SIOCSIFMTU: case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSLIFPHYADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCSIFMEDIA: case SIOCSDRVSPEC: case SIOCG80211: case SIOCS80211: case SIOCS80211NWID: case SIOCS80211NWKEY: case SIOCS80211POWER: case SIOCS80211BSSID: case SIOCS80211CHANNEL: case SIOCSLINKSTR: if (l != NULL) { error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL); if (error != 0) return error; } } oif_flags = ifp->if_flags; ifnet_lock_enter(ifp->if_ioctl_lock); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error != ENOTTY) ; else if (so->so_proto == NULL) error = EOPNOTSUPP; else { #ifdef COMPAT_OSOCK error = compat_ifioctl(so, ocmd, cmd, data, l); #else error = (*so->so_proto->pr_usrreq)(so, PRU_CONTROL, (struct mbuf *)cmd, (struct mbuf *)data, (struct mbuf *)ifp, l); #endif } if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { #ifdef INET6 if ((ifp->if_flags & IFF_UP) != 0) { int s = splnet(); in6_if_up(ifp); splx(s); } #endif } #ifdef COMPAT_OIFREQ if (cmd != ocmd) ifreqn2o(oifr, ifr); #endif ifnet_lock_exit(ifp->if_ioctl_lock); return error; } /* This callback adds to the sum in `arg' the number of * threads on `ci' who have entered or who wait to enter the * critical section. */ static void ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci) { uint64_t *sum = arg, *nenter = p; *sum += *nenter; } /* Return the number of threads who have entered or who wait * to enter the critical section on all CPUs. */ static uint64_t ifnet_lock_entrances(struct ifnet_lock *il) { uint64_t sum = 0; percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum); return sum; } static int ifioctl_attach(struct ifnet *ifp) { struct ifnet_lock *il; /* If the driver has not supplied its own if_ioctl, then * supply the default. */ if (ifp->if_ioctl == NULL) ifp->if_ioctl = ifioctl_common; /* Create an ifnet_lock for synchronizing ifioctls. */ if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL) return ENOMEM; il->il_nenter = percpu_alloc(sizeof(uint64_t)); if (il->il_nenter == NULL) { kmem_free(il, sizeof(*il)); return ENOMEM; } mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&il->il_emptied, ifp->if_xname); ifp->if_ioctl_lock = il; return 0; } /* * This must not be called until after `ifp' has been withdrawn from the * ifnet tables so that ifioctl() cannot get a handle on it by calling * ifunit(). */ static void ifioctl_detach(struct ifnet *ifp) { struct ifnet_lock *il; il = ifp->if_ioctl_lock; mutex_enter(&il->il_lock); /* Install if_nullioctl to make sure that any thread that * subsequently enters the critical section will quit it * immediately and signal the condition variable that we * wait on, below. */ ifp->if_ioctl = if_nullioctl; /* Sleep while threads are still in the critical section or * wait to enter it. */ while (ifnet_lock_entrances(il) != il->il_nexit) cv_wait(&il->il_emptied, &il->il_lock); /* At this point, we are the only thread still in the critical * section, and no new thread can get a handle on the ifioctl * lock, so it is safe to free its memory. */ mutex_exit(&il->il_lock); ifp->if_ioctl_lock = NULL; percpu_free(il->il_nenter, sizeof(uint64_t)); il->il_nenter = NULL; kmem_free(il, sizeof(*il)); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. * * Each record is a struct ifreq. Before the addition of * sockaddr_storage, the API rule was that sockaddr flavors that did * not fit would extend beyond the struct ifreq, with the next struct * ifreq starting sa_len beyond the struct sockaddr. Because the * union in struct ifreq includes struct sockaddr_storage, every kind * of sockaddr must fit. Thus, there are no longer any overlength * records. * * Records are added to the user buffer if they fit, and ifc_len is * adjusted to the length that was written. Thus, the user is only * assured of getting the complete list if ifc_len on return is at * least sizeof(struct ifreq) less than it was on entry. * * If the user buffer pointer is NULL, this routine copies no data and * returns the amount of space that would be needed. * * Invariants: * ifrp points to the next part of the user's buffer to be used. If * ifrp != NULL, space holds the number of bytes remaining that we may * write at ifrp. Otherwise, space holds the number of bytes that * would have been written had there been adequate space. */ /*ARGSUSED*/ int ifconf(u_long cmd, void *data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr, *ifrp; int space, error = 0; const int sz = (int)sizeof(struct ifreq); if ((ifrp = ifc->ifc_req) == NULL) space = 0; else space = ifc->ifc_len; IFNET_FOREACH(ifp) { (void)strncpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)); if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') return ENAMETOOLONG; if (IFADDR_EMPTY(ifp)) { /* Interface with no addresses - send zero sockaddr. */ memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); if (ifrp == NULL) { space += sz; continue; } if (space >= sz) { error = copyout(&ifr, ifrp, sz); if (error != 0) return error; ifrp++; space -= sz; } } IFADDR_FOREACH(ifa, ifp) { struct sockaddr *sa = ifa->ifa_addr; /* all sockaddrs must fit in sockaddr_storage */ KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); if (ifrp == NULL) { space += sz; continue; } memcpy(&ifr.ifr_space, sa, sa->sa_len); if (space >= sz) { error = copyout(&ifr, ifrp, sz); if (error != 0) return (error); ifrp++; space -= sz; } } } if (ifrp != NULL) { KASSERT(0 <= space && space <= ifc->ifc_len); ifc->ifc_len -= space; } else { KASSERT(space >= 0); ifc->ifc_len = space; } return (0); } int ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) { uint8_t len; #ifdef COMPAT_OIFREQ struct ifreq ifrb; struct oifreq *oifr = NULL; u_long ocmd = cmd; cmd = compat_cvtcmd(cmd); if (cmd != ocmd) { oifr = (struct oifreq *)(void *)ifr; ifr = &ifrb; ifreqo2n(oifr, ifr); len = sizeof(oifr->ifr_addr); } else #endif len = sizeof(ifr->ifr_ifru.ifru_space); if (len < sa->sa_len) return EFBIG; memset(&ifr->ifr_addr, 0, len); sockaddr_copy(&ifr->ifr_addr, len, sa); #ifdef COMPAT_OIFREQ if (cmd != ocmd) ifreqn2o(oifr, ifr); #endif return 0; } /* * Queue message on interface, and start output if interface * not yet active. */ int ifq_enqueue(struct ifnet *ifp, struct mbuf *m ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr)) { int len = m->m_pkthdr.len; int mflags = m->m_flags; int s = splnet(); int error; IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error); if (error != 0) goto out; ifp->if_obytes += len; if (mflags & M_MCAST) ifp->if_omcasts++; if ((ifp->if_flags & IFF_OACTIVE) == 0) (*ifp->if_start)(ifp); out: splx(s); return error; } /* * Queue message on interface, possibly using a second fast queue */ int ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr)) { int error = 0; if (ifq != NULL #ifdef ALTQ && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 #endif ) { if (IF_QFULL(ifq)) { IF_DROP(&ifp->if_snd); m_freem(m); if (error == 0) error = ENOBUFS; } else IF_ENQUEUE(ifq, m); } else IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error); if (error != 0) { ++ifp->if_oerrors; return error; } return 0; } int if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) { int rc; if (ifp->if_initaddr != NULL) rc = (*ifp->if_initaddr)(ifp, ifa, src); else if (src || (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); return rc; } int if_flags_set(ifnet_t *ifp, const short flags) { int rc; if (ifp->if_setflags != NULL) rc = (*ifp->if_setflags)(ifp, flags); else { short cantflags; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); cantflags = (ifp->if_flags ^ flags) & IFF_CANTCHANGE; if (cantflags != 0) ifp->if_flags ^= cantflags; ifr.ifr_flags = flags & ~IFF_CANTCHANGE; rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); if (rc != 0 && cantflags != 0) ifp->if_flags ^= cantflags; } return rc; } int if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) { int rc; struct ifreq ifr; if (ifp->if_mcastop != NULL) rc = (*ifp->if_mcastop)(ifp, cmd, sa); else { ifreq_setaddr(cmd, &ifr, sa); rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); } return rc; } static void sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, struct ifaltq *ifq) { const struct sysctlnode *cnode, *rnode; if (sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", NULL, NULL, 0, NULL, 0, CTL_NET, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces", SYSCTL_DESCR("Per-interface controls"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, ifname, SYSCTL_DESCR("Interface controls"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "sndq", SYSCTL_DESCR("Interface output queue controls"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_INT, "len", SYSCTL_DESCR("Current output queue length"), NULL, 0, &ifq->ifq_len, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxlen", SYSCTL_DESCR("Maximum allowed output queue length"), NULL, 0, &ifq->ifq_maxlen, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; if (sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_INT, "drops", SYSCTL_DESCR("Packets dropped due to full output queue"), NULL, 0, &ifq->ifq_drops, 0, CTL_CREATE, CTL_EOL) != 0) goto bad; return; bad: printf("%s: could not attach sysctl nodes\n", ifname); return; } #if defined(INET) || defined(INET6) static void sysctl_net_ifq_setup(struct sysctllog **clog, int pf, const char *pfname, int ipn, const char *ipname, int qid, struct ifqueue *ifq) { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", NULL, NULL, 0, NULL, 0, CTL_NET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, pfname, NULL, NULL, 0, NULL, 0, CTL_NET, pf, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, ipname, NULL, NULL, 0, NULL, 0, CTL_NET, pf, ipn, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ifq", SYSCTL_DESCR("Protocol input queue controls"), NULL, 0, NULL, 0, CTL_NET, pf, ipn, qid, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "len", SYSCTL_DESCR("Current input queue length"), NULL, 0, &ifq->ifq_len, 0, CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxlen", SYSCTL_DESCR("Maximum allowed input queue length"), NULL, 0, &ifq->ifq_maxlen, 0, CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); #ifdef notyet sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "peak", SYSCTL_DESCR("Highest input queue length"), NULL, 0, &ifq->ifq_peak, 0, CTL_NET, pf, ipn, qid, IFQCTL_PEAK, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "drops", SYSCTL_DESCR("Packets dropped due to full input queue"), NULL, 0, &ifq->ifq_drops, 0, CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); } #endif /* INET || INET6 */