/* $NetBSD: vfp_init.c,v 1.55 2017/10/16 15:13:00 bouyer Exp $ */ /* * Copyright (c) 2008 ARM Ltd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include /* for pmap.h */ #ifdef FPU_VFP #ifdef CPU_CORTEX __asm(".fpu\tvfpv4"); #else __asm(".fpu\tvfp"); #endif /* FLDMD , {d0-d15} */ static inline void load_vfpregs_lo(const uint64_t *p) { __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory"); } /* FSTMD , {d0-d15} */ static inline void save_vfpregs_lo(uint64_t *p) { __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory"); } #ifdef CPU_CORTEX /* FLDMD , {d16-d31} */ static inline void load_vfpregs_hi(const uint64_t *p) { __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory"); } /* FLDMD , {d16-d31} */ static inline void save_vfpregs_hi(uint64_t *p) { __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory"); } #endif static inline void load_vfpregs(const struct vfpreg *fregs) { load_vfpregs_lo(fregs->vfp_regs); #ifdef CPU_CORTEX #ifdef CPU_ARM11 switch (curcpu()->ci_vfp_id) { case FPU_VFP_CORTEXA5: case FPU_VFP_CORTEXA7: case FPU_VFP_CORTEXA8: case FPU_VFP_CORTEXA9: case FPU_VFP_CORTEXA15: case FPU_VFP_CORTEXA15_QEMU: case FPU_VFP_CORTEXA53: case FPU_VFP_CORTEXA57: #endif load_vfpregs_hi(fregs->vfp_regs); #ifdef CPU_ARM11 break; } #endif #endif } static inline void save_vfpregs(struct vfpreg *fregs) { save_vfpregs_lo(fregs->vfp_regs); #ifdef CPU_CORTEX #ifdef CPU_ARM11 switch (curcpu()->ci_vfp_id) { case FPU_VFP_CORTEXA5: case FPU_VFP_CORTEXA7: case FPU_VFP_CORTEXA8: case FPU_VFP_CORTEXA9: case FPU_VFP_CORTEXA15: case FPU_VFP_CORTEXA15_QEMU: case FPU_VFP_CORTEXA53: case FPU_VFP_CORTEXA57: #endif save_vfpregs_hi(fregs->vfp_regs); #ifdef CPU_ARM11 break; } #endif #endif } /* The real handler for VFP bounces. */ static int vfp_handler(u_int, u_int, trapframe_t *, int); #ifdef CPU_CORTEX static int neon_handler(u_int, u_int, trapframe_t *, int); #endif static void vfp_state_load(lwp_t *, u_int); static void vfp_state_save(lwp_t *); static void vfp_state_release(lwp_t *); const pcu_ops_t arm_vfp_ops = { .pcu_id = PCU_FPU, .pcu_state_save = vfp_state_save, .pcu_state_load = vfp_state_load, .pcu_state_release = vfp_state_release, }; /* determine what bits can be changed */ uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM; /* default to run fast */ uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN); /* * Used to test for a VFP. The following function is installed as a coproc10 * handler on the undefined instruction vector and then we issue a VFP * instruction. If undefined_test is non zero then the VFP did not handle * the instruction so must be absent, or disabled. */ static int undefined_test; static int vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code) { frame->tf_pc += INSN_SIZE; ++undefined_test; return 0; } #else /* determine what bits can be changed */ uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE; #endif /* FPU_VFP */ static int vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code) { struct lwp * const l = curlwp; const u_int regno = (insn >> 12) & 0xf; /* * Only match move to/from the FPSCR register and we * can't be using the SP,LR,PC as a source. */ if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12) return 1; struct pcb * const pcb = lwp_getpcb(l); #ifdef FPU_VFP /* * If FPU is valid somewhere, let's just reenable VFP and * retry the instruction (only safe thing to do since the * pcb has a stale copy). */ if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN) return 1; if (__predict_false(!vfp_used_p(l))) { pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default; } #endif /* * We now know the pcb has the saved copy. */ register_t * const regp = &frame->tf_r0 + regno; if (insn & 0x00100000) { *regp = pcb->pcb_vfp.vfp_fpscr; } else { pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable; pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable; } curcpu()->ci_vfp_evs[0].ev_count++; frame->tf_pc += INSN_SIZE; return 0; } #ifndef FPU_VFP /* * If we don't want VFP support, we still need to handle emulating VFP FPSCR * instructions. */ void vfp_attach(struct cpu_info *ci) { if (CPU_IS_PRIMARY(ci)) { install_coproc_handler(VFP_COPROC, vfp_fpscr_handler); } evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname, "vfp fpscr traps"); } #else void vfp_attach(struct cpu_info *ci) { const char *model = NULL; