/* $NetBSD: fd.c,v 1.6 1995/05/05 16:38:05 leo Exp $ */ /* * Copyright (c) 1995 Leo Weppelman. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Leo Weppelman. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This file contains a driver for the Floppy Disk Controller (FDC) * on the Atari TT. It uses the WD 1772 chip, modified for steprates. * * The ST floppy disk controller shares the access to the DMA circuitry * with other devices. For this reason the floppy disk controller makes * use of some special DMA accessing code. * * Interrupts from the FDC are in fact DMA interrupts which get their * first level handling in 'dma.c' . If the floppy driver is currently * using DMA the interrupt is signalled to 'fdcint'. * * TODO: * - Test it with 2 drives (I don't have them) * - Test it with an HD-drive (Don't have that either) * - Finish ioctl's */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Be verbose for debugging */ /*#define FLP_DEBUG 1 */ #define FDC_MAX_DMA_AD 0x1000000 /* No DMA possible beyond */ /* Parameters for the disk drive. */ #define SECTOR_SIZE 512 /* physical sector size in bytes */ #define NR_DRIVES 2 /* maximum number of drives */ #define NR_TYPES 3 /* number of diskette/drive combinations*/ #define MAX_ERRORS 10 /* how often to try rd/wt before quitting*/ #define STEP_DELAY 6000 /* 6ms (6000us) delay after stepping */ #define INV_TRK 32000 /* Should fit in unsigned short */ #define INV_PART NR_TYPES /* * Driver states */ #define FLP_IDLE 0x00 /* floppy is idle */ #define FLP_MON 0x01 /* idle with motor on */ #define FLP_STAT 0x02 /* determine floppy status */ #define FLP_XFER 0x04 /* read/write data from floppy */ /* * Timer delay's */ #define FLP_MONDELAY (3 * hz) /* motor-on delay */ #define FLP_XFERDELAY (2 * hz) /* timeout on transfer */ #define b_block b_resid /* FIXME: this is not the place */ /* * Global data for all physical floppy devices */ static short selected = 0; /* drive/head currently selected*/ static short motoron = 0; /* motor is spinning */ static short nopens = 0; /* Number of opens executed */ static short fd_state = FLP_IDLE; /* Current driver state */ static int lock_stat= 0; /* dma locking status */ static short fd_cmd = 0; /* command being executed */ static char *fd_error= NULL; /* error from fd_xfer_ok() */ /* * Private per device data */ struct fd_softc { struct dkdevice dkdev; struct buf bufq; /* queue of buf's */ int unit; /* unit for atari controlling hw*/ int nheads; /* number of heads in use */ int nsectors; /* number of sectors/track */ int nblocks; /* number of blocks on disk */ int curtrk; /* track head positioned on */ short flags; /* misc flags */ short part; /* Current open partition */ int sector; /* logical sector for I/O */ caddr_t io_data; /* KVA for data transfer */ int io_bytes; /* bytes left for I/O */ int io_dir; /* B_READ/B_WRITE */ int errcnt; /* current error count */ u_char *bounceb; /* Bounce buffer */ }; /* * Flags in fd_softc: */ #define FLPF_NOTRESP 0x001 /* Unit not responding */ #define FLPF_ISOPEN 0x002 /* Unit is open */ #define FLPF_ISHD 0x004 /* Use High Density */ #define FLPF_HAVELAB 0x008 /* We have a valid label */ #define FLPF_BOUNCE 0x010 /* Now using the bounce buffer */ #define FLPF_WRTPROT 0x020 /* Unit is write-protected */ #define FLPF_EMPTY 0x040 /* Unit is empty */ #define FLPF_INOPEN 0x080 /* Currently being opened */ #define FLPF_GETSTAT 