/* $NetBSD: linux_misc.c,v 1.121.2.5 2004/09/18 14:43:43 skrll Exp $ */ /*- * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Linux compatibility module. Try to deal with various Linux system calls. */ /* * These functions have been moved to multiarch to allow * selection of which machines include them to be * determined by the individual files.linux_ files. * * Function in multiarch: * linux_sys_break : linux_break.c * linux_sys_alarm : linux_misc_notalpha.c * linux_sys_getresgid : linux_misc_notalpha.c * linux_sys_nice : linux_misc_notalpha.c * linux_sys_readdir : linux_misc_notalpha.c * linux_sys_setresgid : linux_misc_notalpha.c * linux_sys_time : linux_misc_notalpha.c * linux_sys_utime : linux_misc_notalpha.c * linux_sys_waitpid : linux_misc_notalpha.c * linux_sys_old_mmap : linux_oldmmap.c * linux_sys_oldolduname : linux_oldolduname.c * linux_sys_oldselect : linux_oldselect.c * linux_sys_olduname : linux_olduname.c * linux_sys_pipe : linux_pipe.c */ #include __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.121.2.5 2004/09/18 14:43:43 skrll Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for SWAP_ON */ #include /* for KERN_DOMAINNAME */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const int linux_ptrace_request_map[] = { LINUX_PTRACE_TRACEME, PT_TRACE_ME, LINUX_PTRACE_PEEKTEXT, PT_READ_I, LINUX_PTRACE_PEEKDATA, PT_READ_D, LINUX_PTRACE_POKETEXT, PT_WRITE_I, LINUX_PTRACE_POKEDATA, PT_WRITE_D, LINUX_PTRACE_CONT, PT_CONTINUE, LINUX_PTRACE_KILL, PT_KILL, LINUX_PTRACE_ATTACH, PT_ATTACH, LINUX_PTRACE_DETACH, PT_DETACH, #ifdef PT_STEP LINUX_PTRACE_SINGLESTEP, PT_STEP, #endif -1 }; static const struct mnttypes { char *bsd; int linux; } fstypes[] = { { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC } }; #define FSTYPESSIZE (sizeof(fstypes) / sizeof(fstypes[0])) #ifdef DEBUG_LINUX #define DPRINTF(a) uprintf a #else #define DPRINTF(a) #endif /* Local linux_misc.c functions: */ static void bsd_to_linux_statfs __P((const struct statvfs *, struct linux_statfs *)); static int linux_to_bsd_limit __P((int)); static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *, const struct linux_sys_mmap_args *)); static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *, register_t *, off_t)); /* * The information on a terminated (or stopped) process needs * to be converted in order for Linux binaries to get a valid signal * number out of it. */ void bsd_to_linux_wstat(st) int *st; { int sig; if (WIFSIGNALED(*st)) { sig = WTERMSIG(*st); if (sig >= 0 && sig < NSIG) *st= (*st& ~0177) | native_to_linux_signo[sig]; } else if (WIFSTOPPED(*st)) { sig = WSTOPSIG(*st); if (sig >= 0 && sig < NSIG) *st = (*st & ~0xff00) | (native_to_linux_signo[sig] << 8); } } /* * This is very much the same as waitpid() */ int linux_sys_wait4(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_wait4_args /* { syscallarg(int) pid; syscallarg(int *) status; syscallarg(int) options; syscallarg(struct rusage *) rusage; } */ *uap = v; struct proc *p = l->l_proc; struct sys_wait4_args w4a; int error, *status, tstat, options, linux_options; caddr_t sg; if (SCARG(uap, status) != NULL) { sg = stackgap_init(p, 0); status = (int *) stackgap_alloc(p, &sg, sizeof *status); } else status = NULL; linux_options = SCARG(uap, options); options = 0; if (linux_options & ~(LINUX_WAIT4_WNOHANG|LINUX_WAIT4_WUNTRACED|LINUX_WAIT4_WALL| LINUX_WAIT4_WCLONE)) return (EINVAL); if (linux_options & LINUX_WAIT4_WNOHANG) options |= WNOHANG; if (linux_options & LINUX_WAIT4_WUNTRACED) options |= WUNTRACED; if (linux_options & LINUX_WAIT4_WALL) options |= WALLSIG; if (linux_options & LINUX_WAIT4_WCLONE) options |= WALTSIG; SCARG(&w4a, pid) = SCARG(uap, pid); SCARG(&w4a, status) = status; SCARG(&w4a, options) = options; SCARG(&w4a, rusage) = SCARG(uap, rusage); if ((error = sys_wait4(l, &w4a, retval))) return error; sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD); if (status != NULL) { if ((error = copyin(status, &tstat, sizeof tstat))) return error; bsd_to_linux_wstat(&tstat); return copyout(&tstat, SCARG(uap, status), sizeof tstat); } return 0; } /* * Linux brk(2). The check if the new address is >= the old one is * done in the kernel in Linux. NetBSD does it in the library. */ int