/* $NetBSD: sdhc.c,v 1.28 2012/07/28 23:02:57 matt Exp $ */ /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */ /* * Copyright (c) 2006 Uwe Stuehler * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * SD Host Controller driver based on the SD Host Controller Standard * Simplified Specification Version 1.00 (www.sdcard.com). */ #include __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.28 2012/07/28 23:02:57 matt Exp $"); #ifdef _KERNEL_OPT #include "opt_sdmmc.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SDHC_DEBUG int sdhcdebug = 1; #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0) void sdhc_dump_regs(struct sdhc_host *); #else #define DPRINTF(n,s) do {} while (0) #endif #define SDHC_COMMAND_TIMEOUT hz #define SDHC_BUFFER_TIMEOUT hz #define SDHC_TRANSFER_TIMEOUT hz #define SDHC_DMA_TIMEOUT hz struct sdhc_host { struct sdhc_softc *sc; /* host controller device */ bus_space_tag_t iot; /* host register set tag */ bus_space_handle_t ioh; /* host register set handle */ bus_dma_tag_t dmat; /* host DMA tag */ device_t sdmmc; /* generic SD/MMC device */ struct kmutex host_mtx; u_int clkbase; /* base clock frequency in KHz */ int maxblklen; /* maximum block length */ uint32_t ocr; /* OCR value from capabilities */ uint8_t regs[14]; /* host controller state */ uint16_t intr_status; /* soft interrupt status */ uint16_t intr_error_status; /* soft error status */ struct kmutex intr_mtx; struct kcondvar intr_cv; int specver; /* spec. version */ uint32_t flags; /* flags for this host */ #define SHF_USE_DMA 0x0001 #define SHF_USE_4BIT_MODE 0x0002 #define SHF_USE_8BIT_MODE 0x0004 }; #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev)) #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp)))) static uint8_t hread1(struct sdhc_host *hp, bus_size_t reg) { if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) return bus_space_read_1(hp->iot, hp->ioh, reg); return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3)); } static uint16_t hread2(struct sdhc_host *hp, bus_size_t reg) { if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) return bus_space_read_2(hp->iot, hp->ioh, reg); return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2)); } #define HREAD1(hp, reg) hread1(hp, reg) #define HREAD2(hp, reg) hread2(hp, reg) #define HREAD4(hp, reg) \ (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))) static void hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val) { if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { bus_space_write_1(hp->iot, hp->ioh, o, val); } else { const size_t shift = 8 * (o & 3); o &= -4; uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); tmp = (val << shift) | (tmp & ~(0xff << shift)); bus_space_write_4(hp->iot, hp->ioh, o, tmp); } } static void hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val) { if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { bus_space_write_2(hp->iot, hp->ioh, o, val); } else { const size_t shift = 8 * (o & 2); o &= -4; uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); tmp = (val << shift) | (tmp & ~(0xffff << shift)); bus_space_write_4(hp->iot, hp->ioh, o, tmp); } } #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val) #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val) #define HWRITE4(hp, reg, val) \ bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val)) #define HCLR1(hp, reg, bits) \ do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0) #define HCLR2(hp, reg, bits) \ do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0) #define HCLR4(hp, reg, bits) \ do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0) #define HSET1(hp, reg, bits) \ do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0) #define HSET2(hp, reg, bits) \ do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0) #define HSET4(hp, reg, bits) \ do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0) static int sdhc_host_reset(sdmmc_chipset_handle_t); static int sdhc_host_reset1(sdmmc_chipset_handle_t); static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t); static int sdhc_host_maxblklen(sdmmc_chipset_handle_t); static int sdhc_card_detect(sdmmc_chipset_handle_t); static int sdhc_write_protect(sdmmc_chipset_handle_t); static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t); static int sdhc_bus_clock(sdmmc_chipset_handle_t, int); static int sdhc_bus_width(sdmmc_chipset_handle_t, int); static int sdhc_bus_rod(sdmmc_chipset_handle_t, int); static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int); static void sdhc_card_intr_ack(sdmmc_chipset_handle_t); static void sdhc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *); static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t); static int sdhc_soft_reset(struct sdhc_host *, int); static int sdhc_wait_intr(struct sdhc_host *, int, int); static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *); static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *); static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); static struct sdmmc_chip_functions sdhc_functions = { /* host controller reset */ sdhc_host_reset, /* host controller capabilities */ sdhc_host_ocr, sdhc_host_maxblklen, /* card detection */ sdhc_card_detect, /* write protect */ sdhc_write_protect, /* bus power, clock frequency and width */ sdhc_bus_power, sdhc_bus_clock, sdhc_bus_width, sdhc_bus_rod, /* command execution */ sdhc_exec_command, /* card interrupt */ sdhc_card_enable_intr, sdhc_card_intr_ack }; static int sdhc_cfprint(void *aux, const char *pnp) { const struct sdmmcbus_attach_args const * saa = aux; const struct sdhc_host * const hp = saa->saa_sch; if (pnp) { aprint_normal("sdmmc at %s", pnp); } aprint_normal(" slot %d", HDEVINST(hp)); return UNCONF; } /* * Called by attachment driver. For each SD card slot there is one SD * host controller standard register set. (1.3) */ int sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, bus_space_handle_t ioh, bus_size_t iosize) { struct sdmmcbus_attach_args saa; struct sdhc_host *hp; uint32_t caps; uint16_t sdhcver; sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION); aprint_normal_dev(sc->sc_dev, "SD Host Specification "); switch (SDHC_SPEC_VERSION(sdhcver)) { case SDHC_SPEC_VERS_100: aprint_normal("1.0"); break; case SDHC_SPEC_VERS_200: aprint_normal("2.0"); break; case SDHC_SPEC_VERS_300: aprint_normal("3.0"); break; default: aprint_normal("unknown version(0x%x)", SDHC_SPEC_VERSION(sdhcver)); break; } aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver)); /* Allocate one more host structure. */ hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO); if (hp == NULL) { aprint_error_dev(sc->sc_dev, "couldn't alloc memory (sdhc host)\n"); goto err1; } sc->sc_host[sc->sc_nhosts++] = hp; /* Fill in the new host structure. */ hp->sc = sc; hp->iot = iot; hp->ioh = ioh; hp->dmat = sc->sc_dmat; hp->specver = SDHC_SPEC_VERSION(sdhcver); mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC); mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC); cv_init(&hp->intr_cv, "sdhcintr"); /* * Reset the host controller and enable interrupts. */ (void)sdhc_host_reset(hp); /* Determine host capabilities. */ if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) { caps = sc->sc_caps; } else { mutex_enter(&hp->host_mtx); caps = HREAD4(hp, SDHC_CAPABILITIES); mutex_exit(&hp->host_mtx); } /* Use DMA if the host system and the controller support it. */ if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) || (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA && ISSET(caps, SDHC_DMA_SUPPORT)))) { SET(hp->flags, SHF_USE_DMA); aprint_normal_dev(sc->sc_dev, "using DMA transfer\n"); } /* * Determine the base clock frequency. (2.2.24) */ hp->clkbase = SDHC_BASE_FREQ_KHZ(caps); if (hp->clkbase == 0) { if (sc->sc_clkbase == 0) { /* The attachment driver must tell us. */ aprint_error_dev(sc->sc_dev, "unknown base clock frequency\n"); goto err; } hp->clkbase = sc->sc_clkbase; } if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) { /* SDHC 1.0 supports only 10-63 MHz. */ aprint_error_dev(sc->sc_dev, "base clock frequency out of range: %u MHz\n", hp->clkbase / 1000); goto err; } DPRINTF(1,("%s: base clock frequency %u MHz\n", device_xname(sc->sc_dev), hp->clkbase / 1000)); /* * XXX Set the data timeout counter value according to * capabilities. (2.2.15) */ HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); #if 0 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); #endif /* * Determine SD bus voltage levels supported by the controller. */ if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) { SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V); } if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) { SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V); } if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) { SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V); } /* * Determine the maximum block length supported by the host * controller. (2.2.24) */ switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) { case SDHC_MAX_BLK_LEN_512: hp->maxblklen = 512; break; case SDHC_MAX_BLK_LEN_1024: hp->maxblklen = 1024; break; case SDHC_MAX_BLK_LEN_2048: hp->maxblklen = 2048; break; case SDHC_MAX_BLK_LEN_4096: hp->maxblklen = 4096; break; default: aprint_error_dev(sc->sc_dev, "max block length unknown\n"); goto err; } DPRINTF(1, ("%s: max block length %u byte%s\n", device_xname(sc->sc_dev), hp->maxblklen, hp->maxblklen > 1 ? "s" : "")); /* * Attach the generic SD/MMC bus driver. (The bus driver must * not invoke any chipset functions before it is attached.) */ memset(&saa, 0, sizeof(saa)); saa.saa_busname = "sdmmc"; saa.saa_sct = &sdhc_functions; saa.saa_sch = hp; saa.saa_dmat = hp->dmat; saa.saa_clkmin = hp->clkbase / 256; saa.saa_clkmax = hp->clkbase; if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM)) saa.saa_clkmin /= 2046; else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS)) saa.saa_clkmin /= 16; saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP; if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE)) saa.saa_caps |= SMC_CAPS_8BIT_MODE; if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED; if (ISSET(hp->flags, SHF_USE_DMA)) { saa.saa_caps |= SMC_CAPS_DMA; if (hp->specver == SDHC_SPEC_VERS_100) { saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA; } } hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint); return 0; err: cv_destroy(&hp->intr_cv); mutex_destroy(&hp->intr_mtx); mutex_destroy(&hp->host_mtx); free(hp, M_DEVBUF); sc->sc_host[--sc->sc_nhosts] = NULL; err1: return 1; } int sdhc_detach(device_t dev, int flags) { struct sdhc_host *hp = (struct sdhc_host *)dev; struct sdhc_softc *sc = hp->sc; int rv = 0; if (hp->sdmmc) rv = config_detach(hp->sdmmc, flags); cv_destroy(&hp->intr_cv); mutex_destroy(&hp->intr_mtx); mutex_destroy(&hp->host_mtx); free(hp, M_DEVBUF); sc->sc_host[--sc->sc_nhosts] = NULL; return rv; } bool sdhc_suspend(device_t dev, const pmf_qual_t *qual) { struct sdhc_softc *sc = device_private(dev); struct sdhc_host *hp; size_t i; /* XXX poll for command completion or suspend command * in progress */ /* Save the host controller state. */ for (size_t n = 0; n < sc->sc_nhosts; n++) { hp = sc->sc_host[n]; if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { for (i = 0; i < sizeof hp->regs; i += 4) { uint32_t v = HREAD4(hp, i); hp->regs[i + 0] = (v >> 0); hp->regs[i + 1] = (v >> 8); if (i + 3 < sizeof hp->regs) { hp->regs[i + 2] = (v >> 16); hp->regs[i + 3] = (v >> 24); } } } else { for (i = 0; i < sizeof hp->regs; i++) { hp->regs[i] = HREAD1(hp, i); } } } return true; } bool sdhc_resume(device_t dev, const pmf_qual_t *qual) { struct sdhc_softc *sc = device_private(dev); struct sdhc_host *hp; size_t i; /* Restore the host controller state. */ for (size_t n = 0; n < sc->sc_nhosts; n++) { hp = sc->sc_host[n]; (void)sdhc_host_reset(hp); if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { for (i = 0; i < sizeof hp->regs; i += 4) { if (i + 3 < sizeof hp->regs) { HWRITE4(hp, i, (hp->regs[i + 0] << 0) | (hp->regs[i + 1] << 8) | (hp->regs[i + 2] << 16) | (hp->regs[i + 3] << 24)); } else { HWRITE4(hp, i, (hp->regs[i + 0] << 0) | (hp->regs[i + 1] << 8)); } } } else { for (i = 0; i < sizeof hp->regs; i++) { HWRITE1(hp, i, hp->regs[i]); } } } return true; } bool sdhc_shutdown(device_t dev, int flags) { struct sdhc_softc *sc = device_private(dev); struct sdhc_host *hp; /* XXX chip locks up if we don't disable it before reboot. */ for (size_t i = 0; i < sc->sc_nhosts; i++) { hp = sc->sc_host[i]; (void)sdhc_host_reset(hp); } return true; } /* * Reset the host controller. Called during initialization, when * cards are removed, upon resume, and during error recovery. */ static int sdhc_host_reset1(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = (struct sdhc_host *)sch; uint32_t sdhcimask; int error; /* Don't lock. */ /* Disable all interrupts. */ if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); } else { HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); } /* * Reset the entire host controller and wait up to 100ms for * the controller to clear the reset bit. */ error = sdhc_soft_reset(hp, SDHC_RESET_ALL); if (error) goto out; /* Set data timeout counter value to max for now. */ HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); #if 0 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); #endif /* Enable interrupts. */ sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION | SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT | SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE; if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { sdhcimask |= SDHC_EINTR_STATUS_MASK << 16; HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask); sdhcimask ^= (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16; sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); } else { HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask); HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK); sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK); } out: return error; } static int sdhc_host_reset(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = (struct sdhc_host *)sch; int error; mutex_enter(&hp->host_mtx); error = sdhc_host_reset1(sch); mutex_exit(&hp->host_mtx); return error; } static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = (struct sdhc_host *)sch; return hp->ocr; } static int sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = (struct sdhc_host *)sch; return hp->maxblklen; } /* * Return non-zero if the card is currently inserted. */ static int sdhc_card_detect(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = (struct sdhc_host *)sch; int r; mutex_enter(&hp->host_mtx); r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED); mutex_exit(&hp->host_mtx); return r ? 1 : 0; } /* * Return non-zero if the card is currently write-protected. */ static int sdhc_write_protect(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = (struct sdhc_host *)sch; int r; mutex_enter(&hp->host_mtx); r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH); mutex_exit(&hp->host_mtx); return r ? 0 : 1; } /* * Set or change SD bus voltage and enable or disable SD bus power. * Return zero on success. */ static int sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr) { struct sdhc_host *hp = (struct sdhc_host *)sch; uint8_t vdd; int error = 0; mutex_enter(&hp->host_mtx); /* * Disable bus power before voltage change. */ if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS) && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) HWRITE1(hp, SDHC_POWER_CTL, 0); /* If power is disabled, reset the host and return now. */ if (ocr == 0) { (void)sdhc_host_reset1(hp); goto out; } /* * Select the lowest voltage according to capabilities. */ ocr &= hp->ocr; if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) { vdd = SDHC_VOLTAGE_1_8V; } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) { vdd = SDHC_VOLTAGE_3_0V; } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) { vdd = SDHC_VOLTAGE_3_3V; } else { /* Unsupported voltage level requested. */ error = EINVAL; goto out; } if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { /* * Enable bus power. Wait at least 1 ms (or 74 clocks) plus * voltage ramp until power rises. */ HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER); sdmmc_delay(10000); /* * The host system may not power the bus due to battery low, * etc. In that case, the host controller should clear the * bus power bit. */ if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) { error = ENXIO; goto out; } } out: mutex_exit(&hp->host_mtx); return error; } /* * Return the smallest possible base clock frequency divisor value * for the CLOCK_CTL register to produce `freq' (KHz). */ static bool sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp) { u_int div; if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) { for (div = hp->clkbase / freq; div <= 0x3ff; div++) { if ((hp->clkbase / div) <= freq) { *divp = SDHC_SDCLK_CGM | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT) | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT); //freq = hp->clkbase / div; return true; } } /* No divisor found. */ return false; } if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) { u_int dvs = (hp->clkbase + freq - 1) / freq; u_int roundup = dvs & 1; for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) { if (dvs + roundup <= 16) { dvs += roundup - 1; *divp = (div << SDHC_SDCLK_DIV_SHIFT) | (dvs << SDHC_SDCLK_DVS_SHIFT); DPRINTF(2, ("%s: divisor for freq %u is %u * %u\n", HDEVNAME(hp), freq, div * 2, dvs + 1)); //freq = hp->clkbase / (div * 2) * (dvs + 1); return true; } /* * If we drop bits, we need to round up the divisor. */ roundup |= dvs & 1; } /* No divisor found. */ return false; } else { for (div = 1; div <= 256; div *= 2) { if ((hp->clkbase / div) <= freq) { *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT; //freq = hp->clkbase / div; return true; } } } /* No divisor found. */ return false; } /* * Set or change SDCLK frequency or disable the SD clock. * Return zero on success. */ static int sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq) { struct sdhc_host *hp = (struct sdhc_host *)sch; u_int div; u_int timo; int error = 0; #ifdef DIAGNOSTIC bool present; mutex_enter(&hp->host_mtx); present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK); mutex_exit(&hp->host_mtx); /* Must not stop the clock if commands are in progress. */ if (present && sdhc_card_detect(hp)) { aprint_normal_dev(hp->sc->sc_dev, "%s: command in progress\n", __func__); } #endif mutex_enter(&hp->host_mtx); /* * Stop SD clock before changing the frequency. */ if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8); if (freq == SDMMC_SDCLK_OFF) { HSET4(hp, SDHC_CLOCK_CTL, 0x80f0); goto out; } } else { HWRITE2(hp, SDHC_CLOCK_CTL, 0); if (freq == SDMMC_SDCLK_OFF) goto out; } /* * Set the minimum base clock frequency divisor. */ if (!sdhc_clock_divisor(hp, freq, &div)) { /* Invalid base clock frequency or `freq' value. */ error = EINVAL; goto out; } if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { HWRITE4(hp, SDHC_CLOCK_CTL, div | (SDHC_TIMEOUT_MAX << 16)); } else { HWRITE2(hp, SDHC_CLOCK_CTL, div); } /* * Start internal clock. Wait 10ms for stabilization. */ if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { sdmmc_delay(10000); HSET4(hp, SDHC_CLOCK_CTL, 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE); } else { HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE); for (timo = 1000; timo > 0; timo--) { if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE)) break; sdmmc_delay(10); } if (timo == 0) { error = ETIMEDOUT; goto out; } } if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE); /* * Sending 80 clocks at 400kHz takes 200us. * So delay for that time + slop and then * check a few times for completion. */ sdmmc_delay(210); for (timo = 10; timo > 0; timo--) { if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), SDHC_INIT_ACTIVE)) break; sdmmc_delay(10); } DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo)); /* * Enable SD clock. */ HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); } else { /* * Enable SD clock. */ HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); if (freq > 25000) HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); else HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); } out: mutex_exit(&hp->host_mtx); return error; } static int sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) { struct sdhc_host *hp = (struct sdhc_host *)sch; int reg; switch (width) { case 1: case 4: break; case 8: if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE)) break; /* FALLTHROUGH */ default: DPRINTF(0,("%s: unsupported bus width (%d)\n", HDEVNAME(hp), width)); return 1; } mutex_enter(&hp->host_mtx); reg = HREAD1(hp, SDHC_HOST_CTL); if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE); if (width == 4) reg |= SDHC_4BIT_MODE; else if (width == 8) reg |= SDHC_ESDHC_8BIT_MODE; } else { reg &= ~SDHC_4BIT_MODE; if (width == 4) reg |= SDHC_4BIT_MODE; } HWRITE1(hp, SDHC_HOST_CTL, reg); mutex_exit(&hp->host_mtx); return 0; } static int sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on) { /* Nothing ?? */ return 0; } static void sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable) { struct sdhc_host *hp = (struct sdhc_host *)sch; if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { mutex_enter(&hp->host_mtx); if (enable) { HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); } else { HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); } mutex_exit(&hp->host_mtx); } } static void sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = (struct sdhc_host *)sch; if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { mutex_enter(&hp->host_mtx); HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); mutex_exit(&hp->host_mtx); } } static int sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value) { uint32_t state; int timeout; for (timeout = 10; timeout > 0; timeout--) { if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value) return 0; sdmmc_delay(10000); } DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp), value, state)); return ETIMEDOUT; } static void sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) { struct sdhc_host *hp = (struct sdhc_host *)sch; int error; if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY; if (ISSET(hp->flags, SHF_USE_DMA)) { HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready); HCLR2(hp, SDHC_NINTR_STATUS_EN, ready); } else { HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready); HSET2(hp, SDHC_NINTR_STATUS_EN, ready); } } /* * Start the MMC command, or mark `cmd' as failed and return. */ error = sdhc_start_command(hp, cmd); if (error) { cmd->c_error = error; goto out; } /* * Wait until the command phase is done, or until the command * is marked done for any other reason. */ if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) { cmd->c_error = ETIMEDOUT; goto out; } /* * The host controller removes bits [0:7] from the response * data (CRC) and we pass the data up unchanged to the bus * driver (without padding). */ mutex_enter(&hp->host_mtx); if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0); if (ISSET(cmd->c_flags, SCF_RSP_136)) { cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4); cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8); cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12); } } mutex_exit(&hp->host_mtx); DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0])); /* * If the command has data to transfer in any direction, * execute the transfer now. */ if (cmd->c_error == 0 && cmd->c_data != NULL) sdhc_transfer_data(hp, cmd); out: if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED) && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) { mutex_enter(&hp->host_mtx); /* Turn off the LED. */ HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON); mutex_exit(&hp->host_mtx); } SET(cmd->c_flags, SCF_ITSDONE); DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp), cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort", cmd->c_flags, cmd->c_error)); } static int sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) { struct sdhc_softc * const sc = hp->sc; uint16_t blksize = 0; uint16_t blkcount = 0; uint16_t mode; uint16_t command; int error; DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n", HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data, cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS))); /* * The maximum block length for commands should be the minimum * of the host buffer size and the card buffer size. (1.7.2) */ /* Fragment the data into proper blocks. */ if (cmd->c_datalen > 0) { blksize = MIN(cmd->c_datalen, cmd->c_blklen); blkcount = cmd->c_datalen / blksize; if (cmd->c_datalen % blksize > 0) { /* XXX: Split this command. (1.7.4) */ aprint_error_dev(sc->sc_dev, "data not a multiple of %u bytes\n", blksize); return EINVAL; } } /* Check limit imposed by 9-bit block count. (1.7.2) */ if (blkcount > SDHC_BLOCK_COUNT_MAX) { aprint_error_dev(sc->sc_dev, "too much data\n"); return EINVAL; } /* Prepare transfer mode register value. (2.2.5) */ mode = SDHC_BLOCK_COUNT_ENABLE; if (ISSET(cmd->c_flags, SCF_CMD_READ)) mode |= SDHC_READ_MODE; if (blkcount > 1) { mode |= SDHC_MULTI_BLOCK_MODE; /* XXX only for memory commands? */ mode |= SDHC_AUTO_CMD12_ENABLE; } if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) { mode |= SDHC_DMA_ENABLE; } /* * Prepare command register value. (2.2.6) */ command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT; if (ISSET(cmd->c_flags, SCF_RSP_CRC)) command |= SDHC_CRC_CHECK_ENABLE; if (ISSET(cmd->c_flags, SCF_RSP_IDX)) command |= SDHC_INDEX_CHECK_ENABLE; if (cmd->c_data != NULL) command |= SDHC_DATA_PRESENT_SELECT; if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)) command |= SDHC_NO_RESPONSE; else if (ISSET(cmd->c_flags, SCF_RSP_136)) command |= SDHC_RESP_LEN_136; else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) command |= SDHC_RESP_LEN_48_CHK_BUSY; else command |= SDHC_RESP_LEN_48; /* Wait until command and data inhibit bits are clear. (1.5) */ error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0); if (error) return error; DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n", HDEVNAME(hp), blksize, blkcount, mode, command)); blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) << SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */ mutex_enter(&hp->host_mtx); if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { /* Alert the user not to remove the card. */ HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON); } /* Set DMA start address. */ if (ISSET(mode, SDHC_DMA_ENABLE)) HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr); /* * Start a CPU data transfer. Writing to the high order byte * of the SDHC_COMMAND register triggers the SD command. (1.5) */ if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16)); HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16)); } else { HWRITE2(hp, SDHC_BLOCK_SIZE, blksize); HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount); HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); HWRITE2(hp, SDHC_TRANSFER_MODE, mode); HWRITE2(hp, SDHC_COMMAND, command); } mutex_exit(&hp->host_mtx); return 0; } static void sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) { int error; DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp), MMC_R1(cmd->c_resp), cmd->c_datalen)); #ifdef SDHC_DEBUG /* XXX I forgot why I wanted to know when this happens :-( */ if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && ISSET(MMC_R1(cmd->c_resp), 0xcb00)) { aprint_error_dev(hp->sc->sc_dev, "CMD52/53 error response flags %#x\n", MMC_R1(cmd->c_resp) & 0xff00); } #endif if (cmd->c_dmamap != NULL) error = sdhc_transfer_data_dma(hp, cmd); else error = sdhc_transfer_data_pio(hp, cmd); if (error) cmd->c_error = error; SET(cmd->c_flags, SCF_ITSDONE); DPRINTF(1,("%s: data transfer done (error=%d)\n", HDEVNAME(hp), cmd->c_error)); } static int sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd) { bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs; bus_addr_t posaddr; bus_addr_t segaddr; bus_size_t seglen; u_int seg = 0; int error = 0; int status; KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT); KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT); KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); for (;;) { status = sdhc_wait_intr(hp, SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT); if (status & SDHC_TRANSFER_COMPLETE) { break; } if (!status) { error = ETIMEDOUT; break; } if ((status & SDHC_DMA_INTERRUPT) == 0) { continue; } /* DMA Interrupt (boundary crossing) */ segaddr = dm_segs[seg].ds_addr; seglen = dm_segs[seg].ds_len; mutex_enter(&hp->host_mtx); posaddr = HREAD4(hp, SDHC_DMA_ADDR); mutex_exit(&hp->host_mtx); if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) { break; } mutex_enter(&hp->host_mtx); if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen))) HWRITE4(hp, SDHC_DMA_ADDR, posaddr); else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs) HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr); mutex_exit(&hp->host_mtx); KASSERT(seg < cmd->c_dmamap->dm_nsegs); } return error; } static int sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd) { uint8_t *data = cmd->c_data; void (*pio_func)(struct sdhc_host *, uint8_t *, u_int); u_int len, datalen; u_int imask; u_int pmask; int error = 0; if (ISSET(cmd->c_flags, SCF_CMD_READ)) { imask = SDHC_BUFFER_READ_READY; pmask = SDHC_BUFFER_READ_ENABLE; if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { pio_func = esdhc_read_data_pio; } else { pio_func = sdhc_read_data_pio; } } else { imask = SDHC_BUFFER_WRITE_READY; pmask = SDHC_BUFFER_WRITE_ENABLE; if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { pio_func = esdhc_write_data_pio; } else { pio_func = sdhc_write_data_pio; } } datalen = cmd->c_datalen; KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask); KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); while (datalen > 0) { if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) { if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask); } else { HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask); } if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) { error = ETIMEDOUT; break; } error = sdhc_wait_state(hp, pmask, pmask); if (error) break; } len = MIN(datalen, cmd->c_blklen); (*pio_func)(hp, data, len); DPRINTF(2,("%s: pio data transfer %u @ %p\n", HDEVNAME(hp), len, data)); data += len; datalen -= len; } if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, SDHC_TRANSFER_TIMEOUT)) error = ETIMEDOUT; return error; } static void sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) { if (((__uintptr_t)data & 3) == 0) { while (datalen > 3) { *(uint32_t *)data = HREAD4(hp, SDHC_DATA); data += 4; datalen -= 4; } if (datalen > 1) { *(uint16_t *)data = HREAD2(hp, SDHC_DATA); data += 2; datalen -= 2; } if (datalen > 0) { *data = HREAD1(hp, SDHC_DATA); data += 1; datalen -= 1; } } else if (((__uintptr_t)data & 1) == 0) { while (datalen > 1) { *(uint16_t *)data = HREAD2(hp, SDHC_DATA); data += 2; datalen -= 2; } if (datalen > 0) { *data = HREAD1(hp, SDHC_DATA); data += 1; datalen -= 1; } } else { while (datalen > 0) { *data = HREAD1(hp, SDHC_DATA); data += 1; datalen -= 1; } } } static void sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) { if (((__uintptr_t)data & 3) == 0) { while (datalen > 3) { HWRITE4(hp, SDHC_DATA, *(uint32_t *)data); data += 4; datalen -= 4; } if (datalen > 1) { HWRITE2(hp, SDHC_DATA, *(uint16_t *)data); data += 2; datalen -= 2; } if (datalen > 0) { HWRITE1(hp, SDHC_DATA, *data); data += 1; datalen -= 1; } } else if (((__uintptr_t)data & 1) == 0) { while (datalen > 1) { HWRITE2(hp, SDHC_DATA, *(uint16_t *)data); data += 2; datalen -= 2; } if (datalen > 0) { HWRITE1(hp, SDHC_DATA, *data); data += 1; datalen -= 1; } } else { while (datalen > 0) { HWRITE1(hp, SDHC_DATA, *data); data += 1; datalen -= 1; } } } static void esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) { uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); uint32_t v; const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK; size_t count = 0; while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { if (count == 0) { /* * If we've drained "watermark" words, we need to wait * a little bit so the read FIFO can refill. */ sdmmc_delay(10); count = watermark; } v = HREAD4(hp, SDHC_DATA); v = le32toh(v); *(uint32_t *)data = v; data += 4; datalen -= 4; status = HREAD2(hp, SDHC_NINTR_STATUS); count--; } if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { if (count == 0) { sdmmc_delay(10); } v = HREAD4(hp, SDHC_DATA); v = le32toh(v); do { *data++ = v; v >>= 8; } while (--datalen > 0); } } static void esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) { uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); uint32_t v; const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK; size_t count = watermark; while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { if (count == 0) { sdmmc_delay(10); count = watermark; } v = *(uint32_t *)data; v = htole32(v); HWRITE4(hp, SDHC_DATA, v); data += 4; datalen -= 4; status = HREAD2(hp, SDHC_NINTR_STATUS); count--; } if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { if (count == 0) { sdmmc_delay(10); } v = *(uint32_t *)data; v = htole32(v); HWRITE4(hp, SDHC_DATA, v); } } /* Prepare for another command. */ static int sdhc_soft_reset(struct sdhc_host *hp, int mask) { int timo; DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask)); HWRITE1(hp, SDHC_SOFTWARE_RESET, mask); for (timo = 10; timo > 0; timo--) { if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) break; sdmmc_delay(10000); HWRITE1(hp, SDHC_SOFTWARE_RESET, 0); } if (timo == 0) { DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp), HREAD1(hp, SDHC_SOFTWARE_RESET))); HWRITE1(hp, SDHC_SOFTWARE_RESET, 0); return ETIMEDOUT; } if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP); } return 0; } static int sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo) { int status; mask |= SDHC_ERROR_INTERRUPT; mutex_enter(&hp->intr_mtx); status = hp->intr_status & mask; while (status == 0) { if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo) == EWOULDBLOCK) { status |= SDHC_ERROR_INTERRUPT; break; } status = hp->intr_status & mask; } hp->intr_status &= ~status; DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status, hp->intr_error_status)); /* Command timeout has higher priority than command complete. */ if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) { hp->intr_error_status = 0; hp->intr_status &= ~SDHC_ERROR_INTERRUPT; if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); } status = 0; } mutex_exit(&hp->intr_mtx); return status; } /* * Established by attachment driver at interrupt priority IPL_SDMMC. */ int sdhc_intr(void *arg) { struct sdhc_softc *sc = (struct sdhc_softc *)arg; struct sdhc_host *hp; int done = 0; uint16_t status; uint16_t error; /* We got an interrupt, but we don't know from which slot. */ for (size_t host = 0; host < sc->sc_nhosts; host++) { hp = sc->sc_host[host]; if (hp == NULL) continue; if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { /* Find out which interrupts are pending. */ uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS); status = xstatus; error = xstatus >> 16; if (error) xstatus |= SDHC_ERROR_INTERRUPT; else if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) continue; /* no interrupt for us */ /* Acknowledge the interrupts we are about to handle. */ HWRITE4(hp, SDHC_NINTR_STATUS, xstatus); } else { /* Find out which interrupts are pending. */ error = 0; status = HREAD2(hp, SDHC_NINTR_STATUS); if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) continue; /* no interrupt for us */ /* Acknowledge the interrupts we are about to handle. */ HWRITE2(hp, SDHC_NINTR_STATUS, status); if (ISSET(status, SDHC_ERROR_INTERRUPT)) { /* Acknowledge error interrupts. */ error = HREAD2(hp, SDHC_EINTR_STATUS); HWRITE2(hp, SDHC_EINTR_STATUS, error); } } DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp), status, error)); /* Claim this interrupt. */ done = 1; /* * Service error interrupts. */ if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR| SDHC_DATA_TIMEOUT_ERROR)) { hp->intr_error_status |= error; hp->intr_status |= status; cv_broadcast(&hp->intr_cv); } /* * Wake up the sdmmc event thread to scan for cards. */ if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) { sdmmc_needs_discover(hp->sdmmc); if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) { HCLR4(hp, SDHC_NINTR_STATUS_EN, status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); HCLR4(hp, SDHC_NINTR_SIGNAL_EN, status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); } } /* * Wake up the blocking process to service command * related interrupt(s). */ if (ISSET(status, SDHC_COMMAND_COMPLETE| SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY| SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) { hp->intr_status |= status; if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) { HCLR4(hp, SDHC_NINTR_SIGNAL_EN, status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY)); } cv_broadcast(&hp->intr_cv); } /* * Service SD card interrupts. */ if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED) && ISSET(status, SDHC_CARD_INTERRUPT)) { DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp))); HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); sdmmc_card_intr(hp->sdmmc); } } return done; } #ifdef SDHC_DEBUG void sdhc_dump_regs(struct sdhc_host *hp) { printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE, HREAD4(hp, SDHC_PRESENT_STATE)); if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL, HREAD1(hp, SDHC_POWER_CTL)); printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS, HREAD2(hp, SDHC_NINTR_STATUS)); printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS, HREAD2(hp, SDHC_EINTR_STATUS)); printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN, HREAD2(hp, SDHC_NINTR_STATUS_EN)); printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN, HREAD2(hp, SDHC_EINTR_STATUS_EN)); printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN, HREAD2(hp, SDHC_NINTR_SIGNAL_EN)); printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN, HREAD2(hp, SDHC_EINTR_SIGNAL_EN)); printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES, HREAD4(hp, SDHC_CAPABILITIES)); printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES, HREAD4(hp, SDHC_MAX_CAPABILITIES)); } #endif