0x100 /* Getting unit status */ struct fd_types { int nheads; /* Heads in use */ int nsectors; /* sectors per track */ int nblocks; /* number of blocks */ } fdtypes[NR_TYPES] = { { 1, 9, 720 }, /* 360 Kb */ { 2, 9, 1440 }, /* 720 Kb */ { 1, 18, 2880 }, /* 1.44 Mb */ }; typedef void (*FPV)(); /* * Private drive functions.... */ static void fdstart __P((struct fd_softc *)); static void fddone __P((struct fd_softc *)); static void fdstatus __P((struct fd_softc *)); static void fd_xfer __P((struct fd_softc *)); static void fdcint __P((struct fd_softc *)); static int fd_xfer_ok __P((struct fd_softc *)); static void fdmotoroff __P((struct fd_softc *)); static int fdminphys __P((struct buf *)); static void fdtestdrv __P((struct fd_softc *)); static int fdgetdisklabel __P((struct fd_softc *, dev_t)); extern __inline__ u_char read_fdreg(u_short regno) { DMA->dma_mode = regno; return(DMA->dma_data); } extern __inline__ void write_fdreg(u_short regno, u_short val) { DMA->dma_mode = regno; DMA->dma_data = val; } extern __inline__ u_char read_dmastat(void) { DMA->dma_mode = FDC_CS | DMA_SCREG; return(DMA->dma_stat); } /* * Autoconfig stuff.... */ static int fdcmatch __P((struct device *, struct cfdata *, void *)); static int fdcprint __P((void *, char *)); static void fdcattach __P((struct device *, struct device *, void *)); struct cfdriver fdccd = { NULL, "fdc", (cfmatch_t)fdcmatch, fdcattach, DV_DULL, sizeof(struct device), NULL, 0 }; static int fdcmatch(pdp, cfp, auxp) struct device *pdp; struct cfdata *cfp; void *auxp; { if(strcmp("fdc", auxp) || cfp->cf_unit != 0) return(0); return(1); } static void fdcattach(pdp, dp, auxp) struct device *pdp, *dp; void *auxp; { struct fd_softc fdsoftc; int i, nfound = 0; printf("\n"); for(i = 0; i < NR_DRIVES; i++) { /* * Test if unit is present */ fdsoftc.unit = i; fdsoftc.flags = 0; st_dmagrab(fdcint, fdtestdrv, &fdsoftc, &lock_stat, 0); st_dmafree(&fdsoftc, &lock_stat); if(!(fdsoftc.flags & FLPF_NOTRESP)) { nfound++; config_found(dp, (void*)i, fdcprint); } } if(nfound) { /* * enable disk related interrupts */ MFP->mf_ierb |= IB_DINT; MFP->mf_iprb &= ~IB_DINT; MFP->mf_imrb |= IB_DINT; } } static int fdcprint(auxp, pnp) void *auxp; char *pnp; { return(UNCONF); } static int fdmatch __P((struct device *, struct cfdata *, void *)); static void fdattach __P((struct device *, struct device *, void *)); void fdstrategy __P((struct buf *)); struct dkdriver fddkdriver = { fdstrategy }; struct cfdriver fdcd = { NULL, "fd", (cfmatch_t)fdmatch, fdattach, DV_DISK, sizeof(struct fd_softc), NULL, 0 }; static int fdmatch(pdp, cfp, auxp) struct device *pdp; struct cfdata *cfp; void *auxp; { int unit = (int)auxp; return(1); } static void fdattach(pdp, dp, auxp) struct device *pdp, *dp; void *auxp; { struct fd_softc *sc; sc = (struct fd_softc *)dp; printf("\n"); sc->dkdev.dk_driver = &fddkdriver; } fdioctl(dev, cmd, addr, flag, p) dev_t dev; u_long cmd; int flag; caddr_t addr; struct proc *p; { struct fd_softc *sc; void *data; sc = getsoftc(fdcd, DISKUNIT(dev)); if((sc->flags & FLPF_HAVELAB) == 0) return(EBADF); switch(cmd) { case DIOCSBAD: return(EINVAL); case DIOCGDINFO: *(struct disklabel *)addr = sc->dkdev.dk_label; return(0); case DIOCGPART: ((struct partinfo *)addr)->disklab = &sc->dkdev.dk_label; ((struct partinfo *)addr)->part = &sc->dkdev.dk_label.d_partitions[DISKPART(dev)]; return(0); #ifdef notyet /* XXX LWP */ case DIOCSRETRIES: case DIOCSSTEP: case DIOCSDINFO: case DIOCWDINFO: case DIOCWLABEL: #endif /* notyet */ default: return(ENOTTY); } } /* * Open the device. If this is the first open on both the floppy devices, * intialize the controller. * Note that partition info on the floppy device is used to distinguise * between 780Kb and 360Kb floppy's. * partition 0: 360Kb * partition 1: 780Kb */ Fdopen(dev, flags, devtype, proc) dev_t dev; int flags, devtype; struct proc *proc; { struct fd_softc *sc; int sps; #ifdef FLP_DEBUG printf("Fdopen dev=0x%x\n", dev); #endif if(DISKPART(dev) >= NR_TYPES) return(ENXIO); if((sc = getsoftc(fdcd, DISKUNIT(dev))) == NULL) return(ENXIO); /* * If no floppy currently open, reset the controller and select * floppy type. */ if(!nopens) { #ifdef FLP_DEBUG printf("Fdopen device not yet open\n"); #endif nopens++; write_fdreg(FDC_CS, IRUPT); } /* * Sleep while other process is opening the device */ sps = splbio(); while(sc->flags & FLPF_INOPEN) tsleep((caddr_t)sc, PRIBIO, "Fdopen", 0); splx(sps); if(!(sc->flags & FLPF_ISOPEN)) { /* * Initialise some driver values. */ int part = DISKPART(dev); void *addr; sc->bufq.b_actf = NULL; sc->unit = DISKUNIT(dev); sc->part = part; sc->nheads = fdtypes[part].nheads; sc->nsectors = fdtypes[part].nsectors; sc->nblocks = fdtypes[part].nblocks; sc->curtrk = INV_TRK; sc->sector = 0; sc->errcnt = 0; sc->bounceb = (u_char*)alloc_stmem(SECTOR_SIZE, &addr); if(sc->bounceb == NULL) return(ENOMEM); /* XXX */ if(sc->nsectors > 9) /* XXX */ sc->flags |= FLPF_ISHD; /* * Go get write protect + loaded status */ sc->flags |= FLPF_INOPEN|FLPF_GETSTAT; sps = splbio(); st_dmagrab(fdcint, fdstatus, sc, &lock_stat, 0); while(sc->flags & FLPF_GETSTAT) tsleep((caddr_t)sc, PRIBIO, "Fdopen", 0); splx(sps); wakeup((caddr_t)sc); if((sc->flags & FLPF_WRTPROT) && (flags & FWRITE)) { sc->flags = 0; return(EPERM); } if(sc->flags & FLPF_EMPTY) { sc->flags = 0; return(ENXIO); } sc->flags &= ~(FLPF_INOPEN|FLPF_GETSTAT); sc->flags |= FLPF_ISOPEN; } else { /* * Multiply opens are granted when accessing the same type of * floppy (eq. the same partition). */ if(sc->part != DISKPART(dev)) return(ENXIO); /* XXX temporarely out of business */ } fdgetdisklabel(sc, dev); #ifdef FLP_DEBUG printf("Fdopen open succeeded on type %d\n", sc->part); #endif } fdclose(dev, flags, devtype, proc) dev_t dev; int flags, devtype; struct proc *proc; { struct fd_softc *sc; sc = getsoftc(fdcd, DISKUNIT(dev)); free_stmem(sc->bounceb); sc->flags = 0; nopens--; #ifdef FLP_DEBUG printf("Closed floppy device -- nopens: %d\n", nopens); #endif return(0); } void fdstrategy(bp) struct buf *bp; { struct fd_softc *sc; int sps, nblocks; sc = getsoftc(fdcd, DISKUNIT(bp->b_dev)); #ifdef FLP_DEBUG printf("fdstrategy: 0x%x\n", bp); #endif /* * check for valid partition and bounds */ nblocks = (bp->b_bcount + SECTOR_SIZE - 1) / SECTOR_SIZE; if((bp->b_blkno < 0) || ((bp->b_blkno + nblocks) >= sc->nblocks)) { if((bp->b_blkno == sc->nblocks) && (bp->b_flags & B_READ)) { /* * Read 1 block beyond, return EOF */ bp->b_resid = bp->b_bcount; goto done; } /* * Try to limit the size of the transaction, adjust count * if we succeed. */ nblocks = sc->nblocks - bp->b_blkno; if((nblocks <= 0) || (bp->b_blkno < 0)) { bp->b_error = EINVAL; bp->b_flags |= B_ERROR; goto done; } bp->b_bcount = nblocks * SECTOR_SIZE; } if(bp->b_bcount == 0) goto done; /* * Set order info for