/* $NetBSD: linux_misc.c,v 1.219.12.3 2014/08/20 00:03:32 tls Exp $ */ /*- * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Linux compatibility module. Try to deal with various Linux system calls. */ /* * These functions have been moved to multiarch to allow * selection of which machines include them to be * determined by the individual files.linux_ files. * * Function in multiarch: * linux_sys_break : linux_break.c * linux_sys_alarm : linux_misc_notalpha.c * linux_sys_getresgid : linux_misc_notalpha.c * linux_sys_nice : linux_misc_notalpha.c * linux_sys_readdir : linux_misc_notalpha.c * linux_sys_setresgid : linux_misc_notalpha.c * linux_sys_time : linux_misc_notalpha.c * linux_sys_utime : linux_misc_notalpha.c * linux_sys_waitpid : linux_misc_notalpha.c * linux_sys_old_mmap : linux_oldmmap.c * linux_sys_oldolduname : linux_oldolduname.c * linux_sys_oldselect : linux_oldselect.c * linux_sys_olduname : linux_olduname.c * linux_sys_pipe : linux_pipe.c */ #include __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.219.12.3 2014/08/20 00:03:32 tls Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for SWAP_ON */ #include /* for KERN_DOMAINNAME */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const int linux_ptrace_request_map[] = { LINUX_PTRACE_TRACEME, PT_TRACE_ME, LINUX_PTRACE_PEEKTEXT, PT_READ_I, LINUX_PTRACE_PEEKDATA, PT_READ_D, LINUX_PTRACE_POKETEXT, PT_WRITE_I, LINUX_PTRACE_POKEDATA, PT_WRITE_D, LINUX_PTRACE_CONT, PT_CONTINUE, LINUX_PTRACE_KILL, PT_KILL, LINUX_PTRACE_ATTACH, PT_ATTACH, LINUX_PTRACE_DETACH, PT_DETACH, # ifdef PT_STEP LINUX_PTRACE_SINGLESTEP, PT_STEP, # endif LINUX_PTRACE_SYSCALL, PT_SYSCALL, -1 }; const struct linux_mnttypes linux_fstypes[] = { { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }, { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC }, { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC } }; const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]); # ifdef DEBUG_LINUX #define DPRINTF(a) uprintf a # else #define DPRINTF(a) # endif /* Local linux_misc.c functions: */ static void linux_to_bsd_mmap_args(struct sys_mmap_args *, const struct linux_sys_mmap_args *); static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *, register_t *, off_t); /* * The information on a terminated (or stopped) process needs * to be converted in order for Linux binaries to get a valid signal * number out of it. */ int bsd_to_linux_wstat(int st) { int sig; if (WIFSIGNALED(st)) { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) st= (st & ~0177) | native_to_linux_signo[sig]; } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0xff00) | (native_to_linux_signo[sig] << 8); } return st; } /* * wait4(2). Passed on to the NetBSD call, surrounded by code to * reserve some space for a NetBSD-style wait status, and converting * it to what Linux wants. */ int linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval) { /* { syscallarg(int) pid; syscallarg(int *) status; syscallarg(int) options; syscallarg(struct rusage50 *) rusage; } */ int error, status, options, linux_options, pid = SCARG(uap, pid); struct rusage50 ru50; struct rusage ru; proc_t *p; linux_options = SCARG(uap, options); options = WOPTSCHECKED; if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS)) return (EINVAL); if (linux_options & LINUX_WAIT4_WNOHANG) options |= WNOHANG; if (linux_options & LINUX_WAIT4_WUNTRACED) options |= WUNTRACED; if (linux_options & LINUX_WAIT4_WALL) options |= WALLSIG; if (linux_options & LINUX_WAIT4_WCLONE) options |= WALTSIG; # ifdef DIAGNOSTIC if (linux_options & LINUX_WAIT4_WNOTHREAD) printf("WARNING: %s: linux process %d.%d called " "waitpid with __WNOTHREAD set!", __FILE__, l->l_proc->p_pid, l->l_lid); # endif error = do_sys_wait(&pid, &status, options, SCARG(uap, rusage) != NULL ? &ru : NULL); retval[0] = pid; if (pid == 0) return error; p = curproc; mutex_enter(p->p_lock); sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */ mutex_exit(p->p_lock); if (SCARG(uap, rusage) != NULL) { rusage_to_rusage50(&ru, &ru50); error = copyout(&ru, SCARG(uap, rusage), sizeof(ru)); } if (error == 0 && SCARG(uap, status) != NULL) { status = bsd_to_linux_wstat(status); error = copyout(&status, SCARG(uap, status), sizeof status); } return error; } /* * Linux brk(2). Like native, but always return the new break value. */ int linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval) { /* { syscallarg(char *) nsize; } */ struct proc *p = l->l_proc; struct vmspace *vm = p->p_vmspace; struct sys_obreak_args oba; SCARG(&oba, nsize) = SCARG(uap, nsize); (void) sys_obreak(l, &oba, retval); retval[0] = (register_t)((char *)vm->vm_daddr + ptoa(vm->vm_dsize)); return 0; } /* * Implement the fs stat functions. Straightforward. */ int linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval) { /* { syscallarg(const char *) path; syscallarg(struct linux_statfs *) sp; } */ struct statvfs *sb; struct linux_statfs ltmp; int error; sb = STATVFSBUF_GET(); error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb); if (error == 0) { bsd_to_linux_statfs(sb, <mp); error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); } STATVFSBUF_PUT(sb); return error; } int linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval) { /* { syscallarg(int) fd; syscallarg(struct linux_statfs *) sp; } */ struct statvfs *sb; struct linux_statfs ltmp; int error; sb = STATVFSBUF_GET(); error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb); if (error == 0) { bsd_to_linux_statfs(sb, <mp); error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); } STATVFSBUF_PUT(sb); return error; } /* * uname(). Just copy the info from the various strings stored in the * kernel, and put it in the Linux utsname structure. That structure * is almost the same as the NetBSD one, only it has fields 65 characters * long, and an extra domainname field. */ int linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval) { /* { syscallarg(struct linux_utsname *) up; } */ struct linux_utsname luts; strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); strlcpy(luts.l_release, linux_release, sizeof(luts.l_release)); strlcpy(luts.l_version, linux_version, sizeof(luts.l_version)); strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine)); strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); return copyout(&luts, SCARG(uap, up), sizeof(luts)); } /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ /* Used indirectly on: arm, i386, m68k */ /* * New type Linux mmap call. * Only called directly on machines with >= 6 free regs. */ int linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval) { /* { syscallarg(unsigned long) addr; syscallarg(size_t) len; syscallarg(int) prot; syscallarg(int) flags; syscallarg(int) fd; syscallarg(linux_off_t) offset; } */ if (SCARG(uap, offset) & PAGE_MASK) return EINVAL; return linux_mmap(l, uap, retval, SCARG(uap, offset)); } /* * Guts of most architectures' mmap64() implementations. This shares * its list of arguments with linux_sys_mmap(). * * The difference in linux_sys_mmap2() is that "offset" is actually * (offset / pagesize), not an absolute byte count. This translation * to pagesize offsets is done inside glibc between the mmap64() call * point, and the actual syscall. */ int linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval) { /* { syscallarg(unsigned long) addr; syscallarg(size_t) len; syscallarg(int) prot; syscallarg(int) flags; syscallarg(int) fd; syscallarg(linux_off_t) offset; } */ return linux_mmap(l, uap, retval, ((off_t)SCARG(uap, offset)) << PAGE_SHIFT); } /* * Massage arguments and call system mmap(2). */ static int linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset) { struct sys_mmap_args cma; int error; size_t mmoff=0; linux_to_bsd_mmap_args(&cma, uap); SCARG(&cma, pos) = offset; if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) { /* * Request for stack-like memory segment. On linux, this * works by mmap()ping (small) segment, which is automatically * extended when page fault happens below the currently * allocated area. We emulate this by allocating (typically * bigger) segment sized at current stack size limit, and * offsetting the requested and returned address accordingly. * Since physical pages are only allocated on-demand, this * is effectively identical. */ rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur; if (SCARG(&cma, len) < ssl) { /* Compute the address offset */ mmoff = round_page(ssl) - SCARG(uap, len); if (SCARG(&cma, addr)) SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff; SCARG(&cma, len) = (size_t) ssl; } } error = sys_mmap(l, &cma, retval); if (error) return (error); /* Shift the returned address for stack-like segment if necessary */ retval[0] += mmoff; return (0); } static void linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap) { int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); /* XXX XAX ERH: Any other flags here? There are more defined... */ SCARG(cma, addr) = (void *)SCARG(uap, addr); SCARG(cma, len) = SCARG(uap, len); SCARG(cma, prot) = SCARG(uap, prot); if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ SCARG(cma, prot) |= VM_PROT_READ; SCARG(cma, flags) = flags; SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); SCARG(cma, PAD) = 0; } #define LINUX_MREMAP_MAYMOVE 1 #define LINUX_MREMAP_FIXED 2 int linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval) { /* { syscallarg(void *) old_address; syscallarg(size_t) old_size; syscallarg(size_t) new_size; syscallarg(u_long) flags; } */ struct proc *p; struct vm_map *map; vaddr_t oldva; vaddr_t newva; size_t oldsize; size_t newsize; int flags; int uvmflags; int error; flags = SCARG(uap, flags); oldva = (vaddr_t)SCARG(uap, old_address); oldsize = round_page(SCARG(uap, old_size)); newsize = round_page(SCARG(uap, new_size)); if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) { error = EINVAL; goto done; } if ((flags & LINUX_MREMAP_FIXED) != 0) { if ((flags & LINUX_MREMAP_MAYMOVE) == 0) { error = EINVAL; goto done; } #if 0 /* notyet */ newva = SCARG(uap, new_address); uvmflags = MAP_FIXED; #else /* notyet */ error = EOPNOTSUPP; goto done; #endif /* notyet */ } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) { uvmflags = 0; } else { newva = oldva; uvmflags = MAP_FIXED; } p = l->l_proc; map = &p->p_vmspace->vm_map; error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p, uvmflags); done: *retval = (error != 0) ? 0 : (register_t)newva; return error; } #ifdef USRSTACK int linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval) { /* { syscallarg(const void *) start; syscallarg(unsigned long) len; syscallarg(int) prot; } */ struct vm_map_entry *entry; struct vm_map *map; struct proc *p; vaddr_t end, start, len, stacklim; int prot, grows; start = (vaddr_t)SCARG(uap, start); len = round_page(SCARG(uap, len)); prot = SCARG(uap, prot); grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP); prot &= ~grows; end = start + len; if (start & PAGE_MASK) return EINVAL; if (end < start) return EINVAL; if (end == start) return 0; if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP)) return EINVAL; p = l->l_proc; map = &p->p_vmspace->vm_map; vm_map_lock(map); # ifdef notdef VM_MAP_RANGE_CHECK(map, start, end); # endif if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { vm_map_unlock(map); return ENOMEM; } /* * Approximate the behaviour of PROT_GROWS{DOWN,UP}. */ stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; if (grows & LINUX_PROT_GROWSDOWN) { if (USRSTACK - stacklim <= start && start < USRSTACK) { start = USRSTACK - stacklim; } else { start = entry->start; } } else if (grows & LINUX_PROT_GROWSUP) { if (USRSTACK <= end && end < USRSTACK + stacklim) { end = USRSTACK + stacklim; } else { end = entry->end; } } vm_map_unlock(map); return uvm_map_protect(map, start, end, prot, FALSE); } #endif /* USRSTACK */ /* * This code is partly stolen from src/lib/libc/compat-43/times.c */ #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) int linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval) { /* { syscallarg(struct times *) tms; } */ struct proc *p = l->l_proc; struct timeval t; int error; if (SCARG(uap, tms)) { struct linux_tms ltms; struct rusage ru; mutex_enter(p->p_lock); calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); ltms.ltms_utime = CONVTCK(ru.ru_utime); ltms.ltms_stime = CONVTCK(ru.ru_stime); ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); mutex_exit(p->p_lock); if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) return error; } getmicrouptime(&t); retval[0] = ((linux_clock_t)(CONVTCK(t))); return 0; } #undef CONVTCK /* * Linux 'readdir' call. This code is mostly taken from the * SunOS getdents call (see compat/sunos/sunos_misc.c), though * an attempt has been made to keep it a little cleaner (failing * miserably, because of the cruft needed if count 1 is passed). * * The d_off field should contain the offset of the next valid entry, * but in Linux it has the offset of the entry itself. We emulate * that bug here. * * Read in BSD-style entries, convert them, and copy them out. * * Note that this doesn't handle union-mounted filesystems. */ int linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval) { /* { syscallarg(int) fd; syscallarg(struct linux_dirent *) dent; syscallarg(unsigned int) count; } */ struct dirent *bdp; struct vnode *vp; char *inp, *tbuf; /* BSD-format */ int len, reclen; /* BSD-format */ char *outp; /* Linux-format */ int resid, linux_reclen = 0; /* Linux-format */ struct file *fp; struct uio auio; struct iovec aiov; struct linux_dirent idb; off_t off; /* true file offset */ int buflen, error, eofflag, nbytes, oldcall; struct vattr va; off_t *cookiebuf = NULL, *cookie; int ncookies; /* fd_getvnode() will use the descriptor for us */ if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) { error = EBADF; goto out1; } vp = (struct vnode *)fp->f_data; if (vp->v_type != VDIR) { error = ENOTDIR; goto out1; } vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &va, l->l_cred); VOP_UNLOCK(vp); if (error) goto out1; nbytes = SCARG(uap, count); if (nbytes == 1) { /* emulating old, broken behaviour */ nbytes = sizeof (idb); buflen = max(va.va_blocksize, nbytes); oldcall = 1; } else { buflen = min(MAXBSIZE, nbytes); if (buflen < va.va_blocksize) buflen = va.va_blocksize; oldcall = 0; } tbuf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); off = fp->f_offset; again: aiov.iov_base = tbuf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_resid = buflen; auio.uio_offset = off; UIO_SETUP_SYSSPACE(&auio); /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, &ncookies); if (error) goto out; inp = tbuf; outp = (void *)SCARG(uap, dent); resid = nbytes; if ((len = buflen - auio.uio_resid) == 0) goto eof; for (cookie = cookiebuf; len > 0; len -= reclen) { bdp = (struct dirent *)inp; reclen = bdp->d_reclen; if (reclen & 3) panic("linux_readdir"); if (bdp->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ if (cookie) off = *cookie++; else off += reclen; continue; } linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); if (reclen > len || resid < linux_reclen) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a Linux-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = bdp->d_fileno; /* * The old readdir() call misuses the offset and reclen fields. */ if (oldcall) { idb.d_off = (linux_off_t)linux_reclen; idb.d_reclen = (u_short)bdp->d_namlen; } else { if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { compat_offseterr(vp, "linux_getdents"); error = EINVAL; goto out; } idb.d_off = (linux_off_t)off; idb.d_reclen = (u_short)linux_reclen; /* Linux puts d_type at the end of each record */ *((char *)&idb + idb.d_reclen - 1) = bdp->d_type; } strcpy(idb.d_name, bdp->d_name); if ((error = copyout((void *)&idb, outp, linux_reclen))) goto out; /* advance past this real entry */ inp += reclen; if (cookie) off = *cookie++; /* each entry points to itself */ else off += reclen; /* advance output past Linux-shaped entry */ outp += linux_reclen; resid -= linux_reclen; if (oldcall) break; } /* if we squished out the whole block, try again */ if (outp == (void *)SCARG(uap, dent)) { if (cookiebuf) free(cookiebuf, M_TEMP); cookiebuf = NULL; goto again; } fp->f_offset = off; /* update the vnode offset */ if (oldcall) nbytes = resid + linux_reclen; eof: *retval = nbytes - resid; out: VOP_UNLOCK(vp); if (cookiebuf) free(cookiebuf, M_TEMP); free(tbuf, M_TEMP); out1: fd_putfile(SCARG(uap, fd)); return error; } /* * Even when just using registers to pass arguments