/* $NetBSD: sl811hs.c,v 1.105 2021/04/24 23:36:55 thorpej Exp $ */ /* * Not (c) 2007 Matthew Orgass * This file is public domain, meaning anyone can make any use of part or all * of this file including copying into other works without credit. Any use, * modified or not, is solely the responsibility of the user. If this file is * part of a collection then use in the collection is governed by the terms of * the collection. */ /* * Cypress/ScanLogic SL811HS/T USB Host Controller * Datasheet, Errata, and App Note available at www.cypress.com * * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA * HCs. The Ratoc CFU2 uses a different chip. * * This chip puts the serial in USB. It implements USB by means of an eight * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port, * serial port, or any eight bit interface. It has 256 bytes of memory, the * first 16 of which are used for register access. There are two sets of * registers for sending individual bus transactions. Because USB is polled, * this organization means that some amount of card access must often be made * when devices are attached, even if when they are not directly being used. * A per-ms frame interrupt is necessary and many devices will poll with a * per-frame bulk transfer. * * It is possible to write a little over two bytes to the chip (auto * incremented) per full speed byte time on the USB. Unfortunately, * auto-increment does not work reliably so write and bus speed is * approximately the same for full speed devices. * * In addition to the 240 byte packet size limit for isochronous transfers, * this chip has no means of determining the current frame number other than * getting all 1ms SOF interrupts, which is not always possible even on a fast * system. Isochronous transfers guarantee that transfers will never be * retried in a later frame, so this can cause problems with devices beyond * the difficulty in actually performing the transfer most frames. I tried * implementing isoc transfers and was able to play CD-derrived audio via an * iMic on a 2GHz PC, however it would still be interrupted at times and * once interrupted, would stay out of sync. All isoc support has been * removed. * * BUGS: all chip revisions have problems with low speed devices through hubs. * The chip stops generating SOF with hubs that send SE0 during SOF. See * comment in dointr(). All performance enhancing features of this chip seem * not to work properly, most confirmed buggy in errata doc. * */ /* * The hard interrupt is the main entry point. Start, callbacks, and repeat * are the only others called frequently. * * Since this driver attaches to pcmcia, card removal at any point should be * expected and not cause panics or infinite loops. */ /* * XXX TODO: * copy next output packet while transfering * usb suspend * could keep track of known values of all buffer space? * combined print/log function for errors * * ub_usepolling support is untested and may not work */ #include __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.105 2021/04/24 23:36:55 thorpej Exp $"); #ifdef _KERNEL_OPT #include "opt_slhci.h" #include "opt_usb.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define Q_CB 0 /* Control/Bulk */ #define Q_NEXT_CB 1 #define Q_MAX_XFER Q_CB #define Q_CALLBACKS 2 #define Q_MAX Q_CALLBACKS #define F_AREADY (0x00000001) #define F_BREADY (0x00000002) #define F_AINPROG (0x00000004) #define F_BINPROG (0x00000008) #define F_LOWSPEED (0x00000010) #define F_UDISABLED (0x00000020) /* Consider disabled for USB */ #define F_NODEV (0x00000040) #define F_ROOTINTR (0x00000080) #define F_REALPOWER (0x00000100) /* Actual power state */ #define F_POWER (0x00000200) /* USB reported power state */ #define F_ACTIVE (0x00000400) #define F_CALLBACK (0x00000800) /* Callback scheduled */ #define F_SOFCHECK1 (0x00001000) #define F_SOFCHECK2 (0x00002000) #define F_CRESET (0x00004000) /* Reset done not reported */ #define F_CCONNECT (0x00008000) /* Connect change not reported */ #define F_RESET (0x00010000) #define F_ISOC_WARNED (0x00020000) #define F_LSVH_WARNED (0x00040000) #define F_DISABLED (F_NODEV|F_UDISABLED) #define F_CHANGE (F_CRESET|F_CCONNECT) #ifdef SLHCI_TRY_LSVH unsigned int slhci_try_lsvh = 1; #else unsigned int slhci_try_lsvh = 0; #endif #define ADR 0 #define LEN 1 #define PID 2 #define DEV 3 #define STAT 2 #define CONT 3 #define A 0 #define B 1 static const uint8_t slhci_tregs[2][4] = {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV }, {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }}; #define PT_ROOT_CTRL 0 #define PT_ROOT_INTR 1 #define PT_CTRL_SETUP 2 #define PT_CTRL_DATA 3 #define PT_CTRL_STATUS 4 #define PT_INTR 5 #define PT_BULK 6 #define PT_MAX 6 #ifdef SLHCI_DEBUG #define SLHCI_MEM_ACCOUNTING #endif /* * Maximum allowable reserved bus time. Since intr/isoc transfers have * unconditional priority, this is all that ensures control and bulk transfers * get a chance. It is a single value for all frames since all transfers can * use multiple consecutive frames if an error is encountered. Note that it * is not really possible to fill the bus with transfers, so this value should * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME * is defined. Full time is 12000 - END_BUSTIME. */ #ifndef SLHCI_RESERVED_BUSTIME #define SLHCI_RESERVED_BUSTIME 5000 #endif /* * Rate for "exceeds reserved bus time" warnings (default) or errors. * Warnings only happen when an endpoint open causes the time to go above * SLHCI_RESERVED_BUSTIME, not if it is already above. */ #ifndef SLHCI_OVERTIME_WARNING_RATE #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */ #endif static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE; /* * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of * 20 bit times. By default leave 66 bit times to start the transfer beyond * the required time. Units are full-speed bit times (a bit over 5us per 64). * Only multiples of 64 are significant. */ #define SLHCI_STANDARD_END_BUSTIME 128 #ifndef SLHCI_EXTRA_END_BUSTIME #define SLHCI_EXTRA_END_BUSTIME 0 #endif #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME) /* * This is an approximation of the USB worst-case timings presented on p. 54 of * the USB 1.1 spec translated to full speed bit times. * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out, * FSI = isoc (worst case), LS = low speed */ #define SLHCI_FS_CONST 114 #define SLHCI_FSII_CONST 92 #define SLHCI_FSIO_CONST 80 #define SLHCI_FSI_CONST 92 #define SLHCI_LS_CONST 804 #ifndef SLHCI_PRECICE_BUSTIME /* * These values are < 3% too high (compared to the multiply and divide) for * max sized packets. */ #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1)) #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4)) #else #define SLHCI_FS_DATA_TIME(len) (56*(len)/6) #define SLHCI_LS_DATA_TIME(len) (449*(len)/6) #endif /* * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer * to poll for after starting a transfer. 64 gets all full speed transfers. * Note that even if 0 polling will occur if data equal or greater than the * transfer size is copied to the chip while the transfer is in progress. * Setting SLHCI_WAIT_TIME to -12000 will disable polling. */ #ifndef SLHCI_WAIT_SIZE #define SLHCI_WAIT_SIZE 8 #endif #ifndef SLHCI_WAIT_TIME #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \ SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE)) #endif const int slhci_wait_time = SLHCI_WAIT_TIME; #ifndef SLHCI_MAX_RETRIES #define SLHCI_MAX_RETRIES 3 #endif /* Check IER values for corruption after this many unrecognized interrupts. */ #ifndef SLHCI_IER_CHECK_FREQUENCY #ifdef SLHCI_DEBUG #define SLHCI_IER_CHECK_FREQUENCY 1 #else #define SLHCI_IER_CHECK_FREQUENCY 100 #endif #endif /* Note that buffer points to the start of the buffer for this transfer. */ struct slhci_pipe { struct usbd_pipe pipe; struct usbd_xfer *xfer; /* xfer in progress */ uint8_t *buffer; /* I/O buffer (if needed) */ struct gcq ap; /* All pipes */ struct gcq to; /* Timeout list */ struct gcq xq; /* Xfer queues */ unsigned int pflags; /* Pipe flags */ #define PF_GONE (0x01) /* Pipe is on disabled device */ #define PF_TOGGLE (0x02) /* Data toggle status */ #define PF_LS (0x04) /* Pipe is low speed */ #define PF_PREAMBLE (0x08) /* Needs preamble */ Frame to_frame; /* Frame number for timeout */ Frame frame; /* Frame number for intr xfer */ Frame lastframe; /* Previous frame number for intr */ uint16_t bustime; /* Worst case bus time usage */ uint16_t newbustime[2]; /* new bustimes (see index below) */ uint8_t tregs[4]; /* ADR, LEN, PID, DEV */ uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */ uint8_t newpid; /* for ctrl */ uint8_t wantshort; /* last xfer must be short */ uint8_t control; /* Host control register settings */ uint8_t nerrs; /* Current number of errors */ uint8_t ptype; /* Pipe type */ }; #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv) #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus) #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus) #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe)) #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe) #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype) #ifdef SLHCI_PROFILE_TRANSFER #if defined(__mips__) /* * MIPS cycle counter does not directly count cpu cycles but is a different * fraction of cpu cycles depending on the cpu. */ typedef uint32_t cc_type; #define CC_TYPE_FMT "%u" #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \ : [cc] "=r"(x)) #elif defined(__i386__) typedef uint64_t cc_type; #define CC_TYPE_FMT "%llu" #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x)) #else #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)" #endif struct slhci_cc_time { cc_type start; cc_type stop; unsigned int miscdata; }; #ifndef SLHCI_N_TIMES #define SLHCI_N_TIMES 200 #endif struct slhci_cc_times { struct slhci_cc_time times[SLHCI_N_TIMES]; int current; int wraparound; }; static struct slhci_cc_times t_ab[2]; static struct slhci_cc_times t_abdone; static struct slhci_cc_times t_copy_to_dev; static struct slhci_cc_times t_copy_from_dev; static struct slhci_cc_times t_intr; static struct slhci_cc_times t_lock; static struct slhci_cc_times t_delay; static struct slhci_cc_times t_hard_int; static struct slhci_cc_times t_callback; static inline void start_cc_time(struct slhci_cc_times *times, unsigned int misc) { times->times[times->current].miscdata = misc; slhci_cc_set(times->times[times->current].start); } static inline void stop_cc_time(struct slhci_cc_times *times) { slhci_cc_set(times->times[times->current].stop); if (++times->current >= SLHCI_N_TIMES) { times->current = 0; times->wraparound = 1; } } void slhci_dump_cc_times(int); void slhci_dump_cc_times(int n) { struct slhci_cc_times *times; int i; switch (n) { default: case 0: printf("USBA start transfer to intr:\n"); times = &t_ab[A]; break; case 1: printf("USBB start transfer to intr:\n"); times = &t_ab[B]; break; case 2: printf("abdone:\n"); times = &t_abdone; break; case 3: printf("copy to device:\n"); times = &t_copy_to_dev; break; case 4: printf("copy from device:\n"); times = &t_copy_from_dev; break; case 5: printf("intr to intr:\n"); times = &t_intr; break; case 6: printf("lock to release:\n"); times = &t_lock; break; case 7: printf("delay time:\n"); times = &t_delay; break; case 8: printf("hard interrupt enter to exit:\n"); times = &t_hard_int; break; case 9: printf("callback:\n"); times = &t_callback; break; } if (times->wraparound) for (i = times->current + 1; i < SLHCI_N_TIMES; i++) printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT " difference %8i miscdata %#x\n", times->times[i].start, times->times[i].stop, (int)(times->times[i].stop - times->times[i].start), times->times[i].miscdata); for (i = 0; i < times->current; i++) printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT " difference %8i miscdata %#x\n", times->times[i].start, times->times[i].stop, (int)(times->times[i].stop - times->times[i].start), times->times[i].miscdata); } #else #define start_cc_time(x, y) #define stop_cc_time(x) #endif /* SLHCI_PROFILE_TRANSFER */ typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe *, struct usbd_xfer *); struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int); void slhci_freex(struct usbd_bus *, struct usbd_xfer *); static void slhci_get_lock(struct usbd_bus *, kmutex_t **); usbd_status slhci_transfer(struct usbd_xfer *); usbd_status slhci_start(struct usbd_xfer *); usbd_status slhci_root_start(struct usbd_xfer *); usbd_status slhci_open(struct usbd_pipe *); static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *, void *, int); /* * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach, * slhci_activate */ void slhci_abort(struct usbd_xfer *); void slhci_close(struct usbd_pipe *); void slhci_clear_toggle(struct usbd_pipe *); void slhci_poll(struct usbd_bus *); void slhci_done(struct usbd_xfer *); void slhci_void(void *); /* lock entry functions */ #ifdef SLHCI_MEM_ACCOUNTING void slhci_mem_use(struct usbd_bus *, int); #endif void slhci_reset_entry(void *); usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc, struct slhci_pipe *, struct usbd_xfer *); void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *); void slhci_callback_entry(void *arg); void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *); /* slhci_intr */ void slhci_main(struct slhci_softc *); /* in lock functions */ static void slhci_write(struct slhci_softc *, uint8_t, uint8_t); static uint8_t slhci_read(struct slhci_softc *, uint8_t); static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int); static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int); static void slhci_waitintr(struct slhci_softc *, int); static int slhci_dointr(struct slhci_softc *); static void slhci_abdone(struct slhci_softc *, int); static void slhci_tstart(struct slhci_softc *); static void slhci_dotransfer(struct slhci_softc *); static void slhci_callback(struct slhci_softc *); static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *); static void slhci_enter_xfers(struct slhci_softc *); static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *); static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *); static void slhci_callback_schedule(struct slhci_softc *); static void slhci_do_callback_schedule(struct slhci_softc *); #if 0 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */ #endif static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *, struct usbd_xfer *); static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *, struct usbd_xfer *); static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *, struct usbd_xfer *); static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *, struct usbd_xfer *); static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *, struct usbd_xfer *); static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *, struct usbd_xfer *); static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *, struct usbd_xfer *); static void slhci_intrchange(struct slhci_softc *, uint8_t); static void slhci_drain(struct slhci_softc *); static void slhci_reset(struct slhci_softc *); static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *, int); static void slhci_insert(struct slhci_softc *); static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int); static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int); static void slhci_get_status(struct slhci_softc *, usb_port_status_t *); #define SLHCIHIST_FUNC() USBHIST_FUNC() #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug) #ifdef SLHCI_DEBUG static int slhci_memtest(struct slhci_softc *); void slhci_log_buffer(struct usbd_xfer *); void slhci_log_req(usb_device_request_t *); void slhci_log_dumpreg(void); void slhci_log_xfer(struct usbd_xfer *); void slhci_log_spipe(struct slhci_pipe *); void slhci_print_intr(void); void slhci_log_sc(void); void slhci_log_slreq(struct slhci_pipe *); /* Constified so you can read the values from ddb */ const int SLHCI_D_TRACE = 0x0001; const int SLHCI_D_MSG = 0x0002; const int SLHCI_D_XFER = 0x0004; const int SLHCI_D_MEM = 0x0008; const int SLHCI_D_INTR = 0x0010; const int SLHCI_D_SXFER = 0x0020; const int SLHCI_D_ERR = 0x0080; const int SLHCI_D_BUF = 0x0100; const int SLHCI_D_SOFT = 0x0200; const int SLHCI_D_WAIT = 0x0400; const int SLHCI_D_ROOT = 0x0800; /* SOF/NAK alone normally ignored, SOF also needs D_INTR */ const int SLHCI_D_SOF = 0x1000; const int SLHCI_D_NAK = 0x2000; int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */ SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup") { int err; const struct sysctlnode *rnode; const struct sysctlnode *cnode; err = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci", SYSCTL_DESCR("slhci global controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (err) goto fail; /* control debugging printfs */ err = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL); if (err) goto fail; return; fail: aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); } struct slhci_softc *ssc; #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \ } while (/*CONSTCOND*/ 0) #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \ } while (/*CONSTCOND*/0) #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d)) /* * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we * can make it a real function. */ static void DDOLOGBUF(uint8_t *buf, unsigned int length) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); int i; for(i = 0; i + 8 <= length; i += 8) DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], (buf[i+6] << 8) | buf[i+7]); if (length == i + 7) DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], buf[i+6]); else if (length == i + 6) DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1], (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0); else if (length == i + 5) DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1], (buf[i+2] << 8) | buf[i+3], buf[i+4], 0); else if (length == i + 4) DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1], (buf[i+2] << 8) | buf[i+3], 0,0); else if (length == i + 3) DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0); else if (length == i + 2) DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0); else if (length == i + 1) DDOLOG("%.2x", buf[i], 0,0,0); } #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l)) #define DDOLOGCTRL(x) do { \ DDOLOG("CTRL suspend=%jd", !!((x) & SL11_CTRL_SUSPEND), 0, 0, 0); \ DDOLOG("CTRL ls =%jd jk =%jd reset =%jd sof =%jd", \ !!((x) & SL11_CTRL_LOWSPEED), !!((x) & SL11_CTRL_JKSTATE), \ !!((x) & SL11_CTRL_RESETENGINE), !!((x) & SL11_CTRL_ENABLESOF));\ } while (0) #define DDOLOGISR(r) do { \ DDOLOG("ISR data =%jd det/res=%jd insert =%jd sof =%jd", \ !!((r) & SL11_ISR_DATA), !!((r) & SL11_ISR_RESUME), \ !!((r) & SL11_ISR_INSERT), !!!!((r) & SL11_ISR_SOF)); \ DDOLOG("ISR babble =%jd usbb =%jd usba =%jd", \ !!((r) & SL11_ISR_BABBLE), !!((r) & SL11_ISR_USBB), \ !!((r) & SL11_ISR_USBA), 0); \ } while (0) #define DDOLOGIER(r) do { \ DDOLOG("IER det/res=%d insert =%d sof =%d", \ !!((r) & SL11_IER_RESUME), \ !!((r) & SL11_IER_INSERT), !!!!((r) & SL11_IER_SOF), 0); \ DDOLOG("IER babble =%d usbb =%d usba =%d", \ !!((r) & SL11_IER_BABBLE), !!((r) & SL11_IER_USBB), \ !!((r) & SL11_IER_USBA), 0); \ } while (0) #define DDOLOGSTATUS(s) do { \ DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \ !!((s) & SL11_EPSTAT_STALL), !!((s) & SL11_EPSTAT_NAK), \ !!((s) & SL11_EPSTAT_OVERFLOW), !!((s) & SL11_EPSTAT_SETUP)); \ DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \ !!((s) & SL11_EPSTAT_SEQUENCE), !!((s) & SL11_EPSTAT_TIMEOUT), \ !!((s) & SL11_EPSTAT_ERROR), !!((s) & SL11_EPSTAT_ACK)); \ } while (0) #define DDOLOGEPCTRL(r) do { \ DDOLOG("CTRL preamble=%d toggle =%d sof =%d iso =%d", \ !!((r) & SL11_EPCTRL_PREAMBLE), !!((r) & SL11_EPCTRL_DATATOGGLE),\ !!((r) & SL11_EPCTRL_SOF), !!((r) & SL11_EPCTRL_ISO)); \ DDOLOG("CTRL out =%d enable =%d arm =%d", \ !!((r) & SL11_EPCTRL_DIRECTION), \ !!((r) & SL11_EPCTRL_ENABLE), !!((r) & SL11_EPCTRL_ARM), 0); \ } while (0) #define DDOLOGEPSTAT(r) do { \ DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \ !!((r) & SL11_EPSTAT_STALL), !!((r) & SL11_EPSTAT_NAK), \ !!((r) & SL11_EPSTAT_OVERFLOW), !!((r) & SL11_EPSTAT_SETUP)); \ DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \ !!((r) & SL11_EPSTAT_SEQUENCE), !!((r) & SL11_EPSTAT_TIMEOUT), \ !!((r) & SL11_EPSTAT_ERROR), !!((r) & SL11_EPSTAT_ACK)); \ } while (0) #else /* now !SLHCI_DEBUG */ #define slhcidebug 0 #define slhci_log_spipe(spipe) ((void)0) #define slhci_log_xfer(xfer) ((void)0) #define SLHCI_DEXEC(x, y) ((void)0) #define DDOLOG(f, a, b, c, d) ((void)0) #define DLOG(x, f, a, b, c, d) ((void)0) #define DDOLOGBUF(b, l) ((void)0) #define DLOGBUF(x, b, l) ((void)0) #define DDOLOGCTRL(x) ((void)0) #define DDOLOGISR(r) ((void)0) #define DDOLOGIER(r) ((void)0) #define DDOLOGSTATUS(s) ((void)0) #define DDOLOGEPCTRL(r) ((void)0) #define DDOLOGEPSTAT(r) ((void)0) #endif /* SLHCI_DEBUG */ #ifdef DIAGNOSTIC #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \ if (!(exp)) { \ printf("%s: assertion %s failed line %u function %s!" \ " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\ slhci_halt(sc, spipe, xfer); \ ext; \ } \ } while (/*CONSTCOND*/0) #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \ if (!(exp)) { \ printf("%s: assertion %s failed line %u function %s!" \ " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \ slhci_lock_call(sc, &slhci_halt, spipe, xfer); \ ext; \ } \ } while (/*CONSTCOND*/0) #else #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0) #endif const struct usbd_bus_methods slhci_bus_methods = { .ubm_open = slhci_open, .ubm_softint = slhci_void, .ubm_dopoll = slhci_poll, .ubm_allocx = slhci_allocx, .ubm_freex = slhci_freex, .ubm_getlock = slhci_get_lock, .ubm_rhctrl = slhci_roothub_ctrl, }; const struct usbd_pipe_methods slhci_pipe_methods = { .upm_transfer = slhci_transfer, .upm_start = slhci_start, .upm_abort = slhci_abort, .upm_close = slhci_close, .upm_cleartoggle = slhci_clear_toggle, .upm_done = slhci_done, }; const struct usbd_pipe_methods slhci_root_methods = { .upm_transfer = slhci_transfer, .upm_start = slhci_root_start, .upm_abort = slhci_abort, .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */ .upm_cleartoggle = slhci_clear_toggle, .upm_done = slhci_done, }; /* Queue inlines */ #define GOT_FIRST_TO(tvar, t) \ GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to) #define FIND_TO(var, t, tvar, cond) \ GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond) #define FOREACH_AP(var, t, tvar) \ GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap) #define GOT_FIRST_TIMED_COND(tvar, t, cond) \ GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond) #define GOT_FIRST_CB(tvar, t) \ GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq) #define DEQUEUED_CALLBACK(tvar, t) \ GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq) #define FIND_TIMED(var, t, tvar, cond) \ GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond) #define DEQUEUED_WAITQ(tvar, sc) \ GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq) static inline void enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe) { gcq_insert_tail(&sc->sc_waitq, &spipe->xq); } static inline void enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i) { gcq_insert_tail(&t->q[i], &spipe->xq); } static inline void enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe) { gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq); } static inline void enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe) { gcq_insert_tail(&t->ap, &spipe->ap); } /* Start out of lock functions. */ struct usbd_xfer * slhci_allocx(struct usbd_bus *bus, unsigned int nframes) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct usbd_xfer *xfer; xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP); DLOG(D_MEM, "allocx %#jx", (uintptr_t)xfer, 0,0,0); #ifdef SLHCI_MEM_ACCOUNTING slhci_mem_use(bus, 1); #endif #ifdef DIAGNOSTIC if (xfer != NULL) xfer->ux_state = XFER_BUSY; #endif return xfer; } void slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); DLOG(D_MEM, "freex xfer %#jx spipe %#jx", (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe,0,0); #ifdef SLHCI_MEM_ACCOUNTING slhci_mem_use(bus, -1); #endif #ifdef DIAGNOSTIC if (xfer->ux_state != XFER_BUSY && xfer->ux_status != USBD_NOT_STARTED) { struct slhci_softc *sc = SLHCI_BUS2SC(bus); printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n", SC_NAME(sc), xfer, xfer->ux_state); DDOLOG("xfer=%p not busy, %#08x halted\n", xfer, xfer->ux_state, 0, 0); slhci_lock_call(sc, &slhci_halt, NULL, NULL); return; } xfer->ux_state = XFER_FREE; #endif kmem_free(xfer, sizeof(*xfer)); } static void slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock) { struct slhci_softc *sc = SLHCI_BUS2SC(bus); *lock = &sc->sc_lock; } usbd_status slhci_transfer(struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc = SLHCI_XFER2SC(xfer); usbd_status error; DLOG(D_TRACE, "transfer type %jd xfer %#jx spipe %#jx ", SLHCI_XFER_TYPE(xfer), (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0); /* Insert last in queue */ mutex_enter(&sc->sc_lock); error = usb_insert_transfer(xfer); mutex_exit(&sc->sc_lock); if (error) { if (error != USBD_IN_PROGRESS) DLOG(D_ERR, "usb_insert_transfer returns %jd!", error, 0,0,0); return error; } /* * Pipe isn't running (otherwise error would be USBD_INPROG), * so start it first. */ /* * Start will take the lock. */ error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); return error; } /* It is not safe for start to return anything other than USBD_INPROG. */ usbd_status slhci_start(struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc = SLHCI_XFER2SC(xfer); struct usbd_pipe *pipe = xfer->ux_pipe; struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe); struct slhci_transfers *t = &sc->sc_transfers; usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc; unsigned int max_packet; mutex_enter(&sc->sc_lock); max_packet = UGETW(ed->wMaxPacketSize); DLOG(D_TRACE, "transfer type %jd start xfer %#jx spipe %#jx length %jd", spipe->ptype, (uintptr_t)xfer, (uintptr_t)spipe, xfer->ux_length); /* root transfers use slhci_root_start */ KASSERT(spipe->xfer == NULL); /* not SLASSERT */ xfer->ux_actlen = 0; xfer->ux_status = USBD_IN_PROGRESS; spipe->xfer = xfer; spipe->nerrs = 0; spipe->frame = t->frame; spipe->control = SL11_EPCTRL_ARM_ENABLE; spipe->tregs[DEV] = pipe->up_dev->ud_addr; spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress) | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN : SL11_PID_OUT); spipe->newlen[0] = xfer->ux_length % max_packet; spipe->newlen[1] = uimin(xfer->ux_length, max_packet); if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) { if (spipe->pflags & PF_TOGGLE) spipe->control |= SL11_EPCTRL_DATATOGGLE; spipe->tregs[LEN] = spipe->newlen[1]; if (spipe->tregs[LEN]) spipe->buffer = xfer->ux_buf; else spipe->buffer = NULL; spipe->lastframe = t->frame; if (spipe->ptype == PT_INTR) { spipe->frame = spipe->lastframe + spipe->pipe.up_interval; } #if defined(DEBUG) || defined(SLHCI_DEBUG) if (__predict_false(spipe->ptype == PT_INTR && xfer->ux_length > spipe->tregs[LEN])) { printf("%s: Long INTR transfer not supported!\n", SC_NAME(sc)); DDOLOG("Long INTR transfer not supported!", 0, 0, 0, 0); xfer->ux_status = USBD_INVAL; } #endif } else { /* ptype may be currently set to any control transfer type. */ SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer)); /* SETUP contains IN/OUT bits also */ spipe->tregs[PID] |= SL11_PID_SETUP; spipe->tregs[LEN] = 8; spipe->buffer = (uint8_t *)&xfer->ux_request; DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]); spipe->ptype = PT_CTRL_SETUP; spipe->newpid &= ~SL11_PID_BITS; if (xfer->ux_length == 0 || (xfer->ux_request.bmRequestType & UT_READ)) spipe->newpid |= SL11_PID_IN; else spipe->newpid |= SL11_PID_OUT; } if (xfer->ux_flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] == max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT) spipe->wantshort = 1; else spipe->wantshort = 0; /* * The goal of newbustime and newlen is to avoid bustime calculation * in the interrupt. The calculations are not too complex, but they * complicate the conditional logic somewhat and doing them all in the * same place shares constants. Index 0 is "short length" for bulk and * ctrl data and 1 is "full length" for ctrl data (bulk/intr are * already set to full length). */ if (spipe->pflags & PF_LS) { /* * Setting PREAMBLE for directly connected LS devices will * lock up the chip. */ if (spipe->pflags & PF_PREAMBLE) spipe->control |= SL11_EPCTRL_PREAMBLE; if (max_packet <= 8) { spipe->bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(spipe->tregs[LEN]); spipe->newbustime[0] = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(spipe->newlen[0]); spipe->newbustime[1] = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(spipe->newlen[1]); } else xfer->ux_status = USBD_INVAL; } else { UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc, spipe, xfer, return USBD_IN_PROGRESS); if (max_packet <= SL11_MAX_PACKET_SIZE) { spipe->bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); spipe->newbustime[0] = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(spipe->newlen[0]); spipe->newbustime[1] = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(spipe->newlen[1]); } else xfer->ux_status = USBD_INVAL; } /* * The datasheet incorrectly indicates that DIRECTION is for * "transmit to host". It is for OUT and SETUP. The app note * describes its use correctly. */ if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN) spipe->control |= SL11_EPCTRL_DIRECTION; slhci_start_entry(sc, spipe); mutex_exit(&sc->sc_lock); return USBD_IN_PROGRESS; } usbd_status slhci_root_start(struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc; struct slhci_pipe *spipe __diagused; spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe); sc = SLHCI_XFER2SC(xfer); struct slhci_transfers *t = &sc->sc_transfers; LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return USBD_CANCELLED); DLOG(D_TRACE, "transfer type %jd start", SLHCI_XFER_TYPE(xfer), 0, 0, 0); KASSERT(spipe->ptype == PT_ROOT_INTR); mutex_enter(&sc->sc_intr_lock); KASSERT(t->rootintr == NULL); t->rootintr = xfer; xfer->ux_status = USBD_IN_PROGRESS; mutex_exit(&sc->sc_intr_lock); return USBD_IN_PROGRESS; } usbd_status slhci_open(struct usbd_pipe *pipe) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct usbd_device *dev; struct slhci_softc *sc; struct slhci_pipe *spipe; usb_endpoint_descriptor_t *ed; unsigned int max_packet, pmaxpkt; uint8_t rhaddr; dev = pipe->up_dev; sc = SLHCI_PIPE2SC(pipe); spipe = SLHCI_PIPE2SPIPE(pipe); ed = pipe->up_endpoint->ue_edesc; rhaddr = dev->ud_bus->ub_rhaddr; DLOG(D_TRACE, "slhci_open(addr=%jd,ep=%jd,rootaddr=%jd)", dev->ud_addr, ed->bEndpointAddress, rhaddr, 0); spipe->pflags = 0; spipe->frame = 0; spipe->lastframe = 0; spipe->xfer = NULL; spipe->buffer = NULL; gcq_init(&spipe->ap); gcq_init(&spipe->to); gcq_init(&spipe->xq); /* * The endpoint descriptor will not have been set up yet in the case * of the standard control pipe, so the max packet checks are also * necessary in start. */ max_packet = UGETW(ed->wMaxPacketSize); if (dev->ud_speed == USB_SPEED_LOW) { spipe->pflags |= PF_LS; if (dev->ud_myhub->ud_addr != rhaddr) { spipe->pflags |= PF_PREAMBLE; if (!slhci_try_lsvh) return slhci_lock_call(sc, &slhci_lsvh_warn, spipe, NULL); } pmaxpkt = 8; } else pmaxpkt = SL11_MAX_PACKET_SIZE; if (max_packet > pmaxpkt) { DLOG(D_ERR, "packet too large! size %jd spipe %#jx", max_packet, (uintptr_t)spipe, 0,0); return USBD_INVAL; } if (dev->ud_addr == rhaddr) { switch (ed->bEndpointAddress) { case USB_CONTROL_ENDPOINT: spipe->ptype = PT_ROOT_CTRL; pipe->up_interval = 0; pipe->up_methods = &roothub_ctrl_methods; break; case UE_DIR_IN | USBROOTHUB_INTR_ENDPT: spipe->ptype = PT_ROOT_INTR; pipe->up_interval = 1; pipe->up_methods = &slhci_root_methods; break; default: printf("%s: Invalid root endpoint!\n", SC_NAME(sc)); DDOLOG("Invalid root endpoint", 0, 0, 0, 0); return USBD_INVAL; } return USBD_NORMAL_COMPLETION; } else { switch (ed->bmAttributes & UE_XFERTYPE) { case UE_CONTROL: spipe->ptype = PT_CTRL_SETUP; pipe->up_interval = 0; break; case UE_INTERRUPT: spipe->ptype = PT_INTR; if (pipe->up_interval == USBD_DEFAULT_INTERVAL) pipe->up_interval = ed->bInterval; break; case UE_ISOCHRONOUS: return slhci_lock_call(sc, &slhci_isoc_warn, spipe, NULL); case UE_BULK: spipe->ptype = PT_BULK; pipe->up_interval = 0; break; } DLOG(D_MSG, "open pipe type %jd interval %jd", spipe->ptype, pipe->up_interval, 0,0); pipe->up_methods = __UNCONST(&slhci_pipe_methods); return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL); } } int slhci_supported_rev(uint8_t rev) { return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15; } /* * Must be called before the ISR is registered. Interrupts can be shared so * slhci_intr could be called as soon as the ISR is registered. * Note max_current argument is actual current, but stored as current/2 */ void slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot, bus_space_handle_t ioh, uint16_t max_current, uint32_t stride) { struct slhci_transfers *t; int i; t = &sc->sc_transfers; #ifdef SLHCI_DEBUG ssc = sc; #endif mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB); mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB); /* sc->sc_ier = 0; */ /* t->rootintr = NULL; */ t->flags = F_NODEV|F_UDISABLED; t->pend = INT_MAX; KASSERT(slhci_wait_time != INT_MAX); t->len[0] = t->len[1] = -1; if (max_current > 500) max_current = 500; t->max_current = (uint8_t)(max_current / 2); sc->sc_enable_power = pow; sc->sc_iot = iot; sc->sc_ioh = ioh; sc->sc_stride = stride; KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0])); for (i = 0; i <= Q_MAX; i++) gcq_init_head(&t->q[i]); gcq_init_head(&t->timed); gcq_init_head(&t->to); gcq_init_head(&t->ap); gcq_init_head(&sc->sc_waitq); } int slhci_attach(struct slhci_softc *sc) { struct slhci_transfers *t; const char *rev; t = &sc->sc_transfers; /* Detect and check the controller type */ t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV)); /* SL11H not supported */ if (!slhci_supported_rev(t->sltype)) { if (t->sltype == SLTYPE_SL11H) printf("%s: SL11H unsupported or bus error!\n", SC_NAME(sc)); else printf("%s: Unknown chip revision!\n", SC_NAME(sc)); return -1; } #ifdef SLHCI_DEBUG if (slhci_memtest(sc)) { printf("%s: memory/bus error!\n", SC_NAME(sc)); return -1; } #endif callout_init(&sc->sc_timer, CALLOUT_MPSAFE); callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc); /* * It is not safe to call the soft interrupt directly as * usb_schedsoftintr does in the ub_usepolling case (due to locking). */ sc->sc_cb_softintr = softint_establish(SOFTINT_NET, slhci_callback_entry, sc); if (t->sltype == SLTYPE_SL811HS_R12) rev = "(rev 1.2)"; else if (t->sltype == SLTYPE_SL811HS_R14) rev = "(rev 1.4 or 1.5)"; else rev = "(unknown revision)"; aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n", SC_NAME(sc), rev); aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n", SC_NAME(sc), t->max_current * 2); #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \ defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER) aprint_normal("%s: driver options:" #ifdef SLHCI_DEBUG " SLHCI_DEBUG" #endif #ifdef SLHCI_TRY_LSVH " SLHCI_TRY_LSVH" #endif #ifdef SLHCI_NO_OVERTIME " SLHCI_NO_OVERTIME" #endif #ifdef SLHCI_PROFILE_TRANSFER " SLHCI_PROFILE_TRANSFER" #endif "\n", SC_NAME(sc)); #endif sc->sc_bus.ub_revision = USBREV_1_1; sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods); sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe); sc->sc_bus.ub_usedma = false; if (!sc->sc_enable_power) t->flags |= F_REALPOWER; t->flags |= F_ACTIVE; /* Attach usb and uhub. */ sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint, CFARG_EOL); if (!sc->sc_child) return -1; else return 0; } int slhci_detach(struct slhci_softc *sc, int flags) { struct slhci_transfers *t; int ret; t = &sc->sc_transfers; /* By this point bus access is no longer allowed. */ KASSERT(!(t->flags & F_ACTIVE)); /* * To be MPSAFE is not sufficient to cancel callouts and soft * interrupts and assume they are dead since the code could already be * running or about to run. Wait until they are known to be done. */ while (t->flags & (F_RESET|F_CALLBACK)) tsleep(&sc, PPAUSE, "slhci_detach", hz); softint_disestablish(sc->sc_cb_softintr); mutex_destroy(&sc->sc_lock); mutex_destroy(&sc->sc_intr_lock); ret = 0; if (sc->sc_child) ret = config_detach(sc->sc_child, flags); #ifdef SLHCI_MEM_ACCOUNTING SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); if (sc->sc_mem_use) { printf("%s: Memory still in use after detach! mem_use (count)" " = %d\n", SC_NAME(sc), sc->sc_mem_use); DDOLOG("Memory still in use after detach! mem_use (count)" " = %d", sc->sc_mem_use, 0, 0, 0); } #endif return ret; } int slhci_activate(device_t self, enum devact act) { struct slhci_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: slhci_lock_call(sc, &slhci_halt, NULL, NULL); return 0; default: return EOPNOTSUPP; } } void slhci_abort(struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc; struct slhci_pipe *spipe; spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe); if (spipe == NULL) goto callback; sc = SLHCI_XFER2SC(xfer); KASSERT(mutex_owned(&sc->sc_lock)); DLOG(D_TRACE, "transfer type %jd abort xfer %#jx spipe %#jx " " spipe->xfer %#jx", spipe->ptype, (uintptr_t)xfer, (uintptr_t)spipe, (uintptr_t)spipe->xfer); slhci_lock_call(sc, &slhci_do_abort, spipe, xfer); callback: xfer->ux_status = USBD_CANCELLED; usb_transfer_complete(xfer); } void slhci_close(struct usbd_pipe *pipe) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc; struct slhci_pipe *spipe; sc = SLHCI_PIPE2SC(pipe); spipe = SLHCI_PIPE2SPIPE(pipe); DLOG(D_TRACE, "transfer type %jd close spipe %#jx spipe->xfer %#jx", spipe->ptype, (uintptr_t)spipe, (uintptr_t)spipe->xfer, 0); slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL); } void slhci_clear_toggle(struct usbd_pipe *pipe) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_pipe *spipe; spipe = SLHCI_PIPE2SPIPE(pipe); DLOG(D_TRACE, "transfer type %jd toggle spipe %#jx", spipe->ptype, (uintptr_t)spipe, 0, 0); spipe->pflags &= ~PF_TOGGLE; #ifdef DIAGNOSTIC if (spipe->xfer != NULL) { struct slhci_softc *sc = (struct slhci_softc *)pipe->up_dev->ud_bus; printf("%s: Clear toggle on transfer in progress! halted\n", SC_NAME(sc)); DDOLOG("Clear toggle on transfer in progress! halted", 0, 0, 0, 0); slhci_halt(sc, NULL, NULL); } #endif } void slhci_poll(struct usbd_bus *bus) /* XXX necessary? */ { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc; sc = SLHCI_BUS2SC(bus); DLOG(D_TRACE, "slhci_poll", 0,0,0,0); slhci_lock_call(sc, &slhci_do_poll, NULL, NULL); } void slhci_done(struct usbd_xfer *xfer) { } void slhci_void(void *v) {} /* End out of lock functions. Start lock entry functions. */ #ifdef SLHCI_MEM_ACCOUNTING void slhci_mem_use(struct usbd_bus *bus, int val) { struct slhci_softc *sc = SLHCI_BUS2SC(bus); mutex_enter(&sc->sc_intr_lock); sc->sc_mem_use += val; mutex_exit(&sc->sc_intr_lock); } #endif void slhci_reset_entry(void *arg) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc = arg; mutex_enter(&sc->sc_intr_lock); slhci_reset(sc); /* * We cannot call the callback directly since we could then be reset * again before finishing and need the callout delay for timing. * Scheduling the callout again before we exit would defeat the reap * mechanism since we could be unlocked while the reset flag is not * set. The callback code will check the wait queue. */ slhci_callback_schedule(sc); mutex_exit(&sc->sc_intr_lock); } usbd_status slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe *spipe, struct usbd_xfer *xfer) { usbd_status ret; mutex_enter(&sc->sc_intr_lock); ret = (*lcf)(sc, spipe, xfer); slhci_main(sc); mutex_exit(&sc->sc_intr_lock); return ret; } void slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe) { struct slhci_transfers *t; mutex_enter(&sc->sc_intr_lock); t = &sc->sc_transfers; if (!(t->flags & (F_AINPROG|F_BINPROG))) { slhci_enter_xfer(sc, spipe); slhci_dotransfer(sc); slhci_main(sc); } else { enter_waitq(sc, spipe); } mutex_exit(&sc->sc_intr_lock); } void slhci_callback_entry(void *arg) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc; struct slhci_transfers *t; sc = (struct slhci_softc *)arg; mutex_enter(&sc->sc_intr_lock); t = &sc->sc_transfers; DLOG(D_SOFT, "callback_entry flags %#jx", t->flags, 0,0,0); repeat: slhci_callback(sc); if (!gcq_empty(&sc->sc_waitq)) { slhci_enter_xfers(sc); slhci_dotransfer(sc); slhci_waitintr(sc, 0); goto repeat; } t->flags &= ~F_CALLBACK; mutex_exit(&sc->sc_intr_lock); } void slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_intr_lock)); start_cc_time(&t_callback, (u_int)xfer); mutex_exit(&sc->sc_intr_lock); mutex_enter(&sc->sc_lock); usb_transfer_complete(xfer); mutex_exit(&sc->sc_lock); mutex_enter(&sc->sc_intr_lock); stop_cc_time(&t_callback); } int slhci_intr(void *arg) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc = arg; int ret = 0; int irq; start_cc_time(&t_hard_int, (unsigned int)arg); mutex_enter(&sc->sc_intr_lock); do { irq = slhci_dointr(sc); ret |= irq; slhci_main(sc); } while (irq); mutex_exit(&sc->sc_intr_lock); stop_cc_time(&t_hard_int); return ret; } /* called with interrupt lock only held. */ void slhci_main(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); waitcheck: slhci_waitintr(sc, slhci_wait_time); /* * The direct call is needed in the ub_usepolling and disabled cases * since the soft interrupt is not available. In the disabled case, * this code can be reached from the usb detach, after the reaping of * the soft interrupt. That test could be !F_ACTIVE, but there is no * reason not to make the callbacks directly in the other DISABLED * cases. */ if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) { if (__predict_false(sc->sc_bus.ub_usepolling || t->flags & F_DISABLED)) slhci_callback(sc); else slhci_callback_schedule(sc); } if (!gcq_empty(&sc->sc_waitq)) { slhci_enter_xfers(sc); slhci_dotransfer(sc); goto waitcheck; } DLOG(D_INTR, "... done", 0, 0, 0, 0); } /* End lock entry functions. Start in lock function. */ /* Register read/write routines and barriers. */ #ifdef SLHCI_BUS_SPACE_BARRIERS #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e) #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE) #else /* now !SLHCI_BUS_SPACE_BARRIERS */ #define BSB(a, b, c, d, e) __USE(d) #define BSB_SYNC(a, b, c, d) #endif /* SLHCI_BUS_SPACE_BARRIERS */ static void slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data) { bus_size_t paddr, pdata, pst, psz; bus_space_tag_t iot; bus_space_handle_t ioh; paddr = pst = 0; pdata = sc->sc_stride; psz = pdata * 2; iot = sc->sc_iot; ioh = sc->sc_ioh; bus_space_write_1(iot, ioh, paddr, addr); BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); bus_space_write_1(iot, ioh, pdata, data); BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); } static uint8_t slhci_read(struct slhci_softc *sc, uint8_t addr) { bus_size_t paddr, pdata, pst, psz; bus_space_tag_t iot; bus_space_handle_t ioh; uint8_t data; paddr = pst = 0; pdata = sc->sc_stride; psz = pdata * 2; iot = sc->sc_iot; ioh = sc->sc_ioh; bus_space_write_1(iot, ioh, paddr, addr); BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); data = bus_space_read_1(iot, ioh, pdata); BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); return data; } #if 0 /* auto-increment mode broken, see errata doc */ static void slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) { bus_size_t paddr, pdata, pst, psz; bus_space_tag_t iot; bus_space_handle_t ioh; paddr = pst = 0; pdata = sc->sc_stride; psz = pdata * 2; iot = sc->sc_iot; ioh = sc->sc_ioh; bus_space_write_1(iot, ioh, paddr, addr); BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); bus_space_write_multi_1(iot, ioh, pdata, buf, l); BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); } static void slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) { bus_size_t paddr, pdata, pst, psz; bus_space_tag_t iot; bus_space_handle_t ioh; paddr = pst = 0; pdata = sc->sc_stride; psz = pdata * 2; iot = sc->sc_iot; ioh = sc->sc_ioh; bus_space_write_1(iot, ioh, paddr, addr); BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); bus_space_read_multi_1(iot, ioh, pdata, buf, l); BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); } #else static void slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) { #if 1 for (; l; addr++, buf++, l--) slhci_write(sc, addr, *buf); #else bus_size_t paddr, pdata, pst, psz; bus_space_tag_t iot; bus_space_handle_t ioh; paddr = pst = 0; pdata = sc->sc_stride; psz = pdata * 2; iot = sc->sc_iot; ioh = sc->sc_ioh; for (; l; addr++, buf++, l--) { bus_space_write_1(iot, ioh, paddr, addr); BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); bus_space_write_1(iot, ioh, pdata, *buf); BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE); } #endif } static void slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l) { #if 1 for (; l; addr++, buf++, l--) *buf = slhci_read(sc, addr); #else bus_size_t paddr, pdata, pst, psz; bus_space_tag_t iot; bus_space_handle_t ioh; paddr = pst = 0; pdata = sc->sc_stride; psz = pdata * 2; iot = sc->sc_iot; ioh = sc->sc_ioh; for (; l; addr++, buf++, l--) { bus_space_write_1(iot, ioh, paddr, addr); BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ); *buf = bus_space_read_1(iot, ioh, pdata); BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE); } #endif } #endif /* * After calling waitintr it is necessary to either call slhci_callback or * schedule the callback if necessary. The callback cannot be called directly * from the hard interrupt since it interrupts at a high IPL and callbacks * can do copyout and such. */ static void slhci_waitintr(struct slhci_softc *sc, int wait_time) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (__predict_false(sc->sc_bus.ub_usepolling)) wait_time = 12000; while (t->pend <= wait_time) { DLOG(D_WAIT, "waiting... frame %jd pend %jd flags %#jx", t->frame, t->pend, t->flags, 0); LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return); LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL, return); slhci_dointr(sc); } DLOG(D_WAIT, "... done", 0, 0, 0, 0); } static int slhci_dointr(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; struct slhci_pipe *tosp; uint8_t r; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (sc->sc_ier == 0) { DLOG(D_INTR, "sc_ier is zero", 0, 0, 0, 0); return 0; } r = slhci_read(sc, SL11_ISR); #ifdef SLHCI_DEBUG if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier && ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug & SLHCI_D_SOF)) { uint8_t e, f; e = slhci_read(sc, SL11_IER); f = slhci_read(sc, SL11_CTRL); DDOLOG("Flags=%#x IER=%#x ISR=%#x CTRL=%#x", t->flags, e, r, f); DDOLOGCTRL(f); DDOLOGISR(r); } #endif /* * check IER for corruption occasionally. Assume that the above * sc_ier == 0 case works correctly. */ if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) { sc->sc_ier_check = 0; if (sc->sc_ier != slhci_read(sc, SL11_IER)) { printf("%s: IER value corrupted! halted\n", SC_NAME(sc)); DDOLOG("IER value corrupted! halted", 0, 0, 0, 0); slhci_halt(sc, NULL, NULL); return 1; } } r &= sc->sc_ier; if (r == 0) { DLOG(D_INTR, "r is zero", 0, 0, 0, 0); return 0; } sc->sc_ier_check = 0; slhci_write(sc, SL11_ISR, r); BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); /* If we have an insertion event we do not care about anything else. */ if (__predict_false(r & SL11_ISR_INSERT)) { slhci_insert(sc); DLOG(D_INTR, "... done", 0, 0, 0, 0); return 1; } stop_cc_time(&t_intr); start_cc_time(&t_intr, r); if (r & SL11_ISR_SOF) { t->frame++; gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]); /* * SOFCHECK flags are cleared in tstart. Two flags are needed * since the first SOF interrupt processed after the transfer * is started might have been generated before the transfer * was started. */ if (__predict_false(t->flags & F_SOFCHECK2 && t->flags & (F_AINPROG|F_BINPROG))) { printf("%s: Missed transfer completion. halted\n", SC_NAME(sc)); DDOLOG("Missed transfer completion. halted", 0, 0, 0, 0); slhci_halt(sc, NULL, NULL); return 1; } else if (t->flags & F_SOFCHECK1) { t->flags |= F_SOFCHECK2; } else t->flags |= F_SOFCHECK1; if (t->flags & F_CHANGE) t->flags |= F_ROOTINTR; while (__predict_true(GOT_FIRST_TO(tosp, t)) && __predict_false(tosp->to_frame <= t->frame)) { tosp->xfer->ux_status = USBD_TIMEOUT; slhci_do_abort(sc, tosp, tosp->xfer); enter_callback(t, tosp); } /* * Start any waiting transfers right away. If none, we will * start any new transfers later. */ slhci_tstart(sc); } if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) { int ab; if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) == (SL11_ISR_USBA|SL11_ISR_USBB)) { if (!(t->flags & (F_AINPROG|F_BINPROG))) return 1; /* presume card pulled */ LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) != (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1); /* * This should never happen (unless card removal just * occurred) but appeared frequently when both * transfers were started at the same time and was * accompanied by data corruption. It still happens * at times. I have not seen data correption except * when the STATUS bit gets set, which now causes the * driver to halt, however this should still not * happen so the warning is kept. See comment in * abdone, below. */ printf("%s: Transfer reported done but not started! " "Verify data integrity if not detaching. " " flags %#x r %x\n", SC_NAME(sc), t->flags, r); if (!(t->flags & F_AINPROG)) r &= ~SL11_ISR_USBA; else r &= ~SL11_ISR_USBB; } t->pend = INT_MAX; if (r & SL11_ISR_USBA) ab = A; else ab = B; /* * This happens when a low speed device is attached to * a hub with chip rev 1.5. SOF stops, but a few transfers * still work before causing this error. */ if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) { printf("%s: %s done but not in progress! halted\n", SC_NAME(sc), ab ? "B" : "A"); DDOLOG("AB=%d done but not in progress! halted", ab, 0, 0, 0); slhci_halt(sc, NULL, NULL); return 1; } t->flags &= ~(ab ? F_BINPROG : F_AINPROG); slhci_tstart(sc); stop_cc_time(&t_ab[ab]); start_cc_time(&t_abdone, t->flags); slhci_abdone(sc, ab); stop_cc_time(&t_abdone); } slhci_dotransfer(sc); DLOG(D_INTR, "... done", 0, 0, 0, 0); return 1; } static void slhci_abdone(struct slhci_softc *sc, int ab) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; struct slhci_pipe *spipe; struct usbd_xfer *xfer; uint8_t status, buf_start; uint8_t *target_buf; unsigned int actlen; int head; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); DLOG(D_TRACE, "ABDONE flags %#jx", t->flags, 0,0,0); DLOG(D_MSG, "DONE AB=%jd spipe %#jx len %jd xfer %#jx", ab, t->spipe[ab], (uintptr_t)t->len[ab], (uintptr_t)(t->spipe[ab] ? t->spipe[ab]->xfer : NULL)); spipe = t->spipe[ab]; /* * skip this one if aborted; do not call return from the rest of the * function unless halting, else t->len will not be cleared. */ if (spipe == NULL) goto done; t->spipe[ab] = NULL; xfer = spipe->xfer; gcq_remove(&spipe->to); LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); status = slhci_read(sc, slhci_tregs[ab][STAT]); /* * I saw no status or remaining length greater than the requested * length in early driver versions in circumstances I assumed caused * excess power draw. I am no longer able to reproduce this when * causing excess power draw circumstances. * * Disabling a power check and attaching aue to a keyboard and hub * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard * 98mA) sometimes works and sometimes fails to configure. After * removing the aue and attaching a self-powered umass dvd reader * (unknown if it draws power from the host also) soon a single Error * status occurs then only timeouts. The controller soon halts freeing * memory due to being ONQU instead of BUSY. This may be the same * basic sequence that caused the no status/bad length errors. The * umass device seems to work (better at least) with the keyboard hub * when not first attaching aue (tested once reading an approximately * 200MB file). * * Overflow can indicate that the device and host disagree about how * much data has been transferred. This may indicate a problem at any * point during the transfer, not just when the error occurs. It may * indicate data corruption. A warning message is printed. * * Trying to use both A and B transfers at the same time results in * incorrect transfer completion ISR reports and the status will then * include SL11_EPSTAT_SETUP, which is apparently set while the * transfer is in progress. I also noticed data corruption, even * after waiting for the transfer to complete. The driver now avoids * trying to start both at the same time. * * I had accidently initialized the B registers before they were valid * in some driver versions. Since every other performance enhancing * feature has been confirmed buggy in the errata doc, I have not * tried both transfers at once again with the documented * initialization order. * * However, I have seen this problem again ("done but not started" * errors), which in some cases cases the SETUP status bit to remain * set on future transfers. In other cases, the SETUP bit is not set * and no data corruption occurs. This occured while using both umass * and aue on a powered hub (maybe triggered by some local activity * also) and needs several reads of the 200MB file to trigger. The * driver now halts if SETUP is detected. */ actlen = 0; if (__predict_false(!status)) { DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0); printf("%s: no status! halted\n", SC_NAME(sc)); slhci_halt(sc, spipe, xfer); return; } #ifdef SLHCI_DEBUG if ((slhcidebug & SLHCI_D_NAK) || (status & SL11_EPSTAT_ERRBITS) != SL11_EPSTAT_NAK) { DDOLOG("USB Status = %#.2x", status, 0, 0, 0); DDOLOGSTATUS(status); } #endif if (!(status & SL11_EPSTAT_ERRBITS)) { unsigned int cont = slhci_read(sc, slhci_tregs[ab][CONT]); unsigned int len = spipe->tregs[LEN]; DLOG(D_XFER, "cont %jd len %jd", cont, len, 0, 0); if ((status & SL11_EPSTAT_OVERFLOW) || cont > len) { DDOLOG("overflow - cont %d len %d xfer->ux_length %d " "xfer->actlen %d", cont, len, xfer->ux_length, xfer->ux_actlen); printf("%s: overflow cont %d len %d xfer->ux_length" " %d xfer->ux_actlen %d\n", SC_NAME(sc), cont, len, xfer->ux_length, xfer->ux_actlen); actlen = len; } else { actlen = len - cont; } spipe->nerrs = 0; } /* Actual copyin done after starting next transfer. */ if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) { target_buf = spipe->buffer; buf_start = spipe->tregs[ADR]; } else { target_buf = NULL; buf_start = 0; /* XXX gcc uninitialized warnings */ } if (status & SL11_EPSTAT_ERRBITS) { status &= SL11_EPSTAT_ERRBITS; if (status & SL11_EPSTAT_SETUP) { printf("%s: Invalid controller state detected! " "halted\n", SC_NAME(sc)); DDOLOG("Invalid controller state detected! " "halted", 0, 0, 0, 0); slhci_halt(sc, spipe, xfer); return; } else if (__predict_false(sc->sc_bus.ub_usepolling)) { head = Q_CALLBACKS; if (status & SL11_EPSTAT_STALL) xfer->ux_status = USBD_STALLED; else if (status & SL11_EPSTAT_TIMEOUT) xfer->ux_status = USBD_TIMEOUT; else if (status & SL11_EPSTAT_NAK) head = Q_NEXT_CB; else xfer->ux_status = USBD_IOERROR; } else if (status & SL11_EPSTAT_NAK) { int i = spipe->pipe.up_interval; if (i == 0) i = 1; DDOLOG("xfer %p spipe %p NAK delay by %d", xfer, spipe, i, 0); spipe->lastframe = spipe->frame = t->frame + i; slhci_queue_timed(sc, spipe); goto queued; } else if (++spipe->nerrs > SLHCI_MAX_RETRIES || (status & SL11_EPSTAT_STALL)) { DDOLOG("xfer %p spipe %p nerrs %d", xfer, spipe, spipe->nerrs, 0); if (status & SL11_EPSTAT_STALL) xfer->ux_status = USBD_STALLED; else if (status & SL11_EPSTAT_TIMEOUT) xfer->ux_status = USBD_TIMEOUT; else xfer->ux_status = USBD_IOERROR; DLOG(D_ERR, "Max retries reached! status %#jx " "xfer->ux_status %jd", status, xfer->ux_status, 0, 0); DDOLOGSTATUS(status); head = Q_CALLBACKS; } else { head = Q_NEXT_CB; } } else if (spipe->ptype == PT_CTRL_SETUP) { spipe->tregs[PID] = spipe->newpid; if (xfer->ux_length) { LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer, return); spipe->tregs[LEN] = spipe->newlen[1]; spipe->bustime = spipe->newbustime[1]; spipe->buffer = xfer->ux_buf; spipe->ptype = PT_CTRL_DATA; } else { status_setup: /* CTRL_DATA swaps direction in PID then jumps here */ spipe->tregs[LEN] = 0; if (spipe->pflags & PF_LS) spipe->bustime = SLHCI_LS_CONST; else spipe->bustime = SLHCI_FS_CONST; spipe->ptype = PT_CTRL_STATUS; spipe->buffer = NULL; } /* Status or first data packet must be DATA1. */ spipe->control |= SL11_EPCTRL_DATATOGGLE; if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) spipe->control &= ~SL11_EPCTRL_DIRECTION; else spipe->control |= SL11_EPCTRL_DIRECTION; head = Q_CB; } else if (spipe->ptype == PT_CTRL_STATUS) { head = Q_CALLBACKS; } else { /* bulk, intr, control data */ xfer->ux_actlen += actlen; spipe->control ^= SL11_EPCTRL_DATATOGGLE; if (actlen == spipe->tregs[LEN] && (xfer->ux_length > xfer->ux_actlen || spipe->wantshort)) { spipe->buffer += actlen; LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc, spipe, xfer, return); if (xfer->ux_length - xfer->ux_actlen < actlen) { spipe->wantshort = 0; spipe->tregs[LEN] = spipe->newlen[0]; spipe->bustime = spipe->newbustime[0]; LK_SLASSERT(xfer->ux_actlen + spipe->tregs[LEN] == xfer->ux_length, sc, spipe, xfer, return); } head = Q_CB; } else if (spipe->ptype == PT_CTRL_DATA) { spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT; goto status_setup; } else { if (spipe->ptype == PT_INTR) { spipe->lastframe += spipe->pipe.up_interval; /* * If ack, we try to keep the * interrupt rate by using lastframe * instead of the current frame. */ spipe->frame = spipe->lastframe + spipe->pipe.up_interval; } /* * Set the toggle for the next transfer. It * has already been toggled above, so the * current setting will apply to the next * transfer. */ if (spipe->control & SL11_EPCTRL_DATATOGGLE) spipe->pflags |= PF_TOGGLE; else spipe->pflags &= ~PF_TOGGLE; head = Q_CALLBACKS; } } if (head == Q_CALLBACKS) { gcq_remove(&spipe->to); if (xfer->ux_status == USBD_IN_PROGRESS) { LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc, spipe, xfer, return); xfer->ux_status = USBD_NORMAL_COMPLETION; } } enter_q(t, spipe, head); queued: if (target_buf != NULL) { slhci_dotransfer(sc); start_cc_time(&t_copy_from_dev, actlen); slhci_read_multi(sc, buf_start, target_buf, actlen); stop_cc_time(&t_copy_from_dev); DLOGBUF(D_BUF, target_buf, actlen); t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen); } done: t->len[ab] = -1; } static void slhci_tstart(struct slhci_softc *sc) { struct slhci_transfers *t; struct slhci_pipe *spipe; int remaining_bustime; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (!(t->flags & (F_AREADY|F_BREADY))) return; if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED)) return; /* * We have about 6 us to get from the bus time check to * starting the transfer or we might babble or the chip might fail to * signal transfer complete. This leaves no time for any other * interrupts. */ remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6; remaining_bustime -= SLHCI_END_BUSTIME; /* * Start one transfer only, clearing any aborted transfers that are * not yet in progress and skipping missed isoc. It is easier to copy * & paste most of the A/B sections than to make the logic work * otherwise and this allows better constant use. */ if (t->flags & F_AREADY) { spipe = t->spipe[A]; if (spipe == NULL) { t->flags &= ~F_AREADY; t->len[A] = -1; } else if (remaining_bustime >= spipe->bustime) { t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2); t->flags |= F_AINPROG; start_cc_time(&t_ab[A], spipe->tregs[LEN]); slhci_write(sc, SL11_E0CTRL, spipe->control); goto pend; } } if (t->flags & F_BREADY) { spipe = t->spipe[B]; if (spipe == NULL) { t->flags &= ~F_BREADY; t->len[B] = -1; } else if (remaining_bustime >= spipe->bustime) { t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2); t->flags |= F_BINPROG; start_cc_time(&t_ab[B], spipe->tregs[LEN]); slhci_write(sc, SL11_E1CTRL, spipe->control); pend: t->pend = spipe->bustime; } } } static void slhci_dotransfer(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; struct slhci_pipe *spipe; int ab, i; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); while ((t->len[A] == -1 || t->len[B] == -1) && (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) || GOT_FIRST_CB(spipe, t))) { LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return); LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype != PT_ROOT_INTR, sc, spipe, NULL, return); /* Check that this transfer can fit in the remaining memory. */ if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 > SL11_MAX_PACKET_SIZE) { DLOG(D_XFER, "Transfer does not fit. alen %jd blen %jd " "len %jd", t->len[A], t->len[B], spipe->tregs[LEN], 0); return; } gcq_remove(&spipe->xq); if (t->len[A] == -1) { ab = A; spipe->tregs[ADR] = SL11_BUFFER_START; } else { ab = B; spipe->tregs[ADR] = SL11_BUFFER_END - spipe->tregs[LEN]; } t->len[ab] = spipe->tregs[LEN]; if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN) { start_cc_time(&t_copy_to_dev, spipe->tregs[LEN]); slhci_write_multi(sc, spipe->tregs[ADR], spipe->buffer, spipe->tregs[LEN]); stop_cc_time(&t_copy_to_dev); t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(spipe->tregs[LEN]); } DLOG(D_MSG, "NEW TRANSFER AB=%jd flags %#jx alen %jd blen %jd", ab, t->flags, t->len[0], t->len[1]); if (spipe->tregs[LEN]) i = 0; else i = 1; for (; i <= 3; i++) if (t->current_tregs[ab][i] != spipe->tregs[i]) { t->current_tregs[ab][i] = spipe->tregs[i]; slhci_write(sc, slhci_tregs[ab][i], spipe->tregs[i]); } DLOG(D_SXFER, "Transfer len %jd pid %#jx dev %jd type %jd", spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV], spipe->ptype); t->spipe[ab] = spipe; t->flags |= ab ? F_BREADY : F_AREADY; slhci_tstart(sc); } } /* * slhci_callback is called after the lock is taken. */ static void slhci_callback(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; struct slhci_pipe *spipe; struct usbd_xfer *xfer; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); DLOG(D_SOFT, "CB flags %#jx", t->flags, 0,0,0); for (;;) { if (__predict_false(t->flags & F_ROOTINTR)) { t->flags &= ~F_ROOTINTR; if (t->rootintr != NULL) { u_char *p; KASSERT(t->rootintr->ux_status == USBD_IN_PROGRESS); p = t->rootintr->ux_buf; p[0] = 2; t->rootintr->ux_actlen = 1; t->rootintr->ux_status = USBD_NORMAL_COMPLETION; xfer = t->rootintr; goto do_callback; } } if (!DEQUEUED_CALLBACK(spipe, t)) return; xfer = spipe->xfer; LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return); spipe->xfer = NULL; DLOG(D_XFER, "xfer callback length %jd actlen %jd spipe %#jx " "type %jd", xfer->ux_length, (uintptr_t)xfer->ux_actlen, (uintptr_t)spipe, spipe->ptype); do_callback: slhci_do_callback(sc, xfer); } } static void slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (__predict_false(t->flags & F_DISABLED) || __predict_false(spipe->pflags & PF_GONE)) { DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0); spipe->xfer->ux_status = USBD_CANCELLED; } if (spipe->xfer->ux_status == USBD_IN_PROGRESS) { if (spipe->xfer->ux_timeout) { spipe->to_frame = t->frame + spipe->xfer->ux_timeout; slhci_xfer_timer(sc, spipe); } if (spipe->pipe.up_interval) slhci_queue_timed(sc, spipe); else enter_q(t, spipe, Q_CB); } else enter_callback(t, spipe); } static void slhci_enter_xfers(struct slhci_softc *sc) { struct slhci_pipe *spipe; KASSERT(mutex_owned(&sc->sc_intr_lock)); while (DEQUEUED_WAITQ(spipe, sc)) slhci_enter_xfer(sc, spipe); } static void slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe) { struct slhci_transfers *t; struct gcq *q; struct slhci_pipe *spp; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); FIND_TIMED(q, t, spp, spp->frame > spipe->frame); gcq_insert_before(q, &spipe->xq); } static void slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe) { struct slhci_transfers *t; struct gcq *q; struct slhci_pipe *spp; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame); gcq_insert_before(q, &spipe->to); } static void slhci_callback_schedule(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (t->flags & F_ACTIVE) slhci_do_callback_schedule(sc); } static void slhci_do_callback_schedule(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); DLOG(D_MSG, "flags %#jx", t->flags, 0, 0, 0); if (!(t->flags & F_CALLBACK)) { t->flags |= F_CALLBACK; softint_schedule(sc->sc_cb_softintr); } } #if 0 /* must be called with lock taken. */ /* XXX static */ void slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer) { KASSERT(mutex_owned(&sc->sc_intr_lock)); slhci_dotransfer(sc); do { slhci_dointr(sc); } while (xfer->ux_status == USBD_IN_PROGRESS); slhci_do_callback(sc, xfer); } #endif static usbd_status slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer *xfer) { slhci_waitintr(sc, 0); return USBD_NORMAL_COMPLETION; } static usbd_status slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; t = &sc->sc_transfers; if (!(t->flags & F_LSVH_WARNED)) { printf("%s: Low speed device via hub disabled, " "see slhci(4)\n", SC_NAME(sc)); DDOLOG("Low speed device via hub disabled, " "see slhci(4)", SC_NAME(sc), 0,0,0); t->flags |= F_LSVH_WARNED; } return USBD_INVAL; } static usbd_status slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; t = &sc->sc_transfers; if (!(t->flags & F_ISOC_WARNED)) { printf("%s: ISOC transfer not supported " "(see slhci(4))\n", SC_NAME(sc)); DDOLOG("ISOC transfer not supported " "(see slhci(4))", 0, 0, 0, 0); t->flags |= F_ISOC_WARNED; } return USBD_INVAL; } static usbd_status slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer *xfer) { struct slhci_transfers *t; struct usbd_pipe *pipe; t = &sc->sc_transfers; pipe = &spipe->pipe; if (t->flags & F_DISABLED) return USBD_CANCELLED; else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1)) return USBD_PENDING_REQUESTS; else { enter_all_pipes(t, spipe); return USBD_NORMAL_COMPLETION; } } static usbd_status slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer *xfer) { struct usbd_pipe *pipe; pipe = &spipe->pipe; if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR) slhci_reserve_bustime(sc, spipe, 0); gcq_remove(&spipe->ap); return USBD_NORMAL_COMPLETION; } static usbd_status slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer *xfer) { struct slhci_transfers *t; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (spipe->xfer == xfer) { if (spipe->ptype == PT_ROOT_INTR) { if (t->rootintr == spipe->xfer) /* XXX assert? */ t->rootintr = NULL; } else { gcq_remove(&spipe->to); gcq_remove(&spipe->xq); if (t->spipe[A] == spipe) { t->spipe[A] = NULL; if (!(t->flags & F_AINPROG)) t->len[A] = -1; } else if (t->spipe[B] == spipe) { t->spipe[B] = NULL; if (!