disksort */ bp->b_block = bp->b_blkno / (sc->nsectors * sc->nheads); /* * queue the buf and kick the low level code */ sps = splbio(); disksort(&sc->bufq, bp); if(!lock_stat) { if(fd_state & FLP_MON) untimeout((FPV)fdmotoroff, (void*)sc); fd_state = FLP_IDLE; st_dmagrab(fdcint, fdstart, sc, &lock_stat, 0); } splx(sps); return; done: bp->b_resid = bp->b_bcount; biodone(bp); } /* * no dumps to floppy disks thank you. */ int fddump(dev_t dev) { return(ENXIO); } /* * no dumps to floppy disks thank you. */ int fdsize(dev) dev_t dev; { return(-1); } int fdread(dev, uio) dev_t dev; struct uio *uio; { return(physio(cdevsw[major(dev)].d_strategy, (struct buf *)NULL, dev, B_READ, fdminphys, uio)); } int fdwrite(dev, uio) dev_t dev; struct uio *uio; { return(physio(cdevsw[major(dev)].d_strategy, (struct buf *)NULL, dev, B_WRITE, fdminphys, uio)); } /* * Called through DMA-dispatcher, get status. */ static void fdstatus(sc) struct fd_softc *sc; { #ifdef FLP_DEBUG printf("fdstatus\n"); #endif sc->errcnt = 0; fd_state = FLP_STAT; /* * Make sure the floppy controller is the correct density mode */ if(sc->flags & FLPF_ISHD) DMA->dma_drvmode |= (FDC_HDSET|FDC_HDSIG); else DMA->dma_drvmode &= ~(FDC_HDSET|FDC_HDSIG); fd_xfer(sc); } /* * Called through the dma-dispatcher. So we know we are the only ones * messing with the floppy-controler. * Initialize some fields in the fdsoftc for the state-machine and get * it going. */ static void fdstart(sc) struct fd_softc *sc; { struct buf *bp; bp = sc->bufq.b_actf; sc->sector = bp->b_blkno; /* Start sector for I/O */ sc->io_data = bp->b_data; /* KVA base for I/O */ sc->io_bytes = bp->b_bcount; /* Transfer size in bytes */ sc->io_dir = bp->b_flags & B_READ;/* Direction of transfer */ sc->errcnt = 0; /* No errors yet */ fd_state = FLP_XFER; /* Yes, we're going to transfer */ /* * Make sure the floppy controller is the correct density mode */ if(sc->flags & FLPF_ISHD) DMA->dma_drvmode |= (FDC_HDSET|FDC_HDSIG); else DMA->dma_drvmode &= ~(FDC_HDSET|FDC_HDSIG); fd_xfer(sc); } /* * The current transaction is finished (for good or bad). Let go of * the the dma-resources. Call biodone() to finish the transaction. * Find a new transaction to work on. */ static void fddone(sc) register struct fd_softc *sc; { struct buf *bp, *dp; struct fd_softc *sc1; int i, sps; /* * Lower clock frequency of FDC (better for some old ones). */ DMA->dma_drvmode &= ~(FDC_HDSET|FDC_HDSIG); /* * Give others a chance to use the dma. */ st_dmafree(sc, &lock_stat); if(fd_state != FLP_STAT) { /* * Finish current transaction. */ sps = splbio(); dp = &sc->bufq; bp = dp->b_actf; if(bp == NULL) panic("fddone"); dp->b_actf = bp->b_actf; splx(sps); #ifdef FLP_DEBUG printf("fddone: unit: %d, buf: %x, resid: %d\n",sc->unit,bp, sc->io_bytes); #endif bp->b_resid = sc->io_bytes; biodone(bp); } fd_state = FLP_MON; if(lock_stat) return; /* XXX Is this possible? */ /* * Find a new transaction on round-robin basis. */ for(i = sc->unit + 1; ;i++) { if(i >= fdcd.cd_ndevs) i = 0; if((sc1 = fdcd.cd_devs[i]) == NULL) continue; if(sc1->bufq.b_actf) break; if(i == sc->unit) { timeout((FPV)fdmotoroff, (void*)sc, FLP_MONDELAY); #ifdef FLP_DEBUG printf("fddone: Nothing to do\n"); #endif return; /* No work */ } } fd_state = FLP_IDLE; #ifdef FLP_DEBUG printf("fddone: Staring job on unit %d\n", sc1->unit); #endif st_dmagrab(fdcint, fdstart, sc1, &lock_stat, 