linux_sys_brk(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_brk_args /* { syscallarg(char *) nsize; } */ *uap = v; struct proc *p = l->l_proc; char *nbrk = SCARG(uap, nsize); struct sys_obreak_args oba; struct vmspace *vm = p->p_vmspace; struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata; SCARG(&oba, nsize) = nbrk; if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0) ed->s->p_break = (char*)nbrk; else nbrk = ed->s->p_break; retval[0] = (register_t)nbrk; return 0; } /* * Convert BSD statfs structure to Linux statfs structure. * The Linux structure has less fields, and it also wants * the length of a name in a dir entry in a field, which * we fake (probably the wrong way). */ static void bsd_to_linux_statfs(bsp, lsp) const struct statvfs *bsp; struct linux_statfs *lsp; { int i; for (i = 0; i < FSTYPESSIZE; i++) if (strcmp(bsp->f_fstypename, fstypes[i].bsd) == 0) break; if (i == FSTYPESSIZE) { DPRINTF(("unhandled fstype in linux emulation: %s\n", bsp->f_fstypename)); lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC; } else { lsp->l_ftype = fstypes[i].linux; } lsp->l_fbsize = bsp->f_frsize; lsp->l_fblocks = bsp->f_blocks; lsp->l_fbfree = bsp->f_bfree; lsp->l_fbavail = bsp->f_bavail; lsp->l_ffiles = bsp->f_files; lsp->l_fffree = bsp->f_ffree; /* Linux sets the fsid to 0..., we don't */ lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0]; lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1]; lsp->l_fnamelen = bsp->f_namemax; (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare)); } /* * Implement the fs stat functions. Straightforward. */ int linux_sys_statfs(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_statfs_args /* { syscallarg(const char *) path; syscallarg(struct linux_statfs *) sp; } */ *uap = v; struct proc *p = l->l_proc; struct statvfs btmp, *bsp; struct linux_statfs ltmp; struct sys_statvfs1_args bsa; caddr_t sg; int error; sg = stackgap_init(p, 0); bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs)); CHECK_ALT_EXIST(p, &sg, SCARG(uap, path)); SCARG(&bsa, path) = SCARG(uap, path); SCARG(&bsa, buf) = bsp; SCARG(&bsa, flags) = ST_WAIT; if ((error = sys_statvfs1(l, &bsa, retval))) return error; if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp))) return error; bsd_to_linux_statfs(&btmp, <mp); return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp); } int linux_sys_fstatfs(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_fstatfs_args /* { syscallarg(int) fd; syscallarg(struct linux_statfs *) sp; } */ *uap = v; struct proc *p = l->l_proc; struct statvfs btmp, *bsp; struct linux_statfs ltmp; struct sys_fstatvfs1_args bsa; caddr_t sg; int error; sg = stackgap_init(p, 0); bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs)); SCARG(&bsa, fd) = SCARG(uap, fd); SCARG(&bsa, buf) = bsp; SCARG(&bsa, flags) = ST_WAIT; if ((error = sys_fstatvfs1(l, &bsa, retval))) return error; if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp))) return error; bsd_to_linux_statfs(&btmp, <mp); return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp); } /* * uname(). Just copy the info from the various strings stored in the * kernel, and put it in the Linux utsname structure. That structure * is almost the same as the NetBSD one, only it has fields 65 characters * long, and an extra domainname field. */ int linux_sys_uname(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_uname_args /* { syscallarg(struct linux_utsname *) up; } */ *uap = v; struct linux_utsname luts; strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); strncpy(luts.l_release, linux_release, sizeof(luts.l_release)); strncpy(luts.l_version, linux_version, sizeof(luts.l_version)); strncpy(luts.l_machine, machine, sizeof(luts.l_machine)); strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); return copyout(&luts, SCARG(uap, up), sizeof(luts)); } /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ /* Used indirectly on: arm, i386, m68k */ /* * New type Linux mmap call. * Only called directly on machines with >= 6 free regs. */ int linux_sys_mmap(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_mmap_args /* { syscallarg(unsigned long) addr; syscallarg(size_t) len; syscallarg(int) prot; syscallarg(int) flags; syscallarg(int) fd; syscallarg(linux_off_t) offset; } */ *uap = v; if (SCARG(uap, offset) & PAGE_MASK) return EINVAL; return linux_mmap(l, uap, retval, SCARG(uap, offset)); } /* * Guts of most architectures' mmap64() implementations. This shares * its list of arguments with linux_sys_mmap(). * * The difference in linux_sys_mmap2() is that "offset" is actually * (offset / pagesize), not an absolute byte count. This translation * to pagesize offsets is done inside glibc between the mmap64() call * point, and the actual syscall. */ int linux_sys_mmap2(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_mmap2_args /* { syscallarg(unsigned long) addr; syscallarg(size_t) len; syscallarg(int) prot; syscallarg(int) flags; syscallarg(int) fd; syscallarg(linux_off_t) offset; } */ *uap = v; return linux_mmap(l, uap, retval, ((off_t)SCARG(uap, offset)) << PAGE_SHIFT); } /* * Massage arguments and call system mmap(2). */ static int linux_mmap(l, uap, retval, offset) struct lwp *l; struct linux_sys_mmap_args *uap; register_t *retval; off_t offset; { struct sys_mmap_args cma; int error; size_t mmoff=0; if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) { /* * Request for stack-like memory segment. On linux, this * works by mmap()ping (small) segment, which is automatically * extended when page fault happens below the currently * allocated area. We emulate this by allocating (typically * bigger) segment sized at current stack size limit, and * offsetting the requested and returned address accordingly. * Since physical pages are only allocated on-demand, this * is effectively identical. */ rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur; if (SCARG(uap, len) < ssl) { /* Compute the address offset */ mmoff = round_page(ssl) - SCARG(uap, len); if (SCARG(uap, addr)) SCARG(uap, addr) -= mmoff; SCARG(uap, len) = (size_t) ssl; } } linux_to_bsd_mmap_args(&cma, uap); SCARG(&cma, pos) = offset; error = sys_mmap(l, &cma, retval); if (error) return (error); /* Shift the returned address for stack-like segment if necessary */ if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff) retval[0] += mmoff; return (0); } static void linux_to_bsd_mmap_args(cma, uap) struct sys_mmap_args *cma; const struct linux_sys_mmap_args *uap; { int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); /* XXX XAX ERH: Any other flags here? There are more defined... */ SCARG(cma, addr) = (void *)SCARG(uap, addr); SCARG(cma, len) = SCARG(uap, len); SCARG(cma, prot) = SCARG(uap, prot); if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ SCARG(cma, prot) |= VM_PROT_READ; SCARG(cma, flags) = flags; SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); SCARG(cma, pad) = 0; } int linux_sys_mremap(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_mremap_args /* { syscallarg(void *) old_address; syscallarg(size_t) old_size; syscallarg(size_t) new_size; syscallarg(u_long) flags; } */ *uap = v; struct sys_munmap_args mua; size_t old_size, new_size; int error; old_size = round_page(SCARG(uap, old_size)); new_size = round_page(SCARG(uap, new_size)); /* * Growing mapped region. */ if (new_size > old_size) { /* * XXX Implement me. What we probably want to do is * XXX dig out the guts of the old mapping, mmap that * XXX object again with the new size, then munmap * XXX the old mapping. */ *retval = 0; return (ENOMEM); } /* * Shrinking mapped region. */ if (new_size < old_size) { SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) + new_size; SCARG(&mua, len) = old_size - new_size; error = sys_munmap(l, &mua, retval); *retval = error ? 0 : (register_t)SCARG(uap, old_address); return (error); } /* * No change. */ *retval = (register_t)SCARG(uap, old_address); return (0); } int linux_sys_msync(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_msync_args /* { syscallarg(caddr_t) addr; syscallarg(int) len; syscallarg(int) fl; } */ *uap = v; struct sys___msync13_args bma; /* flags are ignored */ SCARG(&bma, addr) = SCARG(uap, addr); SCARG(&bma, len) = SCARG(uap, len); SCARG(&bma, flags) = SCARG(uap, fl); return sys___msync13(l, &bma, retval); } int linux_sys_mprotect(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_mprotect_args /* { syscallarg(const void *) start; syscallarg(unsigned long) len; syscallarg(int) prot; } */ *uap = v; unsigned long end, start = (unsigned long)SCARG(uap, start), len; int prot = SCARG(uap, prot); struct vm_map_entry *entry; struct vm_map *map = &l->l_proc->p_vmspace->vm_map; if (start & PAGE_MASK) return EINVAL; len = round_page(SCARG(uap, len)); end = start + len; if (end < start) return EINVAL; else if (end == start) return 0; if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; vm_map_lock(map); #ifdef notdef VM_MAP_RANGE_CHECK(map, start, end); #endif if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { vm_map_unlock(map); return ENOMEM; } vm_map_unlock(map); return uvm_map_protect(map, start, end, prot, FALSE); } /* * This code is partly stolen from src/lib/libc/compat-43/times.c */ #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) int linux_sys_times(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_times_args /* { syscallarg(struct times *) tms; } */ *uap = v; struct proc *p = l->l_proc; struct timeval t; int error, s; if (SCARG(uap, tms)) { struct linux_tms ltms; struct rusage ru; calcru(p, &ru.ru_utime, &ru.ru_stime, NULL); ltms.ltms_utime = CONVTCK(ru.ru_utime); ltms.ltms_stime = CONVTCK(ru.ru_stime); ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) return error; } s = splclock(); timersub(&time, &boottime, &t); splx(s); retval[0] = ((linux_clock_t)(CONVTCK(t))); return 0; } #undef CONVTCK /* * Linux 'readdir' call. This code is mostly taken from the * SunOS getdents call (see compat/sunos/sunos_misc.c), though * an attempt has been made to keep it a little cleaner (failing * miserably, because of the cruft needed if count 1 is passed). * * The d_off field should contain the offset of the next valid entry, * but in Linux it has the offset of the entry itself. We emulate * that bug here. * * Read in BSD-style entries, convert them, and copy them out. * * Note that this doesn't handle union-mounted filesystems. */ int linux_sys_getdents(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_getdents_args /* { syscallarg(int) fd; syscallarg(struct linux_dirent *) dent; syscallarg(unsigned int) count; } */ *uap = v; struct proc *p = l->l_proc; struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* Linux-format */ int resid, linux_reclen = 0; /* Linux-format */ struct file *fp; struct uio auio; struct iovec aiov; struct linux_dirent idb; off_t off; /* true file offset */ int buflen, error, eofflag, nbytes, oldcall; struct vattr va; off_t *cookiebuf = NULL, *cookie; int ncookies; /* getvnode() will use the descriptor for us */ if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) { error = EBADF; goto out1; } vp = (struct vnode *)fp->f_data; if (vp->v_type != VDIR) { error = EINVAL; goto out1; } if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p))) goto out1; nbytes = SCARG(uap, count); if (nbytes == 1) { /* emulating old, broken behaviour */ nbytes = sizeof (idb); buflen = max(va.va_blocksize, nbytes); oldcall = 1; } else { buflen = min(MAXBSIZE, nbytes); if (buflen < va.va_blocksize) buflen = va.va_blocksize; oldcall = 0; } buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); off = fp->f_offset; again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_procp = NULL; auio.uio_resid = buflen; auio.uio_offset = off; /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, &ncookies); if (error) goto out; inp = buf; outp = (caddr_t)SCARG(uap, dent); resid = nbytes; if ((len = buflen - auio.uio_resid) == 0) goto eof; for (cookie = cookiebuf; len > 0; len -= reclen) { bdp = (struct dirent *)inp; reclen = bdp->d_reclen; if (reclen & 3) panic("linux_readdir"); if (bdp->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ off = *cookie++; continue; } linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); if (reclen > len || resid < linux_reclen) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a Linux-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = bdp->d_fileno; /* * The old readdir() call misuses the offset and reclen fields. */ if (oldcall) { idb.d_off = (linux_off_t)linux_reclen; idb.d_reclen = (u_short)bdp->d_namlen; } else { if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { compat_offseterr(vp, "linux_getdents"); error = EINVAL; goto out; } idb.d_off = (linux_off_t)off; idb.d_reclen = (u_short)linux_reclen; } strcpy(idb.d_name, bdp->d_name); if ((error = copyout((caddr_t)&idb, outp, linux_reclen))) goto out; /* advance past this real entry */ inp += reclen; off = *cookie++; /* each entry points to itself */ /* advance output past Linux-shaped entry */ outp += linux_reclen; resid -= linux_reclen; if (oldcall) break; } /* if we squished out the whole block, try again */ if (outp == (caddr_t)SCARG(uap, dent)) goto again; fp->f_offset = off; /* update the vnode offset */ if (oldcall) nbytes = resid + linux_reclen; eof: *retval = nbytes - resid; out: VOP_UNLOCK(vp, 0); if (cookiebuf) free(cookiebuf, M_TEMP); free(buf, M_TEMP); out1: FILE_UNUSE(fp, p); return error; } /* * Even when just using registers to pass arguments to syscalls you can * have 5 of them on the i386. So this newer version of select() does * this. */ int linux_sys_select(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_select_args /* { syscallarg(int) nfds; syscallarg(fd_set *) readfds; syscallarg(fd_set *) writefds; syscallarg(fd_set *) exceptfds; syscallarg(struct timeval *) timeout; } */ *uap = v; return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout)); } /* * Common code for the old and new versions of select(). A couple of * things are important: * 1) return the amount of time left in the 'timeout' parameter * 2) select never returns ERESTART on Linux, always return EINTR */ int linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout) struct lwp *l; register_t *retval; int nfds; fd_set *readfds, *writefds, *exceptfds; struct timeval *timeout; { struct sys_select_args bsa; struct proc *p = l->l_proc; struct timeval tv0, tv1, utv, *tvp; caddr_t sg; int error; SCARG(&bsa, nd) = nfds; SCARG(&bsa, in) = readfds; SCARG(&bsa, ou) = writefds; SCARG(&bsa, ex) = exceptfds; SCARG(&bsa, tv) = timeout; /* * Store current time for computation of the amount of * time left. */ if (timeout) { if ((error = copyin(timeout, &utv, sizeof(utv)))) return error; if (itimerfix(&utv)) { /* * The timeval was invalid. Convert it to something * valid that will act as it does under Linux. */ sg = stackgap_init(p, 0); tvp = stackgap_alloc(p, &sg, sizeof(utv)); utv.tv_sec += utv.tv_usec / 1000000; utv.tv_usec %= 1000000; if (utv.tv_usec < 0) { utv.tv_sec -= 1; utv.tv_usec += 1000000; } if (utv.tv_sec < 0) timerclear(&utv); if ((error = copyout(&utv, tvp, sizeof(utv)))) return error; SCARG(&bsa, tv) = tvp; } microtime(&tv0); } error = sys_select(l, &bsa, retval); if (error) { /* * See fs/select.c in the Linux kernel. Without this, * Maelstrom doesn't work. */ if (error == ERESTART) error = EINTR; return error; } if (timeout) { if (*retval) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timersub(&tv1, &tv0, &tv1); timersub(&utv, &tv1, &utv); if (utv.tv_sec < 0) timerclear(&utv); } else timerclear(&utv); if ((error = copyout(&utv, timeout, sizeof(utv)))) return error; } return 0; } /* * Get the process group of a certain process. Look it up * and return the value. */ int linux_sys_getpgid(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_getpgid_args /* { syscallarg(int) pid; } */ *uap = v; struct proc *p = l->l_proc; struct proc *targp; if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) { if ((targp = pfind(SCARG(uap, pid))) == 0) return ESRCH; } else targp = p; retval[0] = targp->p_pgid; return 0; } /* * Set the 'personality' (emulation mode) for the current process. Only * accept the Linux personality here (0). This call is needed because * the Linux ELF crt0 issues it in an ugly kludge to make sure that * ELF binaries run in Linux mode, not SVR4 mode. */ int linux_sys_personality(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_personality_args /* { syscallarg(int) per; } */ *uap = v; if (SCARG(uap, per) != 0) return EINVAL; retval[0] = 0; return 0; } #if defined(__i386__) || defined(__m68k__) /* * The calls are here because of type conversions. */ int linux_sys_setreuid16(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setreuid16_args /* { syscallarg(int) ruid; syscallarg(int) euid; } */ *uap = v; struct sys_setreuid_args bsa; SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? (uid_t)-1 : SCARG(uap, ruid); SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? (uid_t)-1 : SCARG(uap, euid); return sys_setreuid(l, &bsa, retval); } int