to syscalls you can * have 5 of them on the i386. So this newer version of select() does * this. */ int linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval) { /* { syscallarg(int) nfds; syscallarg(fd_set *) readfds; syscallarg(fd_set *) writefds; syscallarg(fd_set *) exceptfds; syscallarg(struct timeval50 *) timeout; } */ return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), SCARG(uap, writefds), SCARG(uap, exceptfds), (struct linux_timeval *)SCARG(uap, timeout)); } /* * Common code for the old and new versions of select(). A couple of * things are important: * 1) return the amount of time left in the 'timeout' parameter * 2) select never returns ERESTART on Linux, always return EINTR */ int linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout) { struct timespec ts0, ts1, uts, *ts = NULL; struct linux_timeval ltv; int error; /* * Store current time for computation of the amount of * time left. */ if (timeout) { if ((error = copyin(timeout, <v, sizeof(ltv)))) return error; uts.tv_sec = ltv.tv_sec; uts.tv_nsec = ltv.tv_usec * 1000; if (itimespecfix(&uts)) { /* * The timeval was invalid. Convert it to something * valid that will act as it does under Linux. */ uts.tv_sec += uts.tv_nsec / 1000000000; uts.tv_nsec %= 1000000000; if (uts.tv_nsec < 0) { uts.tv_sec -= 1; uts.tv_nsec += 1000000000; } if (uts.tv_sec < 0) timespecclear(&uts); } ts = &uts; nanotime(&ts0); } error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL); if (error) { /* * See fs/select.c in the Linux kernel. Without this, * Maelstrom doesn't work. */ if (error == ERESTART) error = EINTR; return error; } if (timeout) { if (*retval) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ nanotime(&ts1); timespecsub(&ts1, &ts0, &ts1); timespecsub(&uts, &ts1, &uts); if (uts.tv_sec < 0) timespecclear(&uts); } else timespecclear(&uts); ltv.tv_sec = uts.tv_sec; ltv.tv_usec = uts.tv_nsec / 1000; if ((error = copyout(<v, timeout, sizeof(ltv)))) return error; } return 0; } int linux_sys_ppoll(struct lwp *l, const struct linux_sys_ppoll_args *uap, register_t *retval) { /* { syscallarg(struct pollfd *) fds; syscallarg(int) nfds; syscallarg(struct linux_timespec *) timeout; syscallarg(linux_sigset_t *) sigset; } */ struct linux_timespec lts0, *lts; struct timespec ts0, *ts = NULL; linux_sigset_t lsigmask0, *lsigmask; sigset_t sigmask0, *sigmask = NULL; int error; lts = SCARG(uap, timeout); if (lts) { if ((error = copyin(lts, <s0, sizeof(lts0))) != 0) return error; linux_to_native_timespec(&ts0, <s0); ts = &ts0; } lsigmask = SCARG(uap, sigset); if (lsigmask) { if ((error = copyin(lsigmask, &lsigmask0, sizeof(lsigmask0)))) return error; linux_to_native_sigset(&sigmask0, &lsigmask0); sigmask = &sigmask0; } return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, sigmask); } /* * Set the 'personality' (emulation mode) for the current process. Only * accept the Linux personality here (0). This call is needed because * the Linux ELF crt0 issues it in an ugly kludge to make sure that * ELF binaries run in Linux mode, not SVR4 mode. */ int linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval) { /* { syscallarg(unsigned long) per; } */ struct linux_emuldata *led; int per; per = SCARG(uap, per); led = l->l_emuldata; if (per == LINUX_PER_QUERY) { retval[0] = led->led_personality; return 0; } switch (per & LINUX_PER_MASK) { case LINUX_PER_LINUX: case LINUX_PER_LINUX32: led->led_personality = per; break; default: return EINVAL; } retval[0] = per; return 0; } /* * We have nonexistent fsuid equal to uid. * If modification is requested, refuse. */ int linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval) { /* { syscallarg(uid_t) uid; } */ uid_t uid; uid = SCARG(uap, uid); if (kauth_cred_getuid(l->l_cred) != uid) return sys_nosys(l, uap, retval); *retval = uid; return 0; } int linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval) { /* { syscallarg(gid_t) gid; } */ gid_t gid; gid = SCARG(uap, gid); if (kauth_cred_getgid(l->l_cred) != gid) return sys_nosys(l, uap, retval); *retval = gid; return 0; } int linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval) { /* { syscallarg(uid_t) ruid; syscallarg(uid_t) euid; syscallarg(uid_t) suid; } */ /* * Note: These checks are a little different than the NetBSD * setreuid(2) call performs. This precisely follows the * behavior of the Linux kernel. */ return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), SCARG(uap, suid), ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); } int linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval) { /* { syscallarg(uid_t *) ruid; syscallarg(uid_t *) euid; syscallarg(uid_t *) suid; } */ kauth_cred_t pc = l->l_cred; int error; uid_t uid; /* * Linux copies these values out to userspace like so: * * 1. Copy out ruid. * 2. If that succeeds, copy out euid. * 3. If both of those succeed, copy out suid. */ uid = kauth_cred_getuid(pc); if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0) return (error); uid = kauth_cred_geteuid(pc); if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0) return (error); uid = kauth_cred_getsvuid(pc); return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t))); } int linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval) { /* { i386, m68k, powerpc: T=int alpha, amd64: T=long syscallarg(T) request; syscallarg(T) pid; syscallarg(T) addr; syscallarg(T) data; } */ const int *ptr; int request; int error; ptr = linux_ptrace_request_map; request = SCARG(uap, request); while (*ptr != -1) if (*ptr++ == request) { struct sys_ptrace_args pta; SCARG(&pta, req) = *ptr; SCARG(&pta, pid) = SCARG(uap, pid); SCARG(&pta, addr) = (void *)SCARG(uap, addr); SCARG(&pta, data) = SCARG(uap, data); /* * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually * to continue where the process left off previously. * The same thing is achieved by addr == (void *) 1 * on NetBSD, so rewrite 'addr' appropriately. */ if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) SCARG(&pta, addr) = (void *) 1; error = sysent[SYS_ptrace].sy_call(l, &pta, retval); if (error) return error; switch (request) { case LINUX_PTRACE_PEEKTEXT: case LINUX_PTRACE_PEEKDATA: error = copyout (retval, (void *)SCARG(uap, data), sizeof *retval); *retval = SCARG(uap, data); break; default: break; } return error; } else ptr++; return LINUX_SYS_PTRACE_ARCH(l, uap, retval); } int linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval) { /* { syscallarg(int) magic1; syscallarg(int) magic2; syscallarg(int) cmd; syscallarg(void *) arg; } */ struct sys_reboot_args /* { syscallarg(int) opt; syscallarg(char *) bootstr; } */ sra; int error; if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0) return(error); if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) return(EINVAL); if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) return(EINVAL); switch ((unsigned long)SCARG(uap, cmd)) { case LINUX_REBOOT_CMD_RESTART: SCARG(&sra, opt) = RB_AUTOBOOT; break; case LINUX_REBOOT_CMD_HALT: SCARG(&sra, opt) = RB_HALT; break; case LINUX_REBOOT_CMD_POWER_OFF: SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; break; case LINUX_REBOOT_CMD_RESTART2: /* Reboot with an argument. */ SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; SCARG(&sra, bootstr) = SCARG(uap, arg); break; case LINUX_REBOOT_CMD_CAD_ON: return(EINVAL); /* We don't implement ctrl-alt-delete */ case LINUX_REBOOT_CMD_CAD_OFF: return(0); default: return(EINVAL); } return(sys_reboot(l, &sra, retval)); } /* * Copy of compat_12_sys_swapon(). */ int linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval) { /* { syscallarg(const char *) name; } */ struct sys_swapctl_args ua; SCARG(&ua, cmd) = SWAP_ON; SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name)); SCARG(&ua, misc) = 0; /* priority */ return (sys_swapctl(l, &ua, retval)); } /* * Stop swapping to the file or block device specified by path. */ int linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval) { /* { syscallarg(const char *) path; } */ struct sys_swapctl_args ua; SCARG(&ua, cmd) = SWAP_OFF; SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/ return (sys_swapctl(l, &ua, retval)); } /* * Copy of compat_09_sys_setdomainname() */ /* ARGSUSED */ int linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval) { /* { syscallarg(char *) domainname; syscallarg(int) len; } */ int name[2]; name[0] = CTL_KERN; name[1] = KERN_DOMAINNAME; return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname), SCARG(uap, len), l)); } /* * sysinfo() */ /* ARGSUSED */ int linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval) { /* { syscallarg(struct linux_sysinfo *) arg; } */ struct linux_sysinfo si; struct loadavg *la; si.uptime = time_uptime; la = &averunnable; si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.totalram = ctob((u_long)physmem); si.freeram = (u_long)uvmexp.free * uvmexp.pagesize; si.sharedram = 0; /* XXX */ si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize; si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize; si.freeswap = (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; si.procs = nprocs; /* The following are only present in newer Linux kernels. */ si.totalbig = 0; si.freebig = 0; si.mem_unit = 1; return (copyout(&si, SCARG(uap, arg), sizeof si)); } int linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval) { /* { syscallarg(int) which; # ifdef LINUX_LARGEFILE64 syscallarg(struct rlimit *) rlp; # else syscallarg(struct orlimit *) rlp; # endif } */ # ifdef LINUX_LARGEFILE64 struct rlimit orl; # else struct orlimit orl; # endif int which; which = linux_to_bsd_limit(SCARG(uap, which)); if (which < 0) return -which; bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]); return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); } int linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval) { /* { syscallarg(int) which; # ifdef LINUX_LARGEFILE64 syscallarg(struct rlimit *) rlp; # else syscallarg(struct orlimit *) rlp; # endif } */ struct rlimit rl; # ifdef LINUX_LARGEFILE64 struct rlimit orl; # else struct orlimit orl; # endif int error; int which; if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) return error; which = linux_to_bsd_limit(SCARG(uap, which)); if (which < 0) return -which; linux_to_bsd_rlimit(&rl, &orl); return dosetrlimit(l, l->l_proc, which, &rl); } # if !defined(__mips__) && !defined(__amd64__) /* XXX: this doesn't look 100% common, at least mips doesn't have it */ int linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval) { return linux_sys_getrlimit(l, (const void *)uap, retval); } # endif /* * This gets called for unsupported syscalls. The difference to sys_nosys() * is that process does not get SIGSYS, the call just returns with ENOSYS. * This is the way Linux does it and glibc depends on this behaviour. */ int linux_sys_nosys(struct lwp *l, const void *v, register_t *retval) { return (ENOSYS); } int linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval) { /* { syscallarg(int) which; syscallarg(int) who; } */ struct sys_getpriority_args bsa; int error; SCARG(&bsa, which) = SCARG(uap, which); SCARG(&bsa, who) = SCARG(uap, who); if ((error = sys_getpriority(l, &bsa, retval))) return error; *retval = NZERO - *retval; return 0; } int linux_do_sys_utimensat(struct lwp *l, int fd, const char *path, struct timespec *tsp, int flags, register_t *retval) { int follow, error; follow = (flags & LINUX_AT_SYMLINK_NOFOLLOW) ? NOFOLLOW : FOLLOW; if (path == NULL && fd != AT_FDCWD) { file_t *fp; /* fd_getvnode() will use the descriptor for us */ if ((error = fd_getvnode(fd, &fp)) != 0) return error; error = do_sys_utimensat(l, AT_FDCWD, fp->f_data, NULL, 0, tsp, UIO_SYSSPACE); fd_putfile(fd); return error; } return do_sys_utimensat(l, fd, NULL, path, follow, tsp, UIO_SYSSPACE); } int linux_sys_utimensat(struct lwp *l, const struct linux_sys_utimensat_args *uap, register_t *retval) { /* { syscallarg(int) fd; syscallarg(const char *) path; syscallarg(const struct linux_timespec *) times; syscallarg(int) flag; } */ int error; struct linux_timespec lts[2]; struct timespec *tsp = NULL, ts[2]; if (SCARG(uap, times)) { error = copyin(SCARG(uap, times), <s, sizeof(lts)); if (error != 0) return error; linux_to_native_timespec(&ts[0], <s[0]); linux_to_native_timespec(&ts[1], <s[1]); tsp = ts; } return linux_do_sys_utimensat(l, SCARG(uap, fd), SCARG(uap, path), tsp, SCARG(uap, flag), retval); }