0); } /**************************************************************************** * The following functions assume to be running as a result of a * * disk-interrupt (e.q. spl = splbio). * * They form the finit-state machine, the actual driver. * * * * fdstart()/ --> fd_xfer() -> activate hardware * * fdopen() ^ * * | * * +-- not ready -<------------+ * * | * * fdmotoroff()/ --> fdcint() -> fd_xfer_ok() ---+ * * h/w interrupt | * * \|/ * * finished ---> fdone() * * * ****************************************************************************/ static void fd_xfer(sc) struct fd_softc *sc; { register int head = 0; register int track, sector, hbit; int i; u_long phys_addr; switch(fd_state) { case FLP_XFER: /* * Calculate head/track values */ track = sc->sector / sc->nsectors; head = track % sc->nheads; track = track / sc->nheads; #ifdef FLP_DEBUG printf("fd_xfer: sector:%d,head:%d,track:%d\n", sc->sector,head, track); #endif break; case FLP_STAT: /* * FLP_STAT only wants to recalibrate */ sc->curtrk = INV_TRK; break; default: panic("fd_xfer: wrong state (0x%x)", fd_state); } /* * Determine if the controller should check spin-up. */ hbit = motoron ? HBIT : 0; motoron = 1; /* * Select the right unit and head. */ i = (sc->unit ? PA_FLOP1 : PA_FLOP0) | head; if(i != selected) { selected = i; SOUND->sd_selr = YM_IOA; SOUND->sd_wdat = (SOUND->sd_rdat & 0xF8) | (i ^ 0x07); } if(sc->curtrk == INV_TRK) { /* * Recalibrate, since we lost track of head positioning. * The floppy disk controller has no way of determining its * absolute arm position (track). Instead, it steps the * arm a track at a time and keeps track of where it * thinks it is (in software). However, after a SEEK, the * hardware reads information from the diskette telling * where the arm actually is. If the arm is in the wrong place, * a recalibration is done, which forces the arm to track 0. * This way the controller can get back into sync with reality. */ write_fdreg(FDC_CS, RESTORE|VBIT|hbit); fd_cmd = RESTORE; timeout((FPV)fdmotoroff, (void*)sc, FLP_XFERDELAY); #ifdef FLP_DEBUG printf("fd_xfer:Recalibrating drive %d\n", sc->unit); #endif return; } write_fdreg(FDC_TR, sc->curtrk); /* * Issue a SEEK command on the indicated drive unless the arm is * already positioned on the correct track. */ if(track != sc->curtrk) { sc->curtrk = track; /* be optimistic */ write_fdreg(FDC_DR, track); write_fdreg(FDC_CS, SEEK|RATE6|VBIT|hbit); timeout((FPV)fdmotoroff, (void*)sc, FLP_XFERDELAY); fd_cmd = SEEK; #ifdef FLP_DEBUG printf("fd_xfer:Seek to track %d on drive %d\n",track,sc->unit); #endif return; } /* * The drive is now on the proper track. Read or write 1 block. */ sector = sc->sector % sc->nsectors; sector++; /* start numbering at 1 */ write_fdreg(FDC_SR, sector); phys_addr = (u_long)kvtop(sc->io_data); if(phys_addr >= FDC_MAX_DMA_AD) { /* * We _must_ bounce this address */ phys_addr = (u_long)kvtop(sc->bounceb); if(sc->io_dir == B_WRITE) bcopy(sc->io_data, sc->bounceb, SECTOR_SIZE); sc->flags |= FLPF_BOUNCE; } st_dmaaddr((caddr_t)phys_addr); /* DMA address setup */ #ifdef FLP_DEBUG printf("fd_xfer:Start io (io_addr:%x)\n", kvtop(sc->io_data)); #endif if(sc->io_dir == B_READ) { /* Issue the command */ st_dmacomm(DMA_FDC | DMA_SCREG, 1); write_fdreg(FDC_CS, F_READ|hbit); fd_cmd = F_READ; } else { /* Issue the command */ st_dmacomm(DMA_WRBIT | DMA_FDC | DMA_SCREG, 1); write_fdreg(DMA_WRBIT | FDC_CS, F_WRITE|hbit|EBIT|PBIT); fd_cmd = F_WRITE; } timeout((FPV)fdmotoroff, (void*)sc, FLP_XFERDELAY); } /* return values of fd_xfer_ok(): */ #define X_OK 0 #define X_AGAIN 1 #define X_ERROR 2 #define X_FAIL 3 /* * Hardware interrupt function. */ static void fdcint(sc) struct fd_softc *sc; { struct buf *bp; #ifdef FLP_DEBUG printf("fdcint: unit = %d\n", sc->unit); #endif /* * Cancel timeout (we made it, didn't we) */ untimeout((FPV)fdmotoroff, (void*)sc); switch(fd_xfer_ok(sc)) { case X_ERROR : if(++(sc->errcnt) < MAX_ERRORS) { /* * Command failed but still retries left. */ break; } /* FALL THROUGH */ case X_FAIL : /* * Non recoverable error. Fall back to motor-on * idle-state. */ if(fd_state == FLP_STAT) { sc->flags |= FLPF_EMPTY; sc->flags &= ~FLPF_GETSTAT; wakeup((caddr_t)sc); fddone(sc); return; } bp = sc->bufq.b_actf; bp->b_error = EIO; bp->b_flags |= B_ERROR; fd_state = FLP_MON; if(fd_error != NULL) { printf("Floppy error: %s\n", fd_error); fd_error = NULL; } break; case X_AGAIN: /* * Start next part of state machine. */ break; case X_OK: /* * Command ok and finished. Reset error-counter. * If there are no more bytes to transfer fall back * to motor-on idle state. */ sc->errcnt = 0; if(fd_state == FLP_STAT) { sc->flags &= ~FLPF_GETSTAT; wakeup((caddr_t)sc); fddone(sc); return; } if((sc->flags & FLPF_BOUNCE) && (sc->io_dir == B_READ)) bcopy(sc->bounceb, sc->io_data, SECTOR_SIZE); sc->flags &= ~FLPF_BOUNCE; sc->sector++; sc->io_data += SECTOR_SIZE; sc->io_bytes -= SECTOR_SIZE; if(sc->io_bytes <= 0) fd_state = FLP_MON; } if(fd_state == FLP_MON) fddone(sc); else fd_xfer(sc); } /* * Determine status of last command. Should only be called through * 'fdcint()'. * Returns: * X_ERROR : Error on command; might succeed next time. * X_FAIL : Error on command; will never succeed. * X_AGAIN : Part of a command succeeded, call 'fd_xfer()' to complete. * X_OK : Command succeeded and is complete. * * This function only affects sc->curtrk. */ static int fd_xfer_ok(sc) register struct fd_softc *sc; { register int status; #ifdef FLP_DEBUG printf("fd_xfer_ok: cmd: 0x%x, state: 0x%x\n", fd_cmd, fd_state); #endif switch(fd_cmd) { case IRUPT: /* * Timeout. Force a recalibrate before we try again. */ fd_error = "Timeout"; sc->curtrk = INV_TRK; return(X_ERROR); case F_READ: /* * Test for DMA error */ status = read_dmastat(); if(!(status & DMAOK)) { fd_error = "Dma error"; return(X_ERROR); } /* * Get controller status and check for errors. */ status = read_fdreg(FDC_CS); if(status & (RNF | CRCERR | LD_T00)) { fd_error = "Read error"; if(status & RNF) sc->curtrk = INV_TRK; return(X_ERROR); } break; case F_WRITE: /* * Test for DMA error */ status = read_dmastat(); if(!(status & DMAOK)) { fd_error = "Dma error"; return(X_ERROR); } /* * Get controller status and check for errors. */ status = read_fdreg(FDC_CS); if(status & WRI_PRO) { fd_error = "Write protected"; return(X_FAIL); } if(status & (RNF | CRCERR | LD_T00)) { fd_error = "Write error"; sc->curtrk = INV_TRK; return(X_ERROR); } break; case SEEK: status = read_fdreg(FDC_CS); if(status & (RNF | CRCERR)) { fd_error = "Seek error"; sc->curtrk = INV_TRK; return(X_ERROR); } return(X_AGAIN); case RESTORE: /* * Determine if the recalibration succeeded. */ status = read_fdreg(FDC_CS); if(status & RNF) { fd_error = "Recalibrate error"; /* reset controller */ write_fdreg(FDC_CS, IRUPT); sc->curtrk = INV_TRK; return(X_ERROR); } sc->curtrk = 0; if(fd_state == FLP_STAT) { if(status & WRI_PRO) sc->flags |= FLPF_WRTPROT; break; } return(X_AGAIN); default: fd_error = "Driver error: fd_xfer_ok : Unknown state"; return(X_FAIL); } return(X_OK); } /* * All timeouts will call this function. */ static void fdmotoroff(sc) struct fd_softc *sc; { int sps, wrbit; /* * Get at harware interrupt level */ sps = splbio(); #if FLP_DEBUG printf("fdmotoroff, state = 0x%x\n", fd_state); #endif switch(fd_state) { case FLP_STAT : case FLP_XFER : /* * Timeout during a transfer; cancel transaction * set command to 'IRUPT'. * A drive-interrupt is simulated to trigger the state * machine. */ /* * Cancel current transaction */ wrbit = (fd_cmd == F_WRITE) ? DMA_WRBIT : 0; fd_cmd = IRUPT; write_fdreg(FDC_CS, wrbit|IRUPT); /* * Simulate floppy interrupt. */ fdcint(sc); return; case FLP_MON : /* * Turn motor off. */ if(selected) { SOUND->sd_selr = YM_IOA; SOUND->sd_wdat = SOUND->sd_rdat | 0x07; motoron = selected = 0; } fd_state = FLP_IDLE; break; } splx(sps); } /* * min byte count to whats left of the track in question */ static int fdminphys(bp) struct buf *bp; { struct fd_softc *sc; int sec, toff, tsz; if((sc = getsoftc(fdcd, DISKUNIT(bp->b_dev))) == NULL) return(ENXIO); sec = bp->b_blkno % (sc->nsectors * sc->nheads); toff = sec * SECTOR_SIZE; tsz = sc->nsectors * sc->nheads * SECTOR_SIZE; #ifdef FLP_DEBUG printf("fdminphys: before %d", bp->b_bcount); #endif bp->b_bcount = min(bp->b_bcount, tsz - toff); #ifdef FLP_DEBUG printf(" after %d\n", bp->b_bcount); #endif return(bp->b_bcount); } /* * Used to find out wich drives are actually connected. We do this by issueing * is 'RESTORE' command and check if the 'track-0' bit is set. This also works * if the drive is present but no floppy is inserted. */ static void fdtestdrv(fdsoftc) struct fd_softc *fdsoftc; { int i, status; /* * Select the right unit and head. */ i = fdsoftc->unit ? PA_FLOP1 : PA_FLOP0; if(i != selected) { selected = i; SOUND->sd_selr = YM_IOA; SOUND->sd_wdat = (SOUND->sd_rdat & 0xF8) | (i ^ 0x07); } write_fdreg(FDC_CS, RESTORE|VBIT|HBIT); /* * Wait for about 2 seconds. */ delay(2000000); status = read_fdreg(FDC_CS); if(status & (RNF|BUSY)) write_fdreg(FDC_CS, IRUPT); /* reset controller */ if(!(status & LD_T00)) fdsoftc->flags |= FLPF_NOTRESP; } /* * Build disk label. For now we only create a label from what we know * from 'sc'. */ static int fdgetdisklabel(sc, dev) struct fd_softc *sc; dev_t dev; { struct disklabel *lp, *dlp; int part; /* * If we already got one, get out. */ if(sc->flags & FLPF_HAVELAB) return(0); #ifdef FLP_DEBUG printf("fdgetdisklabel()\n"); #endif part = DISKPART(dev); lp = &sc->dkdev.dk_label; bzero(lp, sizeof(struct disklabel)); lp->d_secsize = SECTOR_SIZE; lp->d_ntracks = sc->nheads; lp->d_nsectors = sc->nsectors; lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; lp->d_ncylinders = sc->nblocks / lp->d_secpercyl; lp->d_secperunit = sc->nblocks; lp->d_type = DTYPE_FLOPPY; lp->d_rpm = 300; /* good guess I suppose. */ lp->d_interleave = 1; /* FIXME: is this OK? */ lp->d_bbsize = 0; lp->d_sbsize = 0; lp->d_npartitions = part + 1; lp->d_trkseek = STEP_DELAY; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); lp->d_partitions[part].p_size = lp->d_secperunit; lp->d_partitions[part].p_fstype = FS_UNUSED; lp->d_partitions[part].p_fsize = 1024; lp->d_partitions[part].p_frag = 8; sc->flags |= FLPF_HAVELAB; return(0); }