linux_sys_setregid16(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setregid16_args /* { syscallarg(int) rgid; syscallarg(int) egid; } */ *uap = v; struct sys_setregid_args bsa; SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? (uid_t)-1 : SCARG(uap, rgid); SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? (uid_t)-1 : SCARG(uap, egid); return sys_setregid(l, &bsa, retval); } int linux_sys_setresuid16(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setresuid16_args /* { syscallarg(uid_t) ruid; syscallarg(uid_t) euid; syscallarg(uid_t) suid; } */ *uap = v; struct linux_sys_setresuid16_args lsa; SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? (uid_t)-1 : SCARG(uap, ruid); SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? (uid_t)-1 : SCARG(uap, euid); SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ? (uid_t)-1 : SCARG(uap, suid); return linux_sys_setresuid(l, &lsa, retval); } int linux_sys_setresgid16(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setresgid16_args /* { syscallarg(gid_t) rgid; syscallarg(gid_t) egid; syscallarg(gid_t) sgid; } */ *uap = v; struct linux_sys_setresgid16_args lsa; SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? (gid_t)-1 : SCARG(uap, rgid); SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? (gid_t)-1 : SCARG(uap, egid); SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ? (gid_t)-1 : SCARG(uap, sgid); return linux_sys_setresgid(l, &lsa, retval); } int linux_sys_getgroups16(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_getgroups16_args /* { syscallarg(int) gidsetsize; syscallarg(linux_gid_t *) gidset; } */ *uap = v; struct proc *p = l->l_proc; caddr_t sg; int n, error, i; struct sys_getgroups_args bsa; gid_t *bset, *kbset; linux_gid_t *lset; struct pcred *pc = p->p_cred; n = SCARG(uap, gidsetsize); if (n < 0) return EINVAL; error = 0; bset = kbset = NULL; lset = NULL; if (n > 0) { n = min(pc->pc_ucred->cr_ngroups, n); sg = stackgap_init(p, 0); bset = stackgap_alloc(p, &sg, n * sizeof (gid_t)); kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK); lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK); if (bset == NULL || kbset == NULL || lset == NULL) return ENOMEM; SCARG(&bsa, gidsetsize) = n; SCARG(&bsa, gidset) = bset; error = sys_getgroups(l, &bsa, retval); if (error != 0) goto out; error = copyin(bset, kbset, n * sizeof (gid_t)); if (error != 0) goto out; for (i = 0; i < n; i++) lset[i] = (linux_gid_t)kbset[i]; error = copyout(lset, SCARG(uap, gidset), n * sizeof (linux_gid_t)); } else *retval = pc->pc_ucred->cr_ngroups; out: if (kbset != NULL) free(kbset, M_TEMP); if (lset != NULL) free(lset, M_TEMP); return error; } int linux_sys_setgroups16(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setgroups16_args /* { syscallarg(int) gidsetsize; syscallarg(linux_gid_t *) gidset; } */ *uap = v; struct proc *p = l->l_proc; caddr_t sg; int n; int error, i; struct sys_setgroups_args bsa; gid_t *bset, *kbset; linux_gid_t *lset; n = SCARG(uap, gidsetsize); if (n < 0 || n > NGROUPS) return EINVAL; sg = stackgap_init(p, 0); bset = stackgap_alloc(p, &sg, n * sizeof (gid_t)); lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK); kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK); if (lset == NULL || bset == NULL) return ENOMEM; error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t)); if (error != 0) goto out; for (i = 0; i < n; i++) kbset[i] = (gid_t)lset[i]; error = copyout(kbset, bset, n * sizeof (gid_t)); if (error != 0) goto out; SCARG(&bsa, gidsetsize) = n; SCARG(&bsa, gidset) = bset; error = sys_setgroups(l, &bsa, retval); out: if (lset != NULL) free(lset, M_TEMP); if (kbset != NULL) free(kbset, M_TEMP); return error; } #endif /* __i386__ || __m68k__ */ /* * We have nonexistent fsuid equal to uid. * If modification is requested, refuse. */ int linux_sys_setfsuid(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setfsuid_args /* { syscallarg(uid_t) uid; } */ *uap = v; struct proc *p = l->l_proc; uid_t uid; uid = SCARG(uap, uid); if (p->p_cred->p_ruid != uid) return sys_nosys(l, v, retval); else return (0); } /* XXX XXX XXX */ #ifndef alpha int linux_sys_getfsuid(l, v, retval) struct lwp *l; void *v; register_t *retval; { return sys_getuid(l, v, retval); } #endif int linux_sys_setresuid(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setresuid_args /* { syscallarg(uid_t) ruid; syscallarg(uid_t) euid; syscallarg(uid_t) suid; } */ *uap = v; /* * Note: These checks are a little different than the NetBSD * setreuid(2) call performs. This precisely follows the * behavior of the Linux kernel. */ return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), SCARG(uap, suid), ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); } int linux_sys_getresuid(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_getresuid_args /* { syscallarg(uid_t *) ruid; syscallarg(uid_t *) euid; syscallarg(uid_t *) suid; } */ *uap = v; struct proc *p = l->l_proc; struct pcred *pc = p->p_cred; int error; /* * Linux copies these values out to userspace like so: * * 1. Copy out ruid. * 2. If that succeeds, copy out euid. * 3. If both of those succeed, copy out suid. */ if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid), sizeof(uid_t))) != 0) return (error); if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid), sizeof(uid_t))) != 0) return (error); return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t))); } int linux_sys_ptrace(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_ptrace_args /* { i386, m68k, powerpc: T=int alpha: T=long syscallarg(T) request; syscallarg(T) pid; syscallarg(T) addr; syscallarg(T) data; } */ *uap = v; const int *ptr; int request; int error; ptr = linux_ptrace_request_map; request = SCARG(uap, request); while (*ptr != -1) if (*ptr++ == request) { struct sys_ptrace_args pta; SCARG(&pta, req) = *ptr; SCARG(&pta, pid) = SCARG(uap, pid); SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr); SCARG(&pta, data) = SCARG(uap, data); /* * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually * to continue where the process left off previously. * The same thing is achieved by addr == (caddr_t) 1 * on NetBSD, so rewrite 'addr' appropriately. */ if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) SCARG(&pta, addr) = (caddr_t) 1; error = sys_ptrace(l, &pta, retval); if (error) return error; switch (request) { case LINUX_PTRACE_PEEKTEXT: case LINUX_PTRACE_PEEKDATA: error = copyout (retval, (caddr_t)SCARG(uap, data), sizeof *retval); *retval = SCARG(uap, data); break; default: break; } return error; } else ptr++; return LINUX_SYS_PTRACE_ARCH(l, uap, retval); } int linux_sys_reboot(struct lwp *l, void *v, register_t *retval) { struct linux_sys_reboot_args /* { syscallarg(int) magic1; syscallarg(int) magic2; syscallarg(int) cmd; syscallarg(void *) arg; } */ *uap = v; struct sys_reboot_args /* { syscallarg(int) opt; syscallarg(char *) bootstr; } */ sra; struct proc *p = l->l_proc; int error; if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return(error); if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) return(EINVAL); if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) return(EINVAL); switch (SCARG(uap, cmd)) { case LINUX_REBOOT_CMD_RESTART: SCARG(&sra, opt) = RB_AUTOBOOT; break; case LINUX_REBOOT_CMD_HALT: SCARG(&sra, opt) = RB_HALT; break; case LINUX_REBOOT_CMD_POWER_OFF: SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; break; case LINUX_REBOOT_CMD_RESTART2: /* Reboot with an argument. */ SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; SCARG(&sra, bootstr) = SCARG(uap, arg); break; case LINUX_REBOOT_CMD_CAD_ON: return(EINVAL); /* We don't implement ctrl-alt-delete */ case LINUX_REBOOT_CMD_CAD_OFF: return(0); default: return(EINVAL); } return(sys_reboot(l, &sra, retval)); } /* * Copy of compat_12_sys_swapon(). */ int linux_sys_swapon(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct sys_swapctl_args ua; struct linux_sys_swapon_args /* { syscallarg(const char *) name; } */ *uap = v; SCARG(&ua, cmd) = SWAP_ON; SCARG(&ua, arg) = (void *)SCARG(uap, name); SCARG(&ua, misc) = 0; /* priority */ return (sys_swapctl(l, &ua, retval)); } /* * Stop swapping to the file or block device specified by path. */ int linux_sys_swapoff(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct sys_swapctl_args ua; struct linux_sys_swapoff_args /* { syscallarg(const char *) path; } */ *uap = v; SCARG(&ua, cmd) = SWAP_OFF; SCARG(&ua, arg) = (void *)SCARG(uap, path); return (sys_swapctl(l, &ua, retval)); } /* * Copy of compat_09_sys_setdomainname() */ /* ARGSUSED */ int linux_sys_setdomainname(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setdomainname_args /* { syscallarg(char *) domainname; syscallarg(int) len; } */ *uap = v; int name[2]; name[0] = CTL_KERN; name[1] = KERN_DOMAINNAME; return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname), SCARG(uap, len), l)); } /* * sysinfo() */ /* ARGSUSED */ int linux_sys_sysinfo(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_sysinfo_args /* { syscallarg(struct linux_sysinfo *) arg; } */ *uap = v; struct linux_sysinfo si; struct loadavg *la; si.uptime = time.tv_sec - boottime.tv_sec; la = &averunnable; si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; si.totalram = ctob(physmem); si.freeram = uvmexp.free * uvmexp.pagesize; si.sharedram = 0; /* XXX */ si.bufferram = uvmexp.filepages * uvmexp.pagesize; si.totalswap = uvmexp.swpages * uvmexp.pagesize; si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; si.procs = nprocs; /* The following are only present in newer Linux kernels. */ si.totalbig = 0; si.freebig = 0; si.mem_unit = 1; return (copyout(&si, SCARG(uap, arg), sizeof si)); } #define bsd_to_linux_rlimit1(l, b, f) \ (l)->f = ((b)->f == RLIM_INFINITY || \ ((b)->f & 0xffffffff00000000ULL) != 0) ? \ LINUX_RLIM_INFINITY : (int32_t)(b)->f #define bsd_to_linux_rlimit(l, b) \ bsd_to_linux_rlimit1(l, b, rlim_cur); \ bsd_to_linux_rlimit1(l, b, rlim_max) #define linux_to_bsd_rlimit1(b, l, f) \ (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f #define linux_to_bsd_rlimit(b, l) \ linux_to_bsd_rlimit1(b, l, rlim_cur); \ linux_to_bsd_rlimit1(b, l, rlim_max) static int linux_to_bsd_limit(lim) int lim; { switch (lim) { case LINUX_RLIMIT_CPU: return RLIMIT_CPU; case LINUX_RLIMIT_FSIZE: return RLIMIT_FSIZE; case LINUX_RLIMIT_DATA: return RLIMIT_DATA; case LINUX_RLIMIT_STACK: return RLIMIT_STACK; case LINUX_RLIMIT_CORE: return RLIMIT_CORE; case LINUX_RLIMIT_RSS: return RLIMIT_RSS; case LINUX_RLIMIT_NPROC: return RLIMIT_NPROC; case LINUX_RLIMIT_NOFILE: return RLIMIT_NOFILE; case LINUX_RLIMIT_MEMLOCK: return RLIMIT_MEMLOCK; case LINUX_RLIMIT_AS: case LINUX_RLIMIT_LOCKS: return -EOPNOTSUPP; default: return -EINVAL; } } int linux_sys_getrlimit(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_getrlimit_args /* { syscallarg(int) which; syscallarg(struct orlimit *) rlp; } */ *uap = v; struct proc *p = l->l_proc; caddr_t sg = stackgap_init(p, 0); struct sys_getrlimit_args ap; struct rlimit rl; struct orlimit orl; int error; SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which)); if ((error = SCARG(&ap, which)) < 0) return -error; SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl); if ((error = sys_getrlimit(l, &ap, retval)) != 0) return error; if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0) return error; bsd_to_linux_rlimit(&orl, &rl); return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); } int linux_sys_setrlimit(l, v, retval) struct lwp *l; void *v; register_t *retval; { struct linux_sys_setrlimit_args /* { syscallarg(int) which; syscallarg(struct orlimit *) rlp; } */ *uap = v; struct proc *p = l->l_proc; caddr_t sg = stackgap_init(p, 0); struct sys_setrlimit_args ap; struct rlimit rl; struct orlimit orl; int error; SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which)); SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl); if ((error = SCARG(&ap, which)) < 0) return -error; if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) return error; linux_to_bsd_rlimit(&rl, &orl); /* XXX: alpha complains about this */ if ((error = copyout(&rl, (void *)SCARG(&ap, rlp), sizeof(rl))) != 0) return error; return sys_setrlimit(l, &ap, retval); } #ifndef __mips__ /* XXX: this doesn't look 100% common, at least mips doesn't have it */ int linux_sys_ugetrlimit(l, v, retval) struct lwp *l; void *v; register_t *retval; { return linux_sys_getrlimit(l, v, retval); } #endif /* * This gets called for unsupported syscalls. The difference to sys_nosys() * is that process does not get SIGSYS, the call just returns with ENOSYS. * This is the way Linux does it and glibc depends on this behaviour. */ int linux_sys_nosys(l, v, retval) struct lwp *l; void *v; register_t *retval; { return (ENOSYS); }