/* $NetBSD: vfs_vnode.c,v 1.39 2014/10/03 14:45:38 hannken Exp $ */ /*- * Copyright (c) 1997-2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 */ /* * The vnode cache subsystem. * * Life-cycle * * Normally, there are two points where new vnodes are created: * VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode * starts in one of the following ways: * * - Allocation, via getnewvnode(9) and/or vnalloc(9). * - Reclamation of inactive vnode, via vget(9). * * Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9) * was another, traditional way. Currently, only the draining thread * recycles the vnodes. This behaviour might be revisited. * * The life-cycle ends when the last reference is dropped, usually * in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform * the file system that vnode is inactive. Via this call, file system * indicates whether vnode can be recycled (usually, it checks its own * references, e.g. count of links, whether the file was removed). * * Depending on indication, vnode can be put into a free list (cache), * or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate * underlying file system from the vnode, and finally destroyed. * * Reference counting * * Vnode is considered active, if reference count (vnode_t::v_usecount) * is non-zero. It is maintained using: vref(9) and vrele(9), as well * as vput(9), routines. Common points holding references are e.g. * file openings, current working directory, mount points, etc. * * Note on v_usecount and its locking * * At nearly all points it is known that v_usecount could be zero, * the vnode_t::v_interlock will be held. To change v_usecount away * from zero, the interlock must be held. To change from a non-zero * value to zero, again the interlock must be held. * * Changing the usecount from a non-zero value to a non-zero value can * safely be done using atomic operations, without the interlock held. * * Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while * mntvnode_lock is still held. * * See PR 41374. */ #include __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.39 2014/10/03 14:45:38 hannken Exp $"); #define _VFS_VNODE_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Flags to vrelel. */ #define VRELEL_ASYNC_RELE 0x0001 /* Always defer to vrele thread. */ #define VRELEL_CHANGING_SET 0x0002 /* VI_CHANGING set by caller. */ struct vcache_key { struct mount *vk_mount; const void *vk_key; size_t vk_key_len; }; struct vcache_node { SLIST_ENTRY(vcache_node) vn_hash; struct vnode *vn_vnode; struct vcache_key vn_key; }; u_int numvnodes __cacheline_aligned; static pool_cache_t vnode_cache __read_mostly; static struct mount *dead_mount; /* * There are two free lists: one is for vnodes which have no buffer/page * references and one for those which do (i.e. v_holdcnt is non-zero). * Vnode recycling mechanism first attempts to look into the former list. */ static kmutex_t vnode_free_list_lock __cacheline_aligned; static vnodelst_t vnode_free_list __cacheline_aligned; static vnodelst_t vnode_hold_list __cacheline_aligned; static kcondvar_t vdrain_cv __cacheline_aligned; static vnodelst_t vrele_list __cacheline_aligned; static kmutex_t vrele_lock __cacheline_aligned; static kcondvar_t vrele_cv __cacheline_aligned; static lwp_t * vrele_lwp __cacheline_aligned; static int vrele_pending __cacheline_aligned; static int vrele_gen __cacheline_aligned; SLIST_HEAD(hashhead, vcache_node); static struct { kmutex_t lock; u_long hashmask; struct hashhead *hashtab; pool_cache_t pool; } vcache __cacheline_aligned; static int cleanvnode(void); static void vcache_init(void); static void vcache_reinit(void); static void vclean(vnode_t *); static void vrelel(vnode_t *, int); static void vdrain_thread(void *); static void vrele_thread(void *); static void vnpanic(vnode_t *, const char *, ...) __printflike(2, 3); static void vwait(vnode_t *, int); /* Routines having to do with the management of the vnode table. */ extern int (**dead_vnodeop_p)(void *); extern struct vfsops dead_vfsops; void vfs_vnode_sysinit(void) { int error __diagused; vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl", NULL, IPL_NONE, NULL, NULL, NULL); KASSERT(vnode_cache != NULL); dead_mount = vfs_mountalloc(&dead_vfsops, NULL); KASSERT(dead_mount != NULL); dead_mount->mnt_iflag = IMNT_MPSAFE; mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE); TAILQ_INIT(&vnode_free_list); TAILQ_INIT(&vnode_hold_list); TAILQ_INIT(&vrele_list); vcache_init(); mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&vdrain_cv, "vdrain"); cv_init(&vrele_cv, "vrele"); error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread, NULL, NULL, "vdrain"); KASSERT(error == 0); error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread, NULL, &vrele_lwp, "vrele"); KASSERT(error == 0); } /* * Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a * marker vnode. */ vnode_t * vnalloc(struct mount *mp) { vnode_t *vp; vp = pool_cache_get(vnode_cache, PR_WAITOK); KASSERT(vp != NULL); memset(vp, 0, sizeof(*vp)); uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0); cv_init(&vp->v_cv, "vnode"); /* * Done by memset() above. * LIST_INIT(&vp->v_nclist); * LIST_INIT(&vp->v_dnclist); */ if (mp != NULL) { vp->v_mount = mp; vp->v_type = VBAD; vp->v_iflag = VI_MARKER; return vp; } mutex_enter(&vnode_free_list_lock); numvnodes++; if (numvnodes > desiredvnodes + desiredvnodes / 10) cv_signal(&vdrain_cv); mutex_exit(&vnode_free_list_lock); rw_init(&vp->v_lock); vp->v_usecount = 1; vp->v_type = VNON; vp->v_size = vp->v_writesize = VSIZENOTSET; return vp; } /* * Free an unused, unreferenced vnode. */ void vnfree(vnode_t *vp) { KASSERT(vp->v_usecount == 0); if ((vp->v_iflag & VI_MARKER) == 0) { rw_destroy(&vp->v_lock); mutex_enter(&vnode_free_list_lock); numvnodes--; mutex_exit(&vnode_free_list_lock); } /* * Note: the vnode interlock will either be freed, of reference * dropped (if VI_LOCKSHARE was in use). */ uvm_obj_destroy(&vp->v_uobj, true); cv_destroy(&vp->v_cv); pool_cache_put(vnode_cache, vp); } /* * cleanvnode: grab a vnode from freelist, clean and free it. * * => Releases vnode_free_list_lock. */ static int cleanvnode(void) { vnode_t *vp; vnodelst_t *listhd; struct mount *mp; KASSERT(mutex_owned(&vnode_free_list_lock)); listhd = &vnode_free_list; try_nextlist: TAILQ_FOREACH(vp, listhd, v_freelist) { /* * It's safe to test v_usecount and v_iflag * without holding the interlock here, since * these vnodes should never appear on the * lists. */ KASSERT(vp->v_usecount == 0); KASSERT((vp->v_iflag & VI_CLEAN) == 0); KASSERT(vp->v_freelisthd == listhd); if (!mutex_tryenter(vp->v_interlock)) continue; if ((vp->v_iflag & VI_XLOCK) != 0) { mutex_exit(vp->v_interlock); continue; } mp = vp->v_mount; if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) { mutex_exit(vp->v_interlock); continue; } break; } if (vp == NULL) { if (listhd == &vnode_free_list) { listhd = &vnode_hold_list; goto try_nextlist; } mutex_exit(&vnode_free_list_lock); return EBUSY; } /* Remove it from the freelist. */ TAILQ_REMOVE(listhd, vp, v_freelist); vp->v_freelisthd = NULL; mutex_exit(&vnode_free_list_lock); KASSERT(vp->v_usecount == 0); /* * The vnode is still associated with a file system, so we must * clean it out before freeing it. We need to add a reference * before doing this. */ vp->v_usecount = 1; KASSERT((vp->v_iflag & VI_CHANGING) == 0); vp->v_iflag |= VI_CHANGING; vclean(vp); vrelel(vp, VRELEL_CHANGING_SET); fstrans_done(mp); return 0; } /* * getnewvnode: return a fresh vnode. * * => Returns referenced vnode, moved into the mount queue. * => Shares the interlock specified by 'slock', if it is not NULL. */ int getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *), kmutex_t *slock, vnode_t **vpp) { struct uvm_object *uobj __diagused; vnode_t *vp; int error = 0; if (mp != NULL) { /* * Mark filesystem busy while we are creating a vnode. * If unmount is in progress, this will fail. */ error = vfs_busy(mp, NULL); if (error) return error; } vp = NULL; /* Allocate a new vnode. */ vp = vnalloc(NULL); KASSERT(vp->v_freelisthd == NULL); KASSERT(LIST_EMPTY(&vp->v_nclist)); KASSERT(LIST_EMPTY(&vp->v_dnclist)); KASSERT(vp->v_data == NULL); /* Initialize vnode. */ vp->v_tag = tag; vp->v_op = vops; uobj = &vp->v_uobj; KASSERT(uobj->pgops == &uvm_vnodeops); KASSERT(uobj->uo_npages == 0); KASSERT(TAILQ_FIRST(&uobj->memq) == NULL); /* Share the vnode_t::v_interlock, if requested. */ if (slock) { /* Set the interlock and mark that it is shared. */ KASSERT(vp->v_mount == NULL); mutex_obj_hold(slock); uvm_obj_setlock(&vp->v_uobj, slock); KASSERT(vp->v_interlock == slock); vp->v_iflag |= VI_LOCKSHARE; } /* Finally, move vnode into the mount queue. */ vfs_insmntque(vp, mp); if (mp != NULL) { if ((mp->mnt_iflag & IMNT_MPSAFE) != 0) vp->v_vflag |= VV_MPSAFE; vfs_unbusy(mp, true, NULL); } *vpp = vp; return 0; } /* * This is really just the reverse of getnewvnode(). Needed for * VFS_VGET functions who may need to push back a vnode in case * of a locking race. */ void ungetnewvnode(vnode_t *vp) { KASSERT(vp->v_usecount == 1); KASSERT(vp->v_data == NULL); KASSERT(vp->v_freelisthd == NULL); mutex_enter(vp->v_interlock); vp->v_iflag |= VI_CLEAN; vrelel(vp, 0); } /* * Helper thread to keep the number of vnodes below desiredvnodes. */ static void vdrain_thread(void *cookie) { int error; mutex_enter(&vnode_free_list_lock); for (;;) { cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz); while (numvnodes > desiredvnodes) { error = cleanvnode(); if (error) kpause("vndsbusy", false, hz, NULL); mutex_enter(&vnode_free_list_lock); if (error) break; } } } /* * Remove a vnode from its freelist. */ void vremfree(vnode_t *vp) { KASSERT(mutex_owned(vp->v_interlock)); KASSERT(vp->v_usecount == 0); /* * Note that the reference count must not change until * the vnode is removed. */ mutex_enter(&vnode_free_list_lock); if (vp->v_holdcnt > 0) { KASSERT(vp->v_freelisthd == &vnode_hold_list); } else { KASSERT(vp->v_freelisthd == &vnode_free_list); } TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = NULL; mutex_exit(&vnode_free_list_lock); } /* * vget: get a particular vnode from the free list, increment its reference * count and lock it. * * => Should be called with v_interlock held. * * If VI_CHANGING is set, the vnode may be eliminated in vgone()/vclean(). * In that case, we cannot grab the vnode, so the process is awakened when * the transition is completed, and an error returned to indicate that the * vnode is no longer usable. */ int vget(vnode_t *vp, int flags) { int error = 0; KASSERT((vp->v_iflag & VI_MARKER) == 0); KASSERT(mutex_owned(vp->v_interlock)); KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0); /* * Before adding a reference, we must remove the vnode * from its freelist. */ if (vp->v_usecount == 0) { vremfree(vp); vp->v_usecount = 1; } else { atomic_inc_uint(&vp->v_usecount); } /* * If the vnode is in the process of changing state we wait * for the change to complete and take care not to return * a clean vnode. */ if ((vp->v_iflag & VI_CHANGING) != 0) { if ((flags & LK_NOWAIT) != 0) { vrelel(vp, 0); return EBUSY; } vwait(vp, VI_CHANGING); if ((vp->v_iflag & VI_CLEAN) != 0) { vrelel(vp, 0); return ENOENT; } } /* * Ok, we got it in good shape. Just locking left. */ KASSERT((vp->v_iflag & VI_CLEAN) == 0); mutex_exit(vp->v_interlock); if (flags & (LK_EXCLUSIVE | LK_SHARED)) { error = vn_lock(vp, flags); if (error != 0) { vrele(vp); } } return error; } /* * vput: unlock and release the reference. */ void vput(vnode_t *vp) { KASSERT((vp->v_iflag & VI_MARKER) == 0); VOP_UNLOCK(vp); vrele(vp); } /* * Try to drop reference on a vnode. Abort if we are releasing the * last reference. Note: this _must_ succeed if not the last reference. */ static inline bool vtryrele(vnode_t *vp) { u_int use, next; for (use = vp->v_usecount;; use = next) { if (use == 1) { return false; } KASSERT(use > 1); next = atomic_cas_uint(&vp->v_usecount, use, use - 1); if (__predict_true(next == use)) { return true; } } } /* * Vnode release. If reference count drops to zero, call inactive * routine and either return to freelist or free to the pool. */ static void vrelel(vnode_t *vp, int flags) { bool recycle, defer; int error; KASSERT(mutex_owned(vp->v_interlock)); KASSERT((vp->v_iflag & VI_MARKER) == 0); KASSERT(vp->v_freelisthd == NULL); if (__predict_false(vp->v_op == dead_vnodeop_p && (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) { vnpanic(vp, "dead but not clean"); } /* * If not the last reference, just drop the reference count * and unlock. */ if (vtryrele(vp)) { if ((flags & VRELEL_CHANGING_SET) != 0) { KASSERT((vp->v_iflag & VI_CHANGING) != 0); vp->v_iflag &= ~VI_CHANGING; cv_broadcast(&vp->v_cv); } mutex_exit(vp->v_interlock); return; } if (vp->v_usecount <= 0 || vp->v_writecount != 0) { vnpanic(vp, "%s: bad ref count", __func__); } KASSERT((vp->v_iflag & VI_XLOCK) == 0); #ifdef DIAGNOSTIC if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) { vprint("vrelel: missing VOP_CLOSE()", vp); } #endif /* * If not clean, deactivate the vnode, but preserve * our reference across the call to VOP_INACTIVE(). */ if ((vp->v_iflag & VI_CLEAN) == 0) { recycle = false; /* * XXX This ugly block can be largely eliminated if * locking is pushed down into the file systems. * * Defer vnode release to vrele_thread if caller * requests it explicitly or is the pagedaemon. */ if ((curlwp == uvm.pagedaemon_lwp) || (flags & VRELEL_ASYNC_RELE) != 0) { defer = true; } else if (curlwp == vrele_lwp) { /* * We have to try harder. */ mutex_exit(vp->v_interlock); error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); KASSERT(error == 0); mutex_enter(vp->v_interlock); defer = false; } else { /* If we can't acquire the lock, then defer. */ mutex_exit(vp->v_interlock); error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT); defer = (error != 0); mutex_enter(vp->v_interlock); } KASSERT(mutex_owned(vp->v_interlock)); KASSERT(! (curlwp == vrele_lwp && defer)); if (defer) { /* * Defer reclaim to the kthread; it's not safe to * clean it here. We donate it our last reference. */ if ((flags & VRELEL_CHANGING_SET) != 0) { KASSERT((vp->v_iflag & VI_CHANGING) != 0); vp->v_iflag &= ~VI_CHANGING; cv_broadcast(&vp->v_cv); } mutex_enter(&vrele_lock); TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist); if (++vrele_pending > (desiredvnodes >> 8)) cv_signal(&vrele_cv); mutex_exit(&vrele_lock); mutex_exit(vp->v_interlock); return; } /* * If the node got another reference while we * released the interlock, don't try to inactivate it yet. */ if (__predict_false(vtryrele(vp))) { VOP_UNLOCK(vp); if ((flags & VRELEL_CHANGING_SET) != 0) { KASSERT((vp->v_iflag & VI_CHANGING) != 0); vp->v_iflag &= ~VI_CHANGING; cv_broadcast(&vp->v_cv); } mutex_exit(vp->v_interlock); return; } if ((flags & VRELEL_CHANGING_SET) == 0) { KASSERT((vp->v_iflag & VI_CHANGING) == 0); vp->v_iflag |= VI_CHANGING; } mutex_exit(vp->v_interlock); /* * The vnode can gain another reference while being * deactivated. If VOP_INACTIVE() indicates that * the described file has been deleted, then recycle * the vnode irrespective of additional references. * Another thread may be waiting to re-use the on-disk * inode. * * Note that VOP_INACTIVE() will drop the vnode lock. */ VOP_INACTIVE(vp, &recycle); mutex_enter(vp->v_interlock); if (!recycle) { if (vtryrele(vp)) { KASSERT((vp->v_iflag & VI_CHANGING) != 0); vp->v_iflag &= ~VI_CHANGING; cv_broadcast(&vp->v_cv); mutex_exit(vp->v_interlock); return; } } /* Take care of space accounting. */ if (vp->v_iflag & VI_EXECMAP) { atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages); atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages); } vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP); vp->v_vflag &= ~VV_MAPPED; /* * Recycle the vnode if the file is now unused (unlinked), * otherwise just free it. */ if (recycle) { vclean(vp); } KASSERT(vp->v_usecount > 0); } else { /* vnode was already clean */ if ((flags & VRELEL_CHANGING_SET) == 0) { KASSERT((vp->v_iflag & VI_CHANGING) == 0); vp->v_iflag |= VI_CHANGING; } } if (atomic_dec_uint_nv(&vp->v_usecount) != 0) { /* Gained another reference while being reclaimed. */ KASSERT((vp->v_iflag & VI_CHANGING) != 0); vp->v_iflag &= ~VI_CHANGING; cv_broadcast(&vp->v_cv); mutex_exit(vp->v_interlock); return; } if ((vp->v_iflag & VI_CLEAN) != 0) { /* * It's clean so destroy it. It isn't referenced * anywhere since it has