/* $NetBSD: if_kue.c,v 1.96 2019/05/28 07:41:50 msaitoh Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/usb/if_kue.c,v 1.14 2000/01/14 01:36:15 wpaul Exp $ */ /* * Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The KLSI USB to ethernet adapter chip contains an USB serial interface, * ethernet MAC and embedded microcontroller (called the QT Engine). * The chip must have firmware loaded into it before it will operate. * Packets are passed between the chip and host via bulk transfers. * There is an interrupt endpoint mentioned in the software spec, however * it's currently unused. This device is 10Mbps half-duplex only, hence * there is no media selection logic. The MAC supports a 128 entry * multicast filter, though the exact size of the filter can depend * on the firmware. Curiously, while the software spec describes various * ethernet statistics counters, my sample adapter and firmware combination * claims not to support any statistics counters at all. * * Note that once we load the firmware in the device, we have to be * careful not to load it again: if you restart your computer but * leave the adapter attached to the USB controller, it may remain * powered on and retain its firmware. In this case, we don't need * to load the firmware a second time. * * Special thanks to Rob Furr for providing an ADS Technologies * adapter for development and testing. No monkeys were harmed during * the development of this driver. */ /* * Ported to NetBSD and somewhat rewritten by Lennart Augustsson. */ #include __KERNEL_RCSID(0, "$NetBSD: if_kue.c,v 1.96 2019/05/28 07:41:50 msaitoh Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_usb.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include #include #include #include #ifdef KUE_DEBUG #define DPRINTF(x) if (kuedebug) printf x #define DPRINTFN(n, x) if (kuedebug >= (n)) printf x int kuedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* * Various supported device vendors/products. */ static const struct usb_devno kue_devs[] = { { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250 }, { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460 }, { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_URE450 }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BTX }, { USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101 }, { USB_VENDOR_ASANTE, USB_PRODUCT_ASANTE_EA }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_DSB650C }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX1 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX2 }, { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETT }, { USB_VENDOR_JATON, USB_PRODUCT_JATON_EDA }, { USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_XX1 }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BTN }, { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T }, { USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EA }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101 }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101X }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2 }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3 }, { USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA8 }, { USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA9 }, { USB_VENDOR_PORTSMITH, USB_PRODUCT_PORTSMITH_EEA }, { USB_VENDOR_SHARK, USB_PRODUCT_SHARK_PA }, { USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_U2E }, { USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB }, }; #define kue_lookup(v, p) (usb_lookup(kue_devs, v, p)) int kue_match(device_t, cfdata_t, void *); void kue_attach(device_t, device_t, void *); int kue_detach(device_t, int); int kue_activate(device_t, enum devact); CFATTACH_DECL_NEW(kue, sizeof(struct kue_softc), kue_match, kue_attach, kue_detach, kue_activate); static int kue_tx_list_init(struct kue_softc *); static int kue_rx_list_init(struct kue_softc *); static int kue_send(struct kue_softc *, struct mbuf *, int); static int kue_open_pipes(struct kue_softc *); static void kue_rxeof(struct usbd_xfer *, void *, usbd_status); static void kue_txeof(struct usbd_xfer *, void *, usbd_status); static void kue_start(struct ifnet *); static int kue_ioctl(struct ifnet *, u_long, void *); static void kue_init(void *); static void kue_stop(struct kue_softc *); static void kue_watchdog(struct ifnet *); static void kue_setmulti(struct kue_softc *); static void kue_reset(struct kue_softc *); static usbd_status kue_ctl(struct kue_softc *, int, uint8_t, uint16_t, void *, uint32_t); static usbd_status kue_setword(struct kue_softc *, uint8_t, uint16_t); static int kue_load_fw(struct kue_softc *); static usbd_status kue_setword(struct kue_softc *sc, uint8_t breq, uint16_t word) { usb_device_request_t req; DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, word); USETW(req.wIndex, 0); USETW(req.wLength, 0); return usbd_do_request(sc->kue_udev, &req, NULL); } static usbd_status kue_ctl(struct kue_softc *sc, int rw, uint8_t breq, uint16_t val, void *data, uint32_t len) { usb_device_request_t req; DPRINTFN(10,("%s: %s: enter, len=%d\n", device_xname(sc->kue_dev), __func__, len)); if (rw == KUE_CTL_WRITE) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, val); USETW(req.wIndex, 0); USETW(req.wLength, len); return usbd_do_request(sc->kue_udev, &req, data); } static int kue_load_fw(struct kue_softc *sc) { usb_device_descriptor_t dd; usbd_status err; DPRINTFN(1,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__)); /* * First, check if we even need to load the firmware. * If the device was still attached when the system was * rebooted, it may already have firmware loaded in it. * If this is the case, we don't need to do it again. * And in fact, if we try to load it again, we'll hang, * so we have to avoid this condition if we don't want * to look stupid. * * We can test this quickly by checking the bcdRevision * code. The NIC will return a different revision code if * it's probed while the firmware is still loaded and * running. */ if (usbd_get_device_desc(sc->kue_udev, &dd)) return EIO; if (UGETW(dd.bcdDevice) == KUE_WARM_REV) { printf("%s: warm boot, no firmware download\n", device_xname(sc->kue_dev)); return 0; } printf("%s: cold boot, downloading firmware\n", device_xname(sc->kue_dev)); /* Load code segment */ DPRINTFN(1,("%s: kue_load_fw: download code_seg\n", device_xname(sc->kue_dev))); /*XXXUNCONST*/ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, __UNCONST(kue_code_seg), sizeof(kue_code_seg)); if (err) { printf("%s: failed to load code segment: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); return EIO; } /* Load fixup segment */ DPRINTFN(1,("%s: kue_load_fw: download fix_seg\n", device_xname(sc->kue_dev))); /*XXXUNCONST*/ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, __UNCONST(kue_fix_seg), sizeof(kue_fix_seg)); if (err) { printf("%s: failed to load fixup segment: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); return EIO; } /* Send trigger command. */ DPRINTFN(1,("%s: kue_load_fw: download trig_seg\n", device_xname(sc->kue_dev))); /*XXXUNCONST*/ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, __UNCONST(kue_trig_seg), sizeof(kue_trig_seg)); if (err) { printf("%s: failed to load trigger segment: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); return EIO; } usbd_delay_ms(sc->kue_udev, 10); /* * Reload device descriptor. * Why? The chip without the firmware loaded returns * one revision code. The chip with the firmware * loaded and running returns a *different* revision * code. This confuses the quirk mechanism, which is * dependent on the revision data. */ (void)usbd_reload_device_desc(sc->kue_udev); DPRINTFN(1,("%s: %s: done\n", device_xname(sc->kue_dev), __func__)); /* Reset the adapter. */ kue_reset(sc); return 0; } static void kue_setmulti(struct kue_softc *sc) { struct ethercom *ec = &sc->kue_ec; struct ifnet *ifp = GET_IFP(sc); struct ether_multi *enm; struct ether_multistep step; int i; DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__)); if (ifp->if_flags & IFF_PROMISC) { allmulti: ifp->if_flags |= IFF_ALLMULTI; sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI; sc->kue_rxfilt &= ~KUE_RXFILT_MULTICAST; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); return; } sc->kue_rxfilt &= ~KUE_RXFILT_ALLMULTI; i = 0; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (i == KUE_MCFILTCNT(sc) || memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { ETHER_UNLOCK(ec); goto allmulti; } memcpy(KUE_MCFILT(sc, i), enm->enm_addrlo, ETHER_ADDR_LEN); ETHER_NEXT_MULTI(step, enm); i++; } ETHER_UNLOCK(ec); ifp->if_flags &= ~IFF_ALLMULTI; sc->kue_rxfilt |= KUE_RXFILT_MULTICAST; kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS, i, sc->kue_mcfilters, i * ETHER_ADDR_LEN); kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } /* * Issue a SET_CONFIGURATION command to reset the MAC. This should be * done after the firmware is loaded into the adapter in order to * bring it into proper operation. */ static void kue_reset(struct kue_softc *sc) { DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__)); if (usbd_set_config_no(sc->kue_udev, KUE_CONFIG_NO, 1) || usbd_device2interface_handle(sc->kue_udev, KUE_IFACE_IDX, &sc->kue_iface)) printf("%s: reset failed\n", device_xname(sc->kue_dev)); /* Wait a little while for the chip to get its brains in order. */ usbd_delay_ms(sc->kue_udev, 10); } /* * Probe for a KLSI chip. */ int kue_match(device_t parent, cfdata_t match, void *aux) { struct usb_attach_arg *uaa = aux; DPRINTFN(25,("kue_match: enter\n")); return kue_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } /* * Attach the interface. Allocate softc structures, do * setup and ethernet/BPF attach. */ void kue_attach(device_t parent, device_t self, void *aux) { struct kue_softc *sc = device_private(self); struct usb_attach_arg *uaa = aux; char *devinfop; int s; struct ifnet *ifp; struct usbd_device * dev = uaa->uaa_device; struct usbd_interface * iface; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; DPRINTFN(5,(" : kue_attach: sc=%p, dev=%p", sc, dev)); sc->kue_dev = self; aprint_naive("\n"); aprint_normal("\n"); devinfop = usbd_devinfo_alloc(dev, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); err = usbd_set_config_no(dev, KUE_CONFIG_NO, 1); if (err) { aprint_error_dev(self, "failed to set configuration" ", err=%s\n", usbd_errstr(err)); return; } sc->kue_udev = dev; sc->kue_product = uaa->uaa_product; sc->kue_vendor = uaa->uaa_vendor; /* Load the firmware into the NIC. */ if (kue_load_fw(sc)) { aprint_error_dev(self, "loading firmware failed\n"); return; } err = usbd_device2interface_handle(dev, KUE_IFACE_IDX, &iface); if (err) { aprint_error_dev(self, "getting interface handle failed\n"); return; } sc->kue_iface = iface; id = usbd_get_interface_descriptor(iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(iface, i); if (ed == NULL) { aprint_error_dev(self, "couldn't get ep %d\n", i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->kue_ed[KUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->kue_ed[KUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->kue_ed[KUE_ENDPT_INTR] = ed->bEndpointAddress; } } if (sc->kue_ed[KUE_ENDPT_RX] == 0 || sc->kue_ed[KUE_ENDPT_TX] == 0) { aprint_error_dev(self, "missing endpoint\n"); return; } /* Read ethernet descriptor */ err = kue_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR, 0, &sc->kue_desc, sizeof(sc->kue_desc)); if (err) { aprint_error_dev(self, "could not read Ethernet descriptor\n"); return; } sc->kue_mcfilters = kmem_alloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN, KM_SLEEP); s = splnet(); /* * A KLSI chip was detected. Inform the world. */ aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(sc->kue_desc.kue_macaddr)); /* Initialize interface info.*/ ifp = GET_IFP(sc); ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = kue_ioctl; ifp->if_start = kue_start; ifp->if_watchdog = kue_watchdog; strlcpy(ifp->if_xname, device_xname(sc->kue_dev), IFNAMSIZ); IFQ_SET_READY(&ifp->if_snd); /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, sc->kue_desc.kue_macaddr); rnd_attach_source(&sc->rnd_source, device_xname(sc->kue_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); sc->kue_attached = true; splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->kue_udev, sc->kue_dev); return; } int kue_detach(device_t self, int flags) { struct kue_softc *sc = device_private(self); struct ifnet *ifp = GET_IFP(sc); int s; s = splusb(); /* XXX why? */ if (sc->kue_mcfilters != NULL) { kmem_free(sc->kue_mcfilters, KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN); sc->kue_mcfilters = NULL; } if (!sc->kue_attached) { /* Detached before attached finished, so just bail out. */ splx(s); return 0; } if (ifp->if_flags & IFF_RUNNING) kue_stop(sc); rnd_detach_source(&sc->rnd_source); ether_ifdetach(ifp); if_detach(ifp); #ifdef DIAGNOSTIC if (sc->kue_ep[KUE_ENDPT_TX] != NULL || sc->kue_ep[KUE_ENDPT_RX] != NULL || sc->kue_ep[KUE_ENDPT_INTR] != NULL) aprint_debug_dev(self, "detach has active endpoints\n"); #endif sc->kue_attached = false; splx(s); return 0; } int kue_activate(device_t self, enum devact act) { struct kue_softc *sc = device_private(self); DPRINTFN(2,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__)); switch (act) { case DVACT_DEACTIVATE: /* Deactivate the interface. */ if_deactivate(&sc->kue_ec.ec_if); sc->kue_dying = true; return 0; default: return EOPNOTSUPP; } } static int kue_rx_list_init(struct kue_softc *sc) { struct kue_cdata *cd; struct kue_chain *c; int i; DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__)); cd = &sc->kue_cdata; for (i = 0; i < KUE_RX_LIST_CNT; i++) { c = &cd->kue_rx_chain[i]; c->kue_sc = sc; c->kue_idx = i; if (c->kue_xfer == NULL) { int error = usbd_create_xfer(sc->kue_ep[KUE_ENDPT_RX], KUE_BUFSZ, 0, 0, &c->kue_xfer); if (error) return error; c->kue_buf = usbd_get_buffer(c->kue_xfer); } } return 0; } static int kue_tx_list_init(struct kue_softc *sc) { struct kue_cdata *cd; struct kue_chain *c; int i; DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__)); cd = &sc->kue_cdata; for (i = 0; i < KUE_TX_LIST_CNT; i++) { c = &cd->kue_tx_chain[i]; c->kue_sc = sc; c->kue_idx = i; if (c->kue_xfer == NULL) { int error = usbd_create_xfer(sc->kue_ep[KUE_ENDPT_TX], KUE_BUFSZ, 0, 0, &c->kue_xfer); if (error) return error; c->kue_buf = usbd_get_buffer(c->kue_xfer); } } return 0; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void kue_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct kue_chain *c = priv; struct kue_softc *sc = c->kue_sc; struct ifnet *ifp = GET_IFP(sc); struct mbuf *m; int total_len, pktlen; int s; DPRINTFN(10,("%s: %s: enter status=%d\n", device_xname(sc->kue_dev), __func__, status)); if (sc->kue_dying) return; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; sc->kue_rx_errs++; if (usbd_ratecheck(&sc->kue_rx_notice)) { printf("%s: %u usb errors on rx: %s\n", device_xname(sc->kue_dev), sc->kue_rx_errs, usbd_errstr(status)); sc->kue_rx_errs = 0; } if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->kue_ep[KUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); DPRINTFN(10,("%s: %s: total_len=%d len=%d\n", device_xname(sc->kue_dev), __func__, total_len, le16dec(c->kue_buf))); if (total_len <= 1) goto done; pktlen = le16dec(c->kue_buf); if (pktlen > total_len - 2) pktlen = total_len - 2; if (pktlen < ETHER_MIN_LEN - ETHER_CRC_LEN || pktlen > MCLBYTES - ETHER_ALIGN) { ifp->if_ierrors++; goto done; } /* No errors; receive the packet. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; goto done; } if (pktlen > MHLEN - ETHER_ALIGN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); ifp->if_ierrors++; goto done; } } m->m_data += ETHER_ALIGN; /* copy data to mbuf */ memcpy(mtod(m, uint8_t *), c->kue_buf + 2, pktlen); m->m_pkthdr.len = m->m_len = pktlen; m_set_rcvif(m, ifp); s = splnet(); DPRINTFN(10,("%s: %s: deliver %d\n", device_xname(sc->kue_dev), __func__, m->m_len)); if_percpuq_enqueue(ifp->if_percpuq, m); splx(s); done: /* Setup new transfer. */ usbd_setup_xfer(c->kue_xfer, c, c->kue_buf, KUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof); usbd_transfer(c->kue_xfer); DPRINTFN(10,("%s: %s: start rx\n", device_xname(sc->kue_dev), __func__)); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void kue_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct kue_chain *c = priv; struct kue_softc *sc = c->kue_sc; struct ifnet *ifp = GET_IFP(sc); int s; if (sc->kue_dying) return; s = splnet(); DPRINTFN(10,("%s: %s: enter status=%d\n", device_xname(sc->kue_dev), __func__, status)); ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } ifp->if_oerrors++; printf("%s: usb error on tx: %s\n", device_xname(sc->kue_dev), usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->kue_ep[KUE_ENDPT_TX]); splx(s); return; } ifp->if_opackets++; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) kue_start(ifp); splx(s); } static int kue_send(struct kue_softc *sc, struct mbuf *m, int idx) { int total_len; struct kue_chain *c; usbd_status err; DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__)); c = &sc->kue_cdata.kue_tx_chain[idx]; /* Frame length is specified in the first 2 bytes of the buffer. */ le16enc(c->kue_buf, (uint16_t)m->m_pkthdr.len); /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->kue_buf + 2); total_len = 2 + m->m_pkthdr.len; total_len = roundup2(total_len, 64); usbd_setup_xfer(c->kue_xfer, c, c->kue_buf, total_len, 0, USBD_DEFAULT_TIMEOUT, kue_txeof); /* Transmit */ err = usbd_transfer(c->kue_xfer); if (err != USBD_IN_PROGRESS) { printf("%s: kue_send error=%s\n", device_xname(sc->kue_dev), usbd_errstr(err)); kue_stop(sc); return EIO; } sc->kue_cdata.kue_tx_cnt++; return 0; } static void kue_start(struct ifnet *ifp) { struct kue_softc *sc = ifp->if_softc; struct mbuf *m; DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__)); if (sc->kue_dying) return; if (ifp->if_flags & IFF_OACTIVE) return; IFQ_POLL(&ifp->if_snd, m); if (m == NULL) return; if (kue_send(sc, m, 0)) { ifp->if_flags |= IFF_OACTIVE; return; } IFQ_DEQUEUE(&ifp->if_snd, m); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ bpf_mtap(ifp, m, BPF_D_OUT); m_freem(m); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 6; } static void kue_init(void *xsc) { struct kue_softc *sc = xsc; struct ifnet *ifp = GET_IFP(sc); int s; uint8_t eaddr[ETHER_ADDR_LEN]; DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__)); if (ifp->if_flags & IFF_RUNNING) return; s = splnet(); memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr)); /* Set MAC address */ kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, eaddr, ETHER_ADDR_LEN); sc->kue_rxfilt = KUE_RXFILT_UNICAST | KUE_RXFILT_BROADCAST; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) sc->kue_rxfilt |= KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); /* I'm not sure how to tune these. */ #if 0 /* * Leave this one alone for now; setting it * wrong causes lockups on some machines/controllers. */ kue_setword(sc, KUE_CMD_SET_SOFS, 1); #endif kue_setword(sc, KUE_CMD_SET_URB_SIZE, 64); /* Load the multicast filter. */ kue_setmulti(sc); if (sc->kue_ep[KUE_ENDPT_RX] == NULL) { if (kue_open_pipes(sc)) { splx(s); return; } } /* Init TX ring. */ if (kue_tx_list_init(sc)) { printf("%s: tx list init failed\n", device_xname(sc->kue_dev)); splx(s); return; } /* Init RX ring. */ if (kue_rx_list_init(sc)) { printf("%s: rx list init failed\n", device_xname(sc->kue_dev)); splx(s); return; } /* Start up the receive pipe. */ for (size_t i = 0; i < KUE_RX_LIST_CNT; i++) { struct kue_chain *c = &sc->kue_cdata.kue_rx_chain[i]; usbd_setup_xfer(c->kue_xfer, c, c->kue_buf, KUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof); DPRINTFN(5,("%s: %s: start read\n", device_xname(sc->kue_dev), __func__)); usbd_transfer(c->kue_xfer); } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); } static int kue_open_pipes(struct kue_softc *sc) { usbd_status err; DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__)); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("%s: open rx pipe failed: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); return EIO; } err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("%s: open tx pipe failed: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); return EIO; } return 0; } static int kue_ioctl(struct ifnet *ifp, u_long command, void *data) { struct kue_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__)); if (sc->kue_dying) return EIO; s = splnet(); switch (command) { case SIOCINITIFADDR: ifp->if_flags |= IFF_UP; kue_init(sc); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(ifp, ifa); break; #endif /* INET */ } break; case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) error = EINVAL; else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET) error = 0; break; case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, command, data)) != 0) break; if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->kue_if_flags & IFF_PROMISC)) { sc->kue_rxfilt |= KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->kue_if_flags & IFF_PROMISC) { sc->kue_rxfilt &= ~KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } else if (!(ifp->if_flags & IFF_RUNNING)) kue_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) kue_stop(sc); } sc->kue_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = ether_ioctl(ifp, command, data); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) kue_setmulti(sc); error = 0; } break; default: error = ether_ioctl(ifp, command, data); break; } splx(s); return error; } static void kue_watchdog(struct ifnet *ifp) { struct kue_softc *sc = ifp->if_softc; struct kue_chain *c; usbd_status stat; int s; DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__)); if (sc->kue_dying) return; ifp->if_oerrors++; printf("%s: watchdog timeout\n", device_xname(sc->kue_dev)); s = splusb(); c = &sc->kue_cdata.kue_tx_chain[0]; usbd_get_xfer_status(c->kue_xfer, NULL, NULL, NULL, &stat); kue_txeof(c->kue_xfer, c, stat); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) kue_start(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void kue_stop(struct kue_softc *sc) { usbd_status err; struct ifnet *ifp; int i; DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__)); ifp = GET_IFP(sc); ifp->if_timer = 0; /* Stop transfers. */ if (sc->kue_ep[KUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("%s: abort rx pipe failed: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); } } if (sc->kue_ep[KUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("%s: abort tx pipe failed: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); } } if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (err) { printf("%s: abort intr pipe failed: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); } } /* Free RX resources. */ for (i = 0; i < KUE_RX_LIST_CNT; i++) { if (sc->kue_cdata.kue_rx_chain[i].kue_xfer != NULL) { usbd_destroy_xfer(sc->kue_cdata.kue_rx_chain[i].kue_xfer); sc->kue_cdata.kue_rx_chain[i].kue_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < KUE_TX_LIST_CNT; i++) { if (sc->kue_cdata.kue_tx_chain[i].kue_xfer != NULL) { usbd_destroy_xfer(sc->kue_cdata.kue_tx_chain[i].kue_xfer); sc->kue_cdata.kue_tx_chain[i].kue_xfer = NULL; } } /* Close pipes. */ if (sc->kue_ep[KUE_ENDPT_RX] != NULL) { err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("%s: close rx pipe failed: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_RX] = NULL; } if (sc->kue_ep[KUE_ENDPT_TX] != NULL) { err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("%s: close tx pipe failed: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_TX] = NULL; } if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) { err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (err) { printf("%s: close intr pipe failed: %s\n", device_xname(sc->kue_dev), usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_INTR] = NULL; } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); }