(t->flags & F_BINPROG)) t->len[B] = -1; } } if (xfer->ux_status != USBD_TIMEOUT) { spipe->xfer = NULL; spipe->pipe.up_repeat = 0; /* XXX timeout? */ } } return USBD_NORMAL_COMPLETION; } /* * Called to deactivate or stop use of the controller instead of panicking. * Will cancel the xfer correctly even when not on a list. */ static usbd_status slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; KASSERT(mutex_owned(&sc->sc_intr_lock)); t = &sc->sc_transfers; DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0); if (spipe != NULL) slhci_log_spipe(spipe); if (xfer != NULL) slhci_log_xfer(xfer); if (spipe != NULL && xfer != NULL && spipe->xfer == xfer && !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] != spipe) { xfer->ux_status = USBD_CANCELLED; enter_callback(t, spipe); } if (t->flags & F_ACTIVE) { slhci_intrchange(sc, 0); /* * leave power on when halting in case flash devices or disks * are attached, which may be writing and could be damaged * by abrupt power loss. The root hub clear power feature * should still work after halting. */ } t->flags &= ~F_ACTIVE; t->flags |= F_UDISABLED; if (!(t->flags & F_NODEV)) t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; slhci_drain(sc); /* One last callback for the drain and device removal. */ slhci_do_callback_schedule(sc); return USBD_NORMAL_COMPLETION; } /* * There are three interrupt states: no interrupts during reset and after * device deactivation, INSERT only for no device present but power on, and * SOF, INSERT, ADONE, and BDONE when device is present. */ static void slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_intr_lock)); if (sc->sc_ier != new_ier) { DLOG(D_INTR, "New IER %#jx", new_ier, 0, 0, 0); sc->sc_ier = new_ier; slhci_write(sc, SL11_IER, new_ier); BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz); } } /* * Drain: cancel all pending transfers and put them on the callback list and * set the UDISABLED flag. UDISABLED is cleared only by reset. */ static void slhci_drain(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; struct slhci_pipe *spipe; struct gcq *q; int i; KASSERT(mutex_owned(&sc->sc_intr_lock)); t = &sc->sc_transfers; DLOG(D_MSG, "DRAIN flags %#jx", t->flags, 0,0,0); t->pend = INT_MAX; for (i = 0; i <= 1; i++) { t->len[i] = -1; if (t->spipe[i] != NULL) { enter_callback(t, t->spipe[i]); t->spipe[i] = NULL; } } /* Merge the queues into the callback queue. */ gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]); gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]); gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed); /* * Cancel all pipes. Note that not all of these may be on the * callback queue yet; some could be in slhci_start, for example. */ FOREACH_AP(q, t, spipe) { spipe->pflags |= PF_GONE; spipe->pipe.up_repeat = 0; spipe->pipe.up_aborting = 1; if (spipe->xfer != NULL) spipe->xfer->ux_status = USBD_CANCELLED; } gcq_remove_all(&t->to); t->flags |= F_UDISABLED; t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED); } /* * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF) * check attached device speed. * must wait 100ms before USB transaction according to app note, 10ms * by spec. uhub does this delay * * Started from root hub set feature reset, which does step one. * ub_usepolling will call slhci_reset directly, otherwise the callout goes * through slhci_reset_entry. */ void slhci_reset(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; struct slhci_pipe *spipe; struct gcq *q; uint8_t r, pol, ctrl; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); stop_cc_time(&t_delay); KASSERT(t->flags & F_ACTIVE); start_cc_time(&t_delay, 0); stop_cc_time(&t_delay); slhci_write(sc, SL11_CTRL, 0); start_cc_time(&t_delay, 3); DELAY(3); stop_cc_time(&t_delay); slhci_write(sc, SL11_ISR, 0xff); r = slhci_read(sc, SL11_ISR); if (r & SL11_ISR_INSERT) slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); if (r & SL11_ISR_NODEV) { DLOG(D_MSG, "NC", 0,0,0,0); /* * Normally, the hard interrupt insert routine will issue * CCONNECT, however we need to do it here if the detach * happened during reset. */ if (!(t->flags & F_NODEV)) t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV; slhci_intrchange(sc, SL11_IER_INSERT); } else { if (t->flags & F_NODEV) t->flags |= F_CCONNECT; t->flags &= ~(F_NODEV|F_LOWSPEED); if (r & SL11_ISR_DATA) { DLOG(D_MSG, "FS", 0,0,0,0); pol = ctrl = 0; } else { DLOG(D_MSG, "LS", 0,0,0,0); pol = SL811_CSOF_POLARITY; ctrl = SL11_CTRL_LOWSPEED; t->flags |= F_LOWSPEED; } /* Enable SOF auto-generation */ t->frame = 0; /* write to SL811_CSOF will reset frame */ slhci_write(sc, SL11_SOFTIME, 0xe0); slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e); slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF); /* * According to the app note, ARM must be set * for SOF generation to work. We initialize all * USBA registers here for current_tregs. */ slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START); slhci_write(sc, SL11_E0LEN, 0); slhci_write(sc, SL11_E0PID, SL11_PID_SOF); slhci_write(sc, SL11_E0DEV, 0); slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM); /* * Initialize B registers. This can't be done earlier since * they are not valid until the SL811_CSOF register is written * above due to SL11H compatability. */ slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8); slhci_write(sc, SL11_E1LEN, 0); slhci_write(sc, SL11_E1PID, 0); slhci_write(sc, SL11_E1DEV, 0); t->current_tregs[0][ADR] = SL11_BUFFER_START; t->current_tregs[0][LEN] = 0; t->current_tregs[0][PID] = SL11_PID_SOF; t->current_tregs[0][DEV] = 0; t->current_tregs[1][ADR] = SL11_BUFFER_END - 8; t->current_tregs[1][LEN] = 0; t->current_tregs[1][PID] = 0; t->current_tregs[1][DEV] = 0; /* SOF start will produce USBA interrupt */ t->len[A] = 0; t->flags |= F_AINPROG; slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS); } t->flags &= ~(F_UDISABLED|F_RESET); t->flags |= F_CRESET|F_ROOTINTR; FOREACH_AP(q, t, spipe) { spipe->pflags &= ~PF_GONE; spipe->pipe.up_aborting = 0; } DLOG(D_MSG, "RESET done flags %#jx", t->flags, 0,0,0); } #ifdef SLHCI_DEBUG static int slhci_memtest(struct slhci_softc *sc) { enum { ASC, DESC, EITHER = ASC }; /* direction */ enum { READ, WRITE }; /* operation */ const char *ptr, *elem; size_t i; const int low = SL11_BUFFER_START, high = SL11_BUFFER_END; int addr = 0, dir = ASC, op = READ; /* Extended March C- test algorithm (SOFs also) */ const char test[] = "E(w0) A(r0w1r1) A(r1w0r0) D(r0w1) D(r1w0) E(r0)"; char c; const uint8_t dbs[] = { 0x00, 0x0f, 0x33, 0x55 }; /* data backgrounds */ uint8_t db; /* Perform memory test for all data backgrounds. */ for (i = 0; i < __arraycount(dbs); i++) { ptr = test; elem = ptr; /* Walk test algorithm string. */ while ((c = *ptr++) != '\0') switch (tolower((int)c)) { case 'a': /* Address sequence is in ascending order. */ dir = ASC; break; case 'd': /* Address sequence is in descending order. */ dir = DESC; break; case 'e': /* Address sequence is in either order. */ dir = EITHER; break; case '(': /* Start of test element (sequence). */ elem = ptr; addr = (dir == ASC) ? low : high; break; case 'r': /* read operation */ op = READ; break; case 'w': /* write operation */ op = WRITE; break; case '0': case '1': /* * Execute previously set-up operation by * reading/writing non-inverted ('0') or * inverted ('1') data background. */ db = (c - '0') ? ~dbs[i] : dbs[i]; if (op == READ) { if (slhci_read(sc, addr) != db) return -1; } else slhci_write(sc, addr, db); break; case ')': /* * End of element: Repeat same element with next * address or continue to next element. */ addr = (dir == ASC) ? addr + 1 : addr - 1; if (addr >= low && addr <= high) ptr = elem; break; default: /* Do nothing. */ break; } } return 0; } #endif /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */ static int slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int reserve) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; int bustime, max_packet; KASSERT(mutex_owned(&sc->sc_intr_lock)); t = &sc->sc_transfers; max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize); if (spipe->pflags & PF_LS) bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet); else bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet); if (!reserve) { t->reserved_bustime -= bustime; #ifdef DIAGNOSTIC if (t->reserved_bustime < 0) { printf("%s: reserved_bustime %d < 0!\n", SC_NAME(sc), t->reserved_bustime); DDOLOG("reserved_bustime %d < 0!", t->reserved_bustime, 0, 0, 0); t->reserved_bustime = 0; } #endif return 1; } if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) { if (ratecheck(&sc->sc_reserved_warn_rate, &reserved_warn_rate)) #ifdef SLHCI_NO_OVERTIME { printf("%s: Max reserved bus time exceeded! " "Erroring request.\n", SC_NAME(sc)); DDOLOG("%s: Max reserved bus time exceeded! " "Erroring request.", 0, 0, 0, 0); } return 0; #else { printf("%s: Reserved bus time exceeds %d!\n", SC_NAME(sc), SLHCI_RESERVED_BUSTIME); DDOLOG("Reserved bus time exceeds %d!", SLHCI_RESERVED_BUSTIME, 0, 0, 0); } #endif } t->reserved_bustime += bustime; return 1; } /* Device insertion/removal interrupt */ static void slhci_insert(struct slhci_softc *sc) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (t->flags & F_NODEV) slhci_intrchange(sc, 0); else { slhci_drain(sc); slhci_intrchange(sc, SL11_IER_INSERT); } t->flags ^= F_NODEV; t->flags |= F_ROOTINTR|F_CCONNECT; DLOG(D_MSG, "INSERT intr: flags after %#jx", t->flags, 0,0,0); } /* * Data structures and routines to emulate the root hub. */ static usbd_status slhci_clear_feature(struct slhci_softc *sc, unsigned int what) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; usbd_status error; t = &sc->sc_transfers; error = USBD_NORMAL_COMPLETION; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (what == UHF_PORT_POWER) { DLOG(D_MSG, "POWER_OFF", 0,0,0,0); t->flags &= ~F_POWER; if (!(t->flags & F_NODEV)) t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR; /* for x68k Nereid USB controller */ if (sc->sc_enable_power && (t->flags & F_REALPOWER)) { t->flags &= ~F_REALPOWER; sc->sc_enable_power(sc, POWER_OFF); } slhci_intrchange(sc, 0); slhci_drain(sc); } else if (what == UHF_C_PORT_CONNECTION) { t->flags &= ~F_CCONNECT; } else if (what == UHF_C_PORT_RESET) { t->flags &= ~F_CRESET; } else if (what == UHF_PORT_ENABLE) { slhci_drain(sc); } else if (what != UHF_PORT_SUSPEND) { DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0); error = USBD_IOERROR; } return error; } static usbd_status slhci_set_feature(struct slhci_softc *sc, unsigned int what) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; uint8_t r; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); if (what == UHF_PORT_RESET) { if (!(t->flags & F_ACTIVE)) { DDOLOG("SET PORT_RESET when not ACTIVE!", 0,0,0,0); return USBD_INVAL; } if (!(t->flags & F_POWER)) { DDOLOG("SET PORT_RESET without PORT_POWER! flags %p", t->flags, 0,0,0); return USBD_INVAL; } if (t->flags & F_RESET) return USBD_NORMAL_COMPLETION; DLOG(D_MSG, "RESET flags %#jx", t->flags, 0,0,0); slhci_intrchange(sc, 0); slhci_drain(sc); slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE); /* usb spec says delay >= 10ms, app note 50ms */ start_cc_time(&t_delay, 50000); if (sc->sc_bus.ub_usepolling) { DELAY(50000); slhci_reset(sc); } else { t->flags |= F_RESET; callout_schedule(&sc->sc_timer, uimax(mstohz(50), 2)); } } else if (what == UHF_PORT_SUSPEND) { printf("%s: USB Suspend not implemented!\n", SC_NAME(sc)); DDOLOG("USB Suspend not implemented!", 0, 0, 0, 0); } else if (what == UHF_PORT_POWER) { DLOG(D_MSG, "PORT_POWER", 0,0,0,0); /* for x68k Nereid USB controller */ if (!(t->flags & F_ACTIVE)) return USBD_INVAL; if (t->flags & F_POWER) return USBD_NORMAL_COMPLETION; if (!(t->flags & F_REALPOWER)) { if (sc->sc_enable_power) sc->sc_enable_power(sc, POWER_ON); t->flags |= F_REALPOWER; } t->flags |= F_POWER; r = slhci_read(sc, SL11_ISR); if (r & SL11_ISR_INSERT) slhci_write(sc, SL11_ISR, SL11_ISR_INSERT); if (r & SL11_ISR_NODEV) { slhci_intrchange(sc, SL11_IER_INSERT); t->flags |= F_NODEV; } else { t->flags &= ~F_NODEV; t->flags |= F_CCONNECT|F_ROOTINTR; } } else { DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0); return USBD_IOERROR; } return USBD_NORMAL_COMPLETION; } static void slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; unsigned int status, change; t = &sc->sc_transfers; KASSERT(mutex_owned(&sc->sc_intr_lock)); /* * We do not have a way to detect over current or babble and * suspend is currently not implemented, so connect and reset * are the only changes that need to be reported. */ change = 0; if (t->flags & F_CCONNECT) change |= UPS_C_CONNECT_STATUS; if (t->flags & F_CRESET) change |= UPS_C_PORT_RESET; status = 0; if (!(t->flags & F_NODEV)) status |= UPS_CURRENT_CONNECT_STATUS; if (!(t->flags & F_UDISABLED)) status |= UPS_PORT_ENABLED; if (t->flags & F_RESET) status |= UPS_RESET; if (t->flags & F_POWER) status |= UPS_PORT_POWER; if (t->flags & F_LOWSPEED) status |= UPS_LOW_SPEED; USETW(ps->wPortStatus, status); USETW(ps->wPortChange, change); DLOG(D_ROOT, "status=%#.4jx, change=%#.4jx", status, change, 0,0); } static int slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req, void *buf, int buflen) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_softc *sc = SLHCI_BUS2SC(bus); struct slhci_transfers *t = &sc->sc_transfers; usbd_status error = USBD_IOERROR; /* XXX should be STALL */ uint16_t len, value, index; uint8_t type; int actlen = 0; len = UGETW(req->wLength); value = UGETW(req->wValue); index = UGETW(req->wIndex); type = req->bmRequestType; SLHCI_DEXEC(D_TRACE, slhci_log_req(req)); /* * USB requests for hubs have two basic types, standard and class. * Each could potentially have recipients of device, interface, * endpoint, or other. For the hub class, CLASS_OTHER means the port * and CLASS_DEVICE means the hub. For standard requests, OTHER * is not used. Standard request are described in section 9.4 of the * standard, hub class requests in 11.16. Each request is either read * or write. * * Clear Feature, Set Feature, and Status are defined for each of the * used recipients. Get Descriptor and Set Descriptor are defined for * both standard and hub class types with different descriptors. * Other requests have only one defined recipient and type. These * include: Get/Set Address, Get/Set Configuration, Get/Set Interface, * and Synch Frame for standard requests and Get Bus State for hub * class. * * When a device is first powered up it has address 0 until the * address is set. * * Hubs are only allowed to support one interface and may not have * isochronous endpoints. The results of the related requests are * undefined. * * The standard requires invalid or unsupported requests to return * STALL in the data stage, however this does not work well with * current error handling. XXX * * Some unsupported fields: * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP * Get Bus State is optional sample of D- and D+ at EOF2 */ switch (req->bRequest) { /* Write Requests */ case UR_CLEAR_FEATURE: if (type == UT_WRITE_CLASS_OTHER) { if (index == 1 /* Port */) { mutex_enter(&sc->sc_intr_lock); error = slhci_clear_feature(sc, value); mutex_exit(&sc->sc_intr_lock); } else DLOG(D_ROOT, "Clear Port Feature " "index = %#.4jx", index, 0,0,0); } break; case UR_SET_FEATURE: if (type == UT_WRITE_CLASS_OTHER) { if (index == 1 /* Port */) { mutex_enter(&sc->sc_intr_lock); error = slhci_set_feature(sc, value); mutex_exit(&sc->sc_intr_lock); } else DLOG(D_ROOT, "Set Port Feature " "index = %#.4jx", index, 0,0,0); } else if (type != UT_WRITE_CLASS_DEVICE) DLOG(D_ROOT, "Set Device Feature " "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP " "not supported", 0,0,0,0); break; /* Read Requests */ case UR_GET_STATUS: if (type == UT_READ_CLASS_OTHER) { if (index == 1 /* Port */ && len == /* XXX >=? */ sizeof(usb_port_status_t)) { mutex_enter(&sc->sc_intr_lock); slhci_get_status(sc, (usb_port_status_t *) buf); mutex_exit(&sc->sc_intr_lock); actlen = sizeof(usb_port_status_t); error = USBD_NORMAL_COMPLETION; } else DLOG(D_ROOT, "Get Port Status index = %#.4jx " "len = %#.4jx", index, len, 0,0); } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */ if (len == sizeof(usb_hub_status_t)) { DLOG(D_ROOT, "Get Hub Status", 0,0,0,0); actlen = sizeof(usb_hub_status_t); memset(buf, 0, actlen); error = USBD_NORMAL_COMPLETION; } else DLOG(D_ROOT, "Get Hub Status bad len %#.4jx", len, 0,0,0); } break; case UR_GET_DESCRIPTOR: if (type == UT_READ_DEVICE) { /* value is type (&0xff00) and index (0xff) */ if (value == (UDESC_DEVICE<<8)) { actlen = buflen; error = USBD_NORMAL_COMPLETION; } else if (value == (UDESC_CONFIG<<8)) { struct usb_roothub_descriptors confd; actlen = uimin(buflen, sizeof(confd)); memcpy(&confd, buf, actlen); /* 2 mA units */ confd.urh_confd.bMaxPower = t->max_current; memcpy(buf, &confd, actlen); error = USBD_NORMAL_COMPLETION; } else if (value == ((UDESC_STRING<<8)|1)) { /* Vendor */ actlen = buflen; error = USBD_NORMAL_COMPLETION; } else if (value == ((UDESC_STRING<<8)|2)) { /* Product */ actlen = usb_makestrdesc((usb_string_descriptor_t *) buf, len, "SL811HS/T root hub"); error = USBD_NORMAL_COMPLETION; } else DDOLOG("Unknown Get Descriptor %#.4x", value, 0,0,0); } else if (type == UT_READ_CLASS_DEVICE) { /* Descriptor number is 0 */ if (value == (UDESC_HUB<<8)) { usb_hub_descriptor_t hubd; actlen = uimin(buflen, sizeof(hubd)); memcpy(&hubd, buf, actlen); hubd.bHubContrCurrent = 500 - t->max_current; memcpy(buf, &hubd, actlen); error = USBD_NORMAL_COMPLETION; } else DDOLOG("Unknown Get Hub Descriptor %#.4x", value, 0,0,0); } break; default: /* default from usbroothub */ return buflen; } if (error == USBD_NORMAL_COMPLETION) return actlen; return -1; } /* End in lock functions. Start debug functions. */ #ifdef SLHCI_DEBUG void slhci_log_buffer(struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); u_char *buf; if(xfer->ux_length > 0 && UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN) { buf = xfer->ux_buf; DDOLOGBUF(buf, xfer->ux_actlen); DDOLOG("len %d actlen %d short %d", xfer->ux_length, xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0); } } void slhci_log_req(usb_device_request_t *r) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); int req, type, value, index, len; req = r->bRequest; type = r->bmRequestType; value = UGETW(r->wValue); index = UGETW(r->wIndex); len = UGETW(r->wLength); DDOLOG("request: type %#x", type, 0, 0, 0); DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len); } void slhci_log_dumpreg(void) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); uint8_t r; unsigned int aaddr, alen, baddr, blen; static u_char buf[240]; r = slhci_read(ssc, SL11_E0CTRL); DDOLOG("USB A Host Control = %#.2x", r, 0, 0, 0); DDOLOGEPCTRL(r); aaddr = slhci_read(ssc, SL11_E0ADDR); DDOLOG("USB A Base Address = %u", aaddr, 0,0,0); alen = slhci_read(ssc, SL11_E0LEN); DDOLOG("USB A Length = %u", alen, 0,0,0); r = slhci_read(ssc, SL11_E0STAT); DDOLOG("USB A Status = %#.2x", r, 0,0,0); DDOLOGEPSTAT(r); r = slhci_read(ssc, SL11_E0CONT); DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0); r = slhci_read(ssc, SL11_E1CTRL); DDOLOG("USB B Host Control = %#.2x", r, 0,0,0); DDOLOGEPCTRL(r); baddr = slhci_read(ssc, SL11_E1ADDR); DDOLOG("USB B Base Address = %u", baddr, 0,0,0); blen = slhci_read(ssc, SL11_E1LEN); DDOLOG("USB B Length = %u", blen, 0,0,0); r = slhci_read(ssc, SL11_E1STAT); DDOLOG("USB B Status = %#.2x", r, 0,0,0); DDOLOGEPSTAT(r); r = slhci_read(ssc, SL11_E1CONT); DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0); r = slhci_read(ssc, SL11_CTRL); DDOLOG("Control = %#.2x", r, 0,0,0); DDOLOGCTRL(r); r = slhci_read(ssc, SL11_IER); DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0); DDOLOGIER(r); r = slhci_read(ssc, SL11_ISR); DDOLOG("Interrupt Status = %#.2x", r, 0,0,0); DDOLOGISR(r); r = slhci_read(ssc, SL11_REV); DDOLOG("Revision = %#.2x", r, 0,0,0); r = slhci_read(ssc, SL811_CSOF); DDOLOG("SOF Counter = %#.2x", r, 0,0,0); if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END && alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) { slhci_read_multi(ssc, aaddr, buf, alen); DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0); DDOLOGBUF(buf, alen); } else if (alen) DDOLOG("USBA Buffer Invalid", 0,0,0,0); if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END && blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) { slhci_read_multi(ssc, baddr, buf, blen); DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0); DDOLOGBUF(buf, blen); } else if (blen) DDOLOG("USBB Buffer Invalid", 0,0,0,0); } void slhci_log_xfer(struct usbd_xfer *xfer) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,", xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout); DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0); slhci_log_req(&xfer->ux_request); } void slhci_log_spipe(struct slhci_pipe *spipe) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); DDOLOG("spipe %p onlists: AP=%d TO=%d XQ=%d", spipe, gcq_onlist(&spipe->ap) ? 1 : 0, gcq_onlist(&spipe->to) ? 1 : 0, gcq_onlist(&spipe->xq) ? 1 : 0); DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %d", spipe->xfer, spipe->buffer, spipe->pflags, spipe->ptype); } void slhci_print_intr(void) { unsigned int ier, isr; ier = slhci_read(ssc, SL11_IER); isr = slhci_read(ssc, SL11_ISR); printf("IER: %#x ISR: %#x \n", ier, isr); } #if 0 void slhci_log_sc(void) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); struct slhci_transfers *t; int i; t = &ssc->sc_transfers; DDOLOG("Flags=%#x", t->flags, 0,0,0); DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0], t->spipe[1], t->len[1]); for (i = 0; i <= Q_MAX; i++) DDOLOG("Q %d: %p", i, gcq_hq(&t->q[i]), 0,0); DDOLOG("TIMED: %p", GCQ_ITEM(gcq_hq(&t->to), struct slhci_pipe, to), 0,0,0); DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0); DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0); } void slhci_log_slreq(struct slhci_pipe *r) { SLHCIHIST_FUNC(); SLHCIHIST_CALLED(); DDOLOG("xfer: %p", r->xfer, 0,0,0); DDOLOG("buffer: %p", r->buffer, 0,0,0); DDOLOG("bustime: %u", r->bustime, 0,0,0); DDOLOG("control: %#x", r->control, 0,0,0); DDOLOGEPCTRL(r->control); DDOLOG("pid: %#x", r->tregs[PID], 0,0,0); DDOLOG("dev: %u", r->tregs[DEV], 0,0,0); DDOLOG("len: %u", r->tregs[LEN], 0,0,0); if (r->xfer) slhci_log_xfer(r->xfer); } #endif #endif /* SLHCI_DEBUG */ /* End debug functions. */