been reclaimed. */ KASSERT(vp->v_holdcnt == 0); KASSERT(vp->v_writecount == 0); mutex_exit(vp->v_interlock); vfs_insmntque(vp, NULL); if (vp->v_type == VBLK || vp->v_type == VCHR) { spec_node_destroy(vp); } vnfree(vp); } else { /* * Otherwise, put it back onto the freelist. It * can't be destroyed while still associated with * a file system. */ mutex_enter(&vnode_free_list_lock); if (vp->v_holdcnt > 0) { vp->v_freelisthd = &vnode_hold_list; } else { vp->v_freelisthd = &vnode_free_list; } TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); KASSERT((vp->v_iflag & VI_CHANGING) != 0); vp->v_iflag &= ~VI_CHANGING; cv_broadcast(&vp->v_cv); mutex_exit(vp->v_interlock); } } void vrele(vnode_t *vp) { KASSERT((vp->v_iflag & VI_MARKER) == 0); if (vtryrele(vp)) { return; } mutex_enter(vp->v_interlock); vrelel(vp, 0); } /* * Asynchronous vnode release, vnode is released in different context. */ void vrele_async(vnode_t *vp) { KASSERT((vp->v_iflag & VI_MARKER) == 0); if (vtryrele(vp)) { return; } mutex_enter(vp->v_interlock); vrelel(vp, VRELEL_ASYNC_RELE); } static void vrele_thread(void *cookie) { vnodelst_t skip_list; vnode_t *vp; struct mount *mp; TAILQ_INIT(&skip_list); mutex_enter(&vrele_lock); for (;;) { while (TAILQ_EMPTY(&vrele_list)) { vrele_gen++; cv_broadcast(&vrele_cv); cv_timedwait(&vrele_cv, &vrele_lock, hz); TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist); } vp = TAILQ_FIRST(&vrele_list); mp = vp->v_mount; TAILQ_REMOVE(&vrele_list, vp, v_freelist); if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) { TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist); continue; } vrele_pending--; mutex_exit(&vrele_lock); /* * If not the last reference, then ignore the vnode * and look for more work. */ mutex_enter(vp->v_interlock); vrelel(vp, 0); fstrans_done(mp); mutex_enter(&vrele_lock); } } void vrele_flush(void) { int gen; mutex_enter(&vrele_lock); gen = vrele_gen; while (vrele_pending && gen == vrele_gen) { cv_broadcast(&vrele_cv); cv_wait(&vrele_cv, &vrele_lock); } mutex_exit(&vrele_lock); } /* * Vnode reference, where a reference is already held by some other * object (for example, a file structure). */ void vref(vnode_t *vp) { KASSERT((vp->v_iflag & VI_MARKER) == 0); KASSERT(vp->v_usecount != 0); atomic_inc_uint(&vp->v_usecount); } /* * Page or buffer structure gets a reference. * Called with v_interlock held. */ void vholdl(vnode_t *vp) { KASSERT(mutex_owned(vp->v_interlock)); KASSERT((vp->v_iflag & VI_MARKER) == 0); if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) { mutex_enter(&vnode_free_list_lock); KASSERT(vp->v_freelisthd == &vnode_free_list); TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = &vnode_hold_list; TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); } } /* * Page or buffer structure frees a reference. * Called with v_interlock held. */ void holdrelel(vnode_t *vp) { KASSERT(mutex_owned(vp->v_interlock)); KASSERT((vp->v_iflag & VI_MARKER) == 0); if (vp->v_holdcnt <= 0) { vnpanic(vp, "%s: holdcnt vp %p", __func__, vp); } vp->v_holdcnt--; if (vp->v_holdcnt == 0 && vp->v_usecount == 0) { mutex_enter(&vnode_free_list_lock); KASSERT(vp->v_freelisthd == &vnode_hold_list); TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = &vnode_free_list; TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); } } /* * Disassociate the underlying file system from a vnode. * * Must be called with the interlock held, and will return with it held. */ static void vclean(vnode_t *vp) { lwp_t *l = curlwp; bool recycle, active, doclose; int error; KASSERT(mutex_owned(vp->v_interlock)); KASSERT((vp->v_iflag & VI_MARKER) == 0); KASSERT(vp->v_usecount != 0); /* If already clean, nothing to do. */ if ((vp->v_iflag & VI_CLEAN) != 0) { return; } active = (vp->v_usecount > 1); doclose = ! (active && vp->v_type == VBLK && spec_node_getmountedfs(vp) != NULL); mutex_exit(vp->v_interlock); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); /* * Prevent the vnode from being recycled or brought into use * while we clean it out. */ mutex_enter(vp->v_interlock); KASSERT((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) == 