/* $NetBSD: kern_time.c,v 1.138 2008/01/20 18:09:12 joerg Exp $ */ /*- * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Christopher G. Demetriou. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 */ #include __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.138 2008/01/20 18:09:12 joerg Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include kmutex_t time_lock; POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl", &pool_allocator_nointr, IPL_NONE); POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl", &pool_allocator_nointr, IPL_NONE); /* * Initialize timekeeping. */ void time_init(void) { mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE); } /* Time of day and interval timer support. * * These routines provide the kernel entry points to get and set * the time-of-day and per-process interval timers. Subroutines * here provide support for adding and subtracting timeval structures * and decrementing interval timers, optionally reloading the interval * timers when they expire. */ /* This function is used by clock_settime and settimeofday */ static int settime1(struct proc *p, struct timespec *ts, bool check_kauth) { struct timeval delta, tv; struct timeval now; struct timespec ts1; struct bintime btdelta; lwp_t *l; int s; TIMESPEC_TO_TIMEVAL(&tv, ts); /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ s = splclock(); microtime(&now); timersub(&tv, &now, &delta); if (check_kauth && kauth_authorize_system(kauth_cred_get(), KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) { splx(s); return (EPERM); } #ifdef notyet if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */ splx(s); return (EPERM); } #endif TIMEVAL_TO_TIMESPEC(&tv, &ts1); tc_setclock(&ts1); timeradd(&boottime, &delta, &boottime); /* * XXXSMP: There is a short race between setting the time above * and adjusting LWP's run times. Fixing this properly means * pausing all CPUs while we adjust the clock. */ timeval2bintime(&delta, &btdelta); mutex_enter(&proclist_lock); LIST_FOREACH(l, &alllwp, l_list) { lwp_lock(l); bintime_add(&l->l_stime, &btdelta); lwp_unlock(l); } mutex_exit(&proclist_lock); resettodr(); splx(s); return (0); } int settime(struct proc *p, struct timespec *ts) { return (settime1(p, ts, true)); } /* ARGSUSED */ int sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap, register_t *retval) { /* { syscallarg(clockid_t) clock_id; syscallarg(struct timespec *) tp; } */ clockid_t clock_id; struct timespec ats; clock_id = SCARG(uap, clock_id); switch (clock_id) { case CLOCK_REALTIME: nanotime(&ats); break; case CLOCK_MONOTONIC: nanouptime(&ats); break; default: return (EINVAL); } return copyout(&ats, SCARG(uap, tp), sizeof(ats)); } /* ARGSUSED */ int sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap, register_t *retval) { /* { syscallarg(clockid_t) clock_id; syscallarg(const struct timespec *) tp; } */ return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp), true); } int clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp, bool check_kauth) { struct timespec ats; int error; if ((error = copyin(tp, &ats, sizeof(ats))) != 0) return (error); switch (clock_id) { case CLOCK_REALTIME: if ((error = settime1(p, &ats, check_kauth)) != 0) return (error); break; case CLOCK_MONOTONIC: return (EINVAL); /* read-only clock */ default: return (EINVAL); } return 0; } int sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap, register_t *retval) { /* { syscallarg(clockid_t) clock_id; syscallarg(struct timespec *) tp; } */ clockid_t clock_id; struct timespec ts; int error = 0; clock_id = SCARG(uap, clock_id); switch (clock_id) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: ts.tv_sec = 0; if (tc_getfrequency() > 1000000000) ts.tv_nsec = 1; else ts.tv_nsec = 1000000000 / tc_getfrequency(); break; default: return (EINVAL); } if (SCARG(uap, tp)) error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); return error; } /* ARGSUSED */ int sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap, register_t *retval) { /* { syscallarg(struct timespec *) rqtp; syscallarg(struct timespec *) rmtp; } */ struct timespec rmt, rqt; int error, error1; error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); if (error) return (error); error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL); if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) return error; error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); return error1 ? error1 : error; } int nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt) { int error, timo; if (itimespecfix(rqt)) return (EINVAL); timo = tstohz(rqt); /* * Avoid inadvertantly sleeping forever */ if (timo == 0) timo = 1; if (rmt != NULL) getnanouptime(rmt); error = kpause("nanoslp", true, timo, NULL); if (error == ERESTART) error = EINTR; if (error == EWOULDBLOCK) error = 0; if (rmt!= NULL) { struct timespec rmtend; getnanouptime(&rmtend); timespecsub(&rmtend, rmt, rmt); timespecsub(rqt, rmt, rmt); if (rmt->tv_sec < 0) timespecclear(rmt); } return error; } /* ARGSUSED */ int sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap, register_t *retval) { /* { syscallarg(struct timeval *) tp; syscallarg(void *) tzp; really "struct timezone *"; } */ struct timeval atv; int error = 0; struct timezone tzfake; if (SCARG(uap, tp)) { microtime(&atv); error = copyout(&atv, SCARG(uap, tp), sizeof(atv)); if (error) return (error); } if (SCARG(uap, tzp)) { /* * NetBSD has no kernel notion of time zone, so we just * fake up a timezone struct and return it if demanded. */ tzfake.tz_minuteswest = 0; tzfake.tz_dsttime = 0; error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake)); } return (error); } /* ARGSUSED */ int sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap, register_t *retval) { /* { syscallarg(const struct timeval *) tv; syscallarg(const void *) tzp; really "const struct timezone *"; } */ return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true); } int settimeofday1(const struct timeval *utv, bool userspace, const void *utzp, struct lwp *l, bool check_kauth) { struct timeval atv; struct timespec ts; int error; /* Verify all parameters before changing time. */ /* * NetBSD has no kernel notion of time zone, and only an * obsolete program would try to set it, so we log a warning. */ if (utzp) log(LOG_WARNING, "pid %d attempted to set the " "(obsolete) kernel time zone\n", l->l_proc->p_pid); if (utv == NULL) return 0; if (userspace) { if ((error = copyin(utv, &atv, sizeof(atv))) != 0) return error; utv = &atv; } TIMEVAL_TO_TIMESPEC(utv, &ts); return settime1(l->l_proc, &ts, check_kauth); } int time_adjusted; /* set if an adjustment is made */ /* ARGSUSED */ int sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap, register_t *retval) { /* { syscallarg(const struct timeval *) delta; syscallarg(struct timeval *) olddelta; } */ int error; if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0) return (error); return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc); } int adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p) { struct timeval atv; int error = 0; extern int64_t time_adjtime; /* in kern_ntptime.c */ if (olddelta) { atv.tv_sec = time_adjtime / 1000000; atv.tv_usec = time_adjtime % 1000000; if (atv.tv_usec < 0) { atv.tv_usec += 1000000; atv.tv_sec--; } error = copyout(&atv, olddelta, sizeof(struct timeval)); if (error) return (error); } if (delta) { error = copyin(delta, &atv, sizeof(struct timeval)); if (error) return (error); time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec; if (time_adjtime) /* We need to save the system time during shutdown */ time_adjusted |= 1; } return error; } /* * Interval timer support. Both the BSD getitimer() family and the POSIX * timer_*() family of routines are supported. * * All timers are kept in an array pointed to by p_timers, which is * allocated on demand - many processes don't use timers at all. The * first three elements in this array are reserved for the BSD timers: * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element * 2 is ITIMER_PROF. The rest may be allocated by the timer_create() * syscall. * * Realtime timers are kept in the ptimer structure as an absolute * time; virtual time timers are kept as a linked list of deltas. * Virtual time timers are processed in the hardclock() routine of * kern_clock.c. The real time timer is processed by a callout * routine, called from the softclock() routine. Since a callout may * be delayed in real time due to interrupt processing in the system, * it is possible for the real time timeout routine (realtimeexpire, * given below), to be delayed in real time past when it is supposed * to occur. It does not suffice, therefore, to reload the real timer * .it_value from the real time timers .it_interval. Rather, we * compute the next time in absolute time the timer should go off. */ /* Allocate a POSIX realtime timer. */ int sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, register_t *retval) { /* { syscallarg(clockid_t) clock_id; syscallarg(struct sigevent *) evp; syscallarg(timer_t *) timerid; } */ return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id), SCARG(uap, evp), copyin, l); } int timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp, copyin_t fetch_event, struct lwp *l) { int error; timer_t timerid; struct ptimer *pt; struct proc *p; p = l->l_proc; if (id < CLOCK_REALTIME || id > CLOCK_PROF) return (EINVAL); if (p->p_timers == NULL) timers_alloc(p); /* Find a free timer slot, skipping those reserved for setitimer(). */ for (timerid = 3; timerid < TIMER_MAX; timerid++) if (p->p_timers->pts_timers[timerid] == NULL) break; if (timerid == TIMER_MAX) return EAGAIN; pt = pool_get(&ptimer_pool, PR_WAITOK); if (evp) { if (((error = (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) || ((pt->pt_ev.sigev_notify < SIGEV_NONE) || (pt->pt_ev.sigev_notify > SIGEV_SA))) { pool_put(&ptimer_pool, pt); return (error ? error : EINVAL); } } else { pt->pt_ev.sigev_notify = SIGEV_SIGNAL; switch (id) { case CLOCK_REALTIME: pt->pt_ev.sigev_signo = SIGALRM; break; case CLOCK_VIRTUAL: pt->pt_ev.sigev_signo = SIGVTALRM; break; case CLOCK_PROF: pt->pt_ev.sigev_signo = SIGPROF; break; } pt->pt_ev.sigev_value.sival_int = timerid; } pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo; pt->pt_info.ksi_errno = 0; pt->pt_info.ksi_code = 0; pt->pt_info.ksi_pid = p->p_pid; pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred); pt->pt_info.ksi_value = pt->pt_ev.sigev_value; pt->pt_type = id; pt->pt_proc = p; pt->pt_overruns = 0; pt->pt_poverruns = 0; pt->pt_entry = timerid; timerclear(&pt->pt_time.it_value); if (id == CLOCK_REALTIME) callout_init(&pt->pt_ch, 0); else pt->pt_active = 0; p->p_timers->pts_timers[timerid] = pt; return copyout(&timerid, tid, sizeof(timerid)); } /* Delete a POSIX realtime timer */ int sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, register_t *retval) { /* { syscallarg(timer_t) timerid; } */ struct proc *p = l->l_proc; timer_t timerid; struct ptimer *pt, *ptn; int s; timerid = SCARG(uap, timerid); if ((p->p_timers == NULL) || (timerid < 2) || (timerid >= TIMER_MAX) || ((pt = p->p_timers->pts_timers[timerid]) == NULL)) return (EINVAL); if (pt->pt_type == CLOCK_REALTIME) { callout_stop(&pt->pt_ch); callout_destroy(&pt->pt_ch); } else if (pt->pt_active) { s = splclock(); ptn = LIST_NEXT(pt, pt_list); LIST_REMOVE(pt, pt_list); for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value, &ptn->pt_time.it_value); splx(s); } p->p_timers->pts_timers[timerid] = NULL; pool_put(&ptimer_pool, pt); return (0); } /* * Set up the given timer. The value in pt->pt_time.it_value is taken * to be an absolute time for CLOCK_REALTIME timers and a relative * time for virtual timers. * Must be called at splclock(). */ void timer_settime(struct ptimer *pt) { struct ptimer *ptn, *pptn; struct ptlist *ptl; if (pt->pt_type == CLOCK_REALTIME) { callout_stop(&pt->pt_ch); if (timerisset(&pt->pt_time.it_value)) { /* * Don't need to check hzto() return value, here. * callout_reset() does it for us. */ callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value), realtimerexpire, pt); } } else { if (pt->pt_active) { ptn = LIST_NEXT(pt, pt_list); LIST_REMOVE(pt, pt_list); for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value, &ptn->pt_time.it_value); } if (timerisset(&pt->pt_time.it_value)) { if (pt->pt_type == CLOCK_VIRTUAL) ptl = &pt->pt_proc->p_timers->pts_virtual; else ptl = &pt->pt_proc->p_timers->pts_prof; for (ptn = LIST_FIRST(ptl), pptn = NULL; ptn && timercmp(&pt->pt_time.it_value, &ptn->pt_time.it_value, >); pptn = ptn, ptn = LIST_NEXT(ptn, pt_list)) timersub(&pt->pt_time.it_value, &ptn->pt_time.it_value, &pt->pt_time.it_value); if (pptn) LIST_INSERT_AFTER(pptn, pt, pt_list); else LIST_INSERT_HEAD(ptl, pt, pt_list); for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list)) timersub(&ptn->pt_time.it_value, &pt->pt_time.it_value, &ptn->pt_time.it_value); pt->pt_active = 1; } else pt->pt_active = 0; } } void timer_gettime(struct ptimer *pt, struct itimerval *aitv) { struct timeval now; struct ptimer *ptn; *aitv = pt->pt_time; if (pt->pt_type == CLOCK_REALTIME) { /* * Convert from absolute to relative time in .it_value * part of real time timer. If time for real time * timer has passed return 0, else return difference * between current time and time for the timer to go * off. */ if (timerisset(&aitv->it_value)) { getmicrotime(&now); if (timercmp(&aitv->it_value, &now, <)) timerclear(&aitv->it_value); else timersub(&aitv->it_value, &now, &aitv->it_value); } } else if (pt->pt_active) { if (pt->pt_type == CLOCK_VIRTUAL) ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual); else ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof); for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list)) timeradd(&aitv->it_value, &ptn->pt_time.it_value, &aitv->it_value); KASSERT(ptn != NULL); /* pt should be findable on the list */ } else timerclear(&aitv->it_value); } /* Set and arm a POSIX realtime timer */ int sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap, register_t *retval) { /* { syscallarg(timer_t) timerid; syscallarg(int) flags; syscallarg(const struct itimerspec *) value; syscallarg(struct itimerspec *) ovalue; } */ int error; struct itimerspec value, ovalue, *ovp = NULL; if ((error = copyin(SCARG(uap, value), &value, sizeof(struct itimerspec))) != 0) return (error); if (SCARG(uap, ovalue)) ovp = &ovalue; if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp, SCARG(uap, flags), l->l_proc)) != 0) return error; if (ovp) return copyout(&ovalue, SCARG(uap, ovalue), sizeof(struct itimerspec)); return 0; } int dotimer_settime(int timerid, struct itimerspec *value, struct itimerspec *ovalue, int flags, struct proc *p) { struct timeval now; struct itimerval val, oval; struct ptimer *pt; int s; if ((p->p_timers == NULL) || (timerid < 2) || (timerid >= TIMER_MAX) || ((pt = p->p_timers->pts_timers[timerid]) == NULL)) return (EINVAL); TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value); TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval); if (itimerfix(&val.it_value) || itimerfix(&val.it_interval)) return (EINVAL); oval = pt->pt_time; pt->pt_time = val; s = splclock(); /* * If we've been passed a relative time for a realtime timer, * convert it to absolute; if an absolute time for a virtual * timer, convert it to relative and make sure we don't set it * to zero, which would cancel the timer, or let it go * negative, which would confuse the comparison tests. */ if (timerisset(&pt->pt_time.it_value)) { if (pt->pt_type == CLOCK_REALTIME) { if ((flags & TIMER_ABSTIME) == 0) { getmicrotime(&now); timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value); } } else { if ((flags & TIMER_ABSTIME) != 0) { getmicrotime(&now); timersub(&pt->pt_time.it_value, &now, &pt->pt_time.it_value); if (!timerisset(&pt->pt_time.it_value) || pt->pt_time.it_value.tv_sec < 0) { pt->pt_time.it_value.tv_sec = 0; pt->pt_time.it_value.tv_usec = 1; } } } } timer_settime(pt); splx(s); if (ovalue) { TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value); TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval); } return (0); } /* Return the time remaining until a POSIX timer fires. */ int sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap, register_t *retval) { /* { syscallarg(timer_t) timerid; syscallarg(struct itimerspec *) value; } */ struct itimerspec its; int error; if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc, &its)) != 0) return error; return copyout(&its, SCARG(uap, value), sizeof(its)); } int dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its) { int s; struct ptimer *pt; struct itimerval aitv; if ((p->p_timers == NULL) || (timerid < 2) || (timerid >= TIMER_MAX) || ((pt = p->p_timers->pts_timers[timerid]) == NULL)) return (EINVAL); s = splclock(); timer_gettime(pt, &aitv); splx(s); TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval); TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value); return 0; } /* * Return the count of the number of times a periodic timer expired * while a notification was already pending. The counter is reset when * a timer expires and a notification can be posted. */ int sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, register_t *retval) { /* { syscallarg(timer_t) timerid; } */ struct proc *p = l->l_proc; int timerid; struct ptimer *pt; timerid = SCARG(uap, timerid); if ((p->p_timers == NULL) || (timerid < 2) || (timerid >= TIMER_MAX) || ((pt = p->p_timers->pts_timers[timerid]) == NULL)) return (EINVAL); *retval = pt->pt_poverruns; return (0); } /* * Real interval timer expired: * send process whose timer expired an alarm signal. * If time is not set up to reload, then just return. * Else compute next time timer should go off which is > current time. * This is where delay in processing this timeout causes multiple * SIGALRM calls to be compressed into one. */ void realtimerexpire(void *arg) { struct timeval now; struct ptimer *pt; int s; pt = (struct ptimer *)arg; itimerfire(pt); if (!timerisset(&pt->pt_time.it_interval)) { timerclear(&pt->pt_time.it_value); return; } for (;;) { s = splclock(); /* XXX need spl now? */ timeradd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &pt->pt_time.it_value); getmicrotime(&now); if (timercmp(&pt->pt_time.it_value, &now, >)) { /* * Don't need to check hzto() return value, here. * callout_reset() does it for us. */ callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value), realtimerexpire, pt); splx(s); return; } splx(s); pt->pt_overruns++; } } /* BSD routine to get the value of an interval timer. */ /* ARGSUSED */ int sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap, register_t *retval) { /* { syscallarg(int) which; syscallarg(struct itimerval *) itv; } */ struct proc *p = l->l_proc; struct itimerval aitv; int error; error = dogetitimer(p, SCARG(uap, which), &aitv); if (error) return error; return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval))); } int dogetitimer(struct proc *p, int which, struct itimerval *itvp) { int s; if ((u_int)which > ITIMER_PROF) return (EINVAL); if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){ timerclear(&itvp->it_value); timerclear(&itvp->it_interval); } else { s = splclock(); timer_gettime(p->p_timers->pts_timers[which], itvp); splx(s); } return 0; } /* BSD routine to set/arm an interval timer. */ /* ARGSUSED */ int sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap, register_t *retval) { /* { syscallarg(int) which; syscallarg(const struct itimerval *) itv; syscallarg(struct itimerval *) oitv; } */ struct proc *p = l->l_proc; int which = SCARG(uap, which); struct sys_getitimer_args getargs; const struct itimerval *itvp; struct itimerval aitv; int error; if ((u_int)which > ITIMER_PROF) return (EINVAL); itvp = SCARG(uap, itv); if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0)) return (error); if (SCARG(uap, oitv) != NULL) { SCARG(&getargs, which) = which; SCARG(&getargs, itv) = SCARG(uap, oitv); if ((error = sys_getitimer(l, &getargs, retval)) != 0) return (error); } if (itvp == 0) return (0); return dosetitimer(p, which, &aitv); } int dosetitimer(struct proc *p, int which, struct itimerval *itvp) { struct timeval now; struct ptimer *pt; int s; if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval)) return (EINVAL); /* * Don't bother allocating data structures if the process just * wants to clear the timer. */ if (!timerisset(&itvp->it_value) && ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL))) return (0); if (p->p_timers == NULL) timers_alloc(p); if (p->p_timers->pts_timers[which] == NULL) { pt = pool_get(&ptimer_pool, PR_WAITOK); pt->pt_ev.sigev_notify = SIGEV_SIGNAL; pt->pt_ev.sigev_value.sival_int = which; pt->pt_overruns = 0; pt->pt_proc = p; pt->pt_type = which; pt->pt_entry = which; switch (which) { case ITIMER_REAL: callout_init(&pt->pt_ch, 0); pt->pt_ev.sigev_signo = SIGALRM; break; case ITIMER_VIRTUAL: pt->pt_active = 0; pt->pt_ev.sigev_signo = SIGVTALRM; break; case ITIMER_PROF: pt->pt_active = 0; pt->pt_ev.sigev_signo = SIGPROF; break; } } else pt = p->p_timers->pts_timers[which]; pt->pt_time = *itvp; p->p_timers->pts_timers[which] = pt; s = splclock(); if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) { /* Convert to absolute time */ /* XXX need to wrap in splclock for timecounters case? */ getmicrotime(&now); timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value); } timer_settime(pt); splx(s); return (0); } /* Utility routines to manage the array of pointers to timers. */ void timers_alloc(struct proc *p) { int i; struct ptimers *pts; pts = pool_get(&ptimers_pool, PR_WAITOK); LIST_INIT(&pts->pts_virtual); LIST_INIT(&pts->pts_prof); for (i = 0; i < TIMER_MAX; i++) pts->pts_timers[i] = NULL; pts->pts_fired = 0; p->p_timers = pts; } /* * Clean up the per-process timers. If "which" is set to TIMERS_ALL, * then clean up all timers and free all the data structures. If * "which" is set to TIMERS_POSIX, only clean up the timers allocated * by timer_create(), not the BSD setitimer() timers, and only free the * structure if none of those remain. */ void timers_free(struct proc *p, int which) { int i, s; struct ptimers *pts; struct ptimer *pt, *ptn; struct timeval tv; if (p->p_timers) { pts = p->p_timers; if (which == TIMERS_ALL) i = 0; else { s = splclock(); timerclear(&tv); for (ptn = LIST_FIRST(&p->p_timers->pts_virtual); ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL]; ptn = LIST_NEXT(ptn, pt_list)) timeradd(&tv, &ptn->pt_time.it_value, &tv); LIST_FIRST(&p->p_timers->pts_virtual) = NULL; if (ptn) { timeradd(&tv, &ptn->pt_time.it_value, &ptn->pt_time.it_value); LIST_INSERT_HEAD(&p->p_timers->pts_virtual, ptn, pt_list); } timerclear(&tv); for (ptn = LIST_FIRST(&p->p_timers->pts_prof); ptn && ptn != pts->pts_timers[ITIMER_PROF]; ptn = LIST_NEXT(ptn, pt_list)) timeradd(&tv, &ptn->pt_time.it_value, &tv); LIST_FIRST(&p->p_timers->pts_prof) = NULL; if (ptn) { timeradd(&tv, &ptn->pt_time.it_value, &ptn->pt_time.it_value); LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn, pt_list); } splx(s); i = 3; } for ( ; i < TIMER_MAX; i++) if ((pt = pts->pts_timers[i]) != NULL) { if (pt->pt_type == CLOCK_REALTIME) { callout_stop(&pt->pt_ch); callout_destroy(&pt->pt_ch); } pts->pts_timers[i] = NULL; pool_put(&ptimer_pool, pt); } if ((pts->pts_timers[0] == NULL) && (pts->pts_timers[1] == NULL) && (pts->pts_timers[2] == NULL)) { p->p_timers = NULL; pool_put(&ptimers_pool, pts); } } } /* * Decrement an interval timer by a specified number * of microseconds, which must be less than a second, * i.e. < 1000000. If the timer expires, then reload * it. In this case, carry over (usec - old value) to * reduce the value reloaded into the timer so that * the timer does not drift. This routine assumes * that it is called in a context where the timers * on which it is operating cannot change in value. */ int itimerdecr(struct ptimer *pt, int usec) { struct itimerval *itp; itp = &pt->pt_time; if (itp->it_value.tv_usec < usec) { if (itp->it_value.tv_sec == 0) { /* expired, and already in next interval */ usec -= itp->it_value.tv_usec; goto expire; } itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } itp->it_value.tv_usec -= usec; usec = 0; if (timerisset(&itp->it_value)) return (1); /* expired, exactly at end of interval */ expire: if (timerisset(&itp->it_interval)) { itp->it_value = itp->it_interval; itp->it_value.tv_usec -= usec; if (itp->it_value.tv_usec < 0) { itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } timer_settime(pt); } else itp->it_value.tv_usec = 0; /* sec is already 0 */ return (0); } void itimerfire(struct ptimer *pt) { struct proc *p = pt->pt_proc; if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) { /* * No RT signal infrastructure exists at this time; * just post the signal number and throw away the * value. */ if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) pt->pt_overruns++; else { ksiginfo_t ksi; KSI_INIT(&ksi); ksi.ksi_signo = pt->pt_ev.sigev_signo; ksi.ksi_code = SI_TIMER; ksi.ksi_value = pt->pt_ev.sigev_value; pt->pt_poverruns = pt->pt_overruns; pt->pt_overruns = 0; mutex_enter(&proclist_mutex); kpsignal(p, &ksi, NULL); mutex_exit(&proclist_mutex); } } } /* * ratecheck(): simple time-based rate-limit checking. see ratecheck(9) * for usage and rationale. */ int ratecheck(struct timeval *lasttime, const struct timeval *mininterval) { struct timeval tv, delta; int rv = 0; getmicrouptime(&tv); timersub(&tv, lasttime, &delta); /* * check for 0,0 is so that the message will be seen at least once, * even if interval is huge. */ if (timercmp(&delta, mininterval, >=) || (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { *lasttime = tv; rv = 1; } return (rv); } /* * ppsratecheck(): packets (or events) per second limitation. */ int ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) { struct timeval tv, delta; int rv; getmicrouptime(&tv); timersub(&tv, lasttime, &delta); /* * check for 0,0 is so that the message will be seen at least once. * if more than one second have passed since the last update of * lasttime, reset the counter. * * we do increment *curpps even in *curpps < maxpps case, as some may * try to use *curpps for stat purposes as well. */ if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || delta.tv_sec >= 1) { *lasttime = tv; *curpps = 0; } if (maxpps < 0) rv = 1; else if (*curpps < maxpps) rv = 1; else rv = 0; #if 1 /*DIAGNOSTIC?*/ /* be careful about wrap-around */ if (*curpps + 1 > *curpps) *curpps = *curpps + 1; #else /* * assume that there's not too many calls to this function. * not sure if the assumption holds, as it depends on *caller's* * behavior, not the behavior of this function. * IMHO it is wrong to make assumption on the caller's behavior, * so the above #if is #if 1, not #ifdef DIAGNOSTIC. */ *curpps = *curpps + 1; #endif return (rv); }