0); vp->v_iflag |= VI_XLOCK; if (vp->v_iflag & VI_EXECMAP) { atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages); atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages); } vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP); mutex_exit(vp->v_interlock); /* * Clean out any cached data associated with the vnode. * If purging an active vnode, it must be closed and * deactivated before being reclaimed. Note that the * VOP_INACTIVE will unlock the vnode. */ if (doclose) { error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0); if (error != 0) { if (wapbl_vphaswapbl(vp)) WAPBL_DISCARD(wapbl_vptomp(vp)); error = vinvalbuf(vp, 0, NOCRED, l, 0, 0); } KASSERT(error == 0); KASSERT((vp->v_iflag & VI_ONWORKLST) == 0); if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) { spec_node_revoke(vp); } } if (active) { VOP_INACTIVE(vp, &recycle); } else { /* * Any other processes trying to obtain this lock must first * wait for VI_XLOCK to clear, then call the new lock operation. */ VOP_UNLOCK(vp); } /* Disassociate the underlying file system from the vnode. */ if (VOP_RECLAIM(vp)) { vnpanic(vp, "%s: cannot reclaim", __func__); } KASSERT(vp->v_data == NULL); KASSERT(vp->v_uobj.uo_npages == 0); if (vp->v_type == VREG && vp->v_ractx != NULL) { uvm_ra_freectx(vp->v_ractx); vp->v_ractx = NULL; } /* Purge name cache. */ cache_purge(vp); /* Move to dead mount. */ vp->v_vflag &= ~VV_ROOT; atomic_inc_uint(&dead_mount->mnt_refcnt); vfs_insmntque(vp, dead_mount); /* Done with purge, notify sleepers of the grim news. */ mutex_enter(vp->v_interlock); if (doclose) { vp->v_op = dead_vnodeop_p; vp->v_vflag |= VV_LOCKSWORK; vp->v_iflag |= VI_CLEAN; } else { vp->v_op = spec_vnodeop_p; vp->v_vflag &= ~VV_LOCKSWORK; } vp->v_tag = VT_NON; KNOTE(&vp->v_klist, NOTE_REVOKE); vp->v_iflag &= ~VI_XLOCK; cv_broadcast(&vp->v_cv); KASSERT((vp->v_iflag & VI_ONWORKLST) == 0); } /* * Recycle an unused vnode if caller holds the last reference. */ bool vrecycle(vnode_t *vp) { mutex_enter(vp->v_interlock); KASSERT((vp->v_iflag & VI_MARKER) == 0); if (vp->v_usecount != 1) { mutex_exit(vp->v_interlock); return false; } if ((vp->v_iflag & VI_CHANGING) != 0) vwait(vp, VI_CHANGING); if (vp->v_usecount != 1) { mutex_exit(vp->v_interlock); return false; } else if ((vp->v_iflag & VI_CLEAN) != 0) { mutex_exit(vp->v_interlock); return true; } vp->v_iflag |= VI_CHANGING; vclean(vp); vrelel(vp, VRELEL_CHANGING_SET); return true; } /* * Eliminate all activity associated with the requested vnode * and with all vnodes aliased to the requested vnode. */ void vrevoke(vnode_t *vp) { vnode_t *vq; enum vtype type; dev_t dev; KASSERT(vp->v_usecount > 0); mutex_enter(vp->v_interlock); if ((vp->v_iflag & VI_CLEAN) != 0) { mutex_exit(vp->v_interlock); return; } else if (vp->v_type != VBLK && vp->v_type != VCHR) { atomic_inc_uint(&vp->v_usecount); mutex_exit(vp->v_interlock); vgone(vp); return; } else { dev = vp->v_rdev; type = vp->v_type; mutex_exit(vp->v_interlock); } while (spec_node_lookup_by_dev(type, dev, &vq) == 0) { vgone(vq); } } /* * Eliminate all activity associated with a vnode in preparation for * reuse. Drops a reference from the vnode. */ void vgone(vnode_t *vp) { mutex_enter(vp->v_interlock); if ((vp->v_iflag & VI_CHANGING) != 0) vwait(vp, VI_CHANGING); vp->v_iflag |= VI_CHANGING; vclean(vp); vrelel(vp, VRELEL_CHANGING_SET); } static inline uint32_t vcache_hash(const struct vcache_key *key) { uint32_t hash = HASH32_BUF_INIT; hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash); hash = hash32_buf(key->vk_key, key->vk_key_len, hash); return hash; } static void vcache_init(void) { vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0, "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL); KASSERT(vcache.pool != NULL); mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE); vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true, &vcache.hashmask); } static void vcache_reinit(void) { int i; uint32_t hash; u_long oldmask, newmask; struct hashhead *oldtab, *newtab; struct vcache_node *node; newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask); mutex_enter(&vcache.lock); oldtab = vcache.hashtab; oldmask = vcache.hashmask; vcache.hashtab = newtab; vcache.hashmask = newmask; for (i = 0; i <= oldmask; i++) { while ((node = SLIST_FIRST(&oldtab[i])) != NULL) { SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash); hash = vcache_hash(&node->vn_key); SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask], node, vn_hash); } } mutex_exit(&vcache.lock); hashdone(oldtab, HASH_SLIST, oldmask); } static inline struct vcache_node * vcache_hash_lookup(const struct vcache_key *key, uint32_t hash) { struct hashhead *hashp; struct vcache_node *node; KASSERT(mutex_owned(&vcache.lock)); hashp = &vcache.hashtab[hash & vcache.hashmask]; SLIST_FOREACH(node, hashp, vn_hash) { if (key->vk_mount != node->vn_key.vk_mount) continue; if (key->vk_key_len != node->vn_key.vk_key_len) continue; if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len)) continue; return node; } return NULL; } /* * Get a vnode / fs node pair by key and return it referenced through vpp. */ int vcache_get(struct mount *mp, const void *key, size_t key_len, struct vnode **vpp) { int error; uint32_t hash; const void *new_key; struct vnode *vp; struct vcache_key vcache_key; struct vcache_node *node, *new_node; new_key = NULL; *vpp = NULL; vcache_key.vk_mount = mp; vcache_key.vk_key = key; vcache_key.vk_key_len = key_len; hash = vcache_hash(&vcache_key); again: mutex_enter(&vcache.lock); node = vcache_hash_lookup(&vcache_key, hash); /* If found, take a reference or retry. */ if (__predict_true(node != NULL && node->vn_vnode != NULL)) { vp = node->vn_vnode; mutex_enter(vp->v_interlock); mutex_exit(&vcache.lock); error = vget(vp, 0); if (error == ENOENT) goto again; if (error == 0) *vpp = vp; KASSERT((error != 0) == (*vpp == NULL)); return error; } /* If another thread loads this node, wait and retry. */ if (node != NULL) { KASSERT(node->vn_vnode == NULL); mutex_exit(&vcache.lock); kpause("vcache", false, mstohz(20), NULL); goto again; } mutex_exit(&vcache.lock); /* Allocate and initialize a new vcache / vnode pair. */ error = vfs_busy(mp, NULL); if (error) return error; new_node = pool_cache_get(vcache.pool, PR_WAITOK); new_node->vn_vnode = NULL; new_node->vn_key = vcache_key; vp = vnalloc(NULL); mutex_enter(&vcache.lock); node = vcache_hash_lookup(&vcache_key, hash); if (node == NULL) { SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask], new_node, vn_hash); node = new_node; } mutex_exit(&vcache.lock); /* If another thread beat us inserting this node, retry. */ if (node != new_node) { pool_cache_put(vcache.pool, new_node); KASSERT(vp->v_usecount == 1); vp->v_usecount = 0; vnfree(vp); vfs_unbusy(mp, false, NULL); goto again; } /* Load the fs node. Exclusive as new_node->vn_vnode is NULL. */ vp->v_iflag |= VI_CHANGING; error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key); if (error) { mutex_enter(&vcache.lock); SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask], new_node, vcache_node, vn_hash); mutex_exit(&vcache.lock); pool_cache_put(vcache.pool, new_node); KASSERT(vp->v_usecount == 1); vp->v_usecount = 0; vnfree(vp); vfs_unbusy(mp, false, NULL); KASSERT(*vpp == NULL); return error; } KASSERT(new_key != NULL); KASSERT(memcmp(key, new_key, key_len) == 0); KASSERT(vp->v_op != NULL); vfs_insmntque(vp, mp); if ((mp->mnt_iflag & IMNT_MPSAFE) != 0) vp->v_vflag |= VV_MPSAFE; vfs_unbusy(mp, true, NULL); /* Finished loading, finalize node. */ mutex_enter(&vcache.lock); new_node->vn_key.vk_key = new_key; new_node->vn_vnode = vp; mutex_exit(&vcache.lock); mutex_enter(vp->v_interlock); vp->v_iflag &= ~VI_CHANGING; cv_broadcast(&vp->v_cv); mutex_exit(vp->v_interlock); *vpp = vp; return 0; } /* * Prepare key change: lock old and new cache node. * Return an error if the new node already exists. */ int vcache_rekey_enter(struct mount *mp, struct vnode *vp, const void *old_key, size_t old_key_len, const void *new_key, size_t new_key_len) { uint32_t old_hash, new_hash; struct vcache_key old_vcache_key, new_vcache_key; struct vcache_node *node, *new_node; old_vcache_key.vk_mount = mp; old_vcache_key.vk_key = old_key; old_vcache_key.vk_key_len = old_key_len; old_hash = vcache_hash(&old_vcache_key); new_vcache_key.vk_mount = mp; new_vcache_key.vk_key = new_key; new_vcache_key.vk_key_len = new_key_len; new_hash = vcache_hash(&new_vcache_key); new_node = pool_cache_get(vcache.pool, PR_WAITOK); new_node->vn_vnode = NULL; new_node->vn_key = new_vcache_key; mutex_enter(&vcache.lock); node = vcache_hash_lookup(&new_vcache_key, new_hash); if (node != NULL) { mutex_exit(&vcache.lock); pool_cache_put(vcache.pool, new_node); return EEXIST; } SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask], new_node, vn_hash); node = vcache_hash_lookup(&old_vcache_key, old_hash); KASSERT(node != NULL); KASSERT(node->vn_vnode == vp); node->vn_vnode = NULL; node->vn_key = old_vcache_key; mutex_exit(&vcache.lock); return 0; } /* * Key change complete: remove old node and unlock new node. */ void vcache_rekey_exit(struct mount *mp, struct vnode *vp, const void *old_key, size_t old_key_len, const void *new_key, size_t new_key_len) { uint32_t old_hash, new_hash; struct vcache_key old_vcache_key, new_vcache_key; struct vcache_node *node; old_vcache_key.vk_mount = mp; old_vcache_key.vk_key = old_key; old_vcache_key.vk_key_len = old_key_len; old_hash = vcache_hash(&old_vcache_key); new_vcache_key.vk_mount = mp; new_vcache_key.vk_key = new_key; new_vcache_key.vk_key_len = new_key_len; new_hash = vcache_hash(&new_vcache_key); mutex_enter(&vcache.lock); node = vcache_hash_lookup(&new_vcache_key, new_hash); KASSERT(node != NULL && node->vn_vnode == NULL); KASSERT(node->vn_key.vk_key_len == new_key_len); node->vn_vnode = vp; node->vn_key = new_vcache_key; node = vcache_hash_lookup(&old_vcache_key, old_hash); KASSERT(node != NULL); KASSERT(node->vn_vnode == NULL); SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask], node, vcache_node, vn_hash); mutex_exit(&vcache.lock); pool_cache_put(vcache.pool, node); } /* * Remove a vnode / fs node pair from the cache. */ void vcache_remove(struct mount *mp, const void *key, size_t key_len) { uint32_t hash; struct vcache_key vcache_key; struct vcache_node *node; vcache_key.vk_mount = mp; vcache_key.vk_key = key; vcache_key.vk_key_len = key_len; hash = vcache_hash(&vcache_key); mutex_enter(&vcache.lock); node = vcache_hash_lookup(&vcache_key, hash); KASSERT(node != NULL); SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask], node, vcache_node, vn_hash); mutex_exit(&vcache.lock); pool_cache_put(vcache.pool, node); } /* * Update outstanding I/O count and do wakeup if requested. */ void vwakeup(struct buf *bp) { vnode_t *vp; if ((vp = bp->b_vp) == NULL) return; KASSERT(bp->b_objlock == vp->v_interlock); KASSERT(mutex_owned(bp->b_objlock)); if (--vp->v_numoutput < 0) vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp); if (vp->v_numoutput == 0) cv_broadcast(&vp->v_cv); } /* * Test a vnode for being or becoming dead. Returns one of: * EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only. * ENOENT: vnode is dead. * 0: otherwise. * * Whenever this function returns a non-zero value all future * calls will also return a non-zero value. */ int vdead_check(struct vnode *vp, int flags) { KASSERT(mutex_owned(vp->v_interlock)); if (ISSET(vp->v_iflag, VI_XLOCK)) { if (ISSET(flags, VDEAD_NOWAIT)) return EBUSY; vwait(vp, VI_XLOCK); KASSERT(ISSET(vp->v_iflag, VI_CLEAN)); } if (ISSET(vp->v_iflag, VI_CLEAN)) return ENOENT; return 0; } /* * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or * recycled. */ static void vwait(vnode_t *vp, int flags) { KASSERT(mutex_owned(vp->v_interlock)); KASSERT(vp->v_usecount != 0); while ((vp->v_iflag & flags) != 0) cv_wait(&vp->v_cv, vp->v_interlock); } int vfs_drainvnodes(long target) { int error; mutex_enter(&vnode_free_list_lock); while (numvnodes > target) { error = cleanvnode(); if (error != 0) return error; mutex_enter(&vnode_free_list_lock); } mutex_exit(&vnode_free_list_lock); vcache_reinit(); return 0; } void vnpanic(vnode_t *vp, const char *fmt, ...) { va_list ap; #ifdef DIAGNOSTIC vprint(NULL, vp); #endif va_start(ap, fmt); vpanic(fmt, ap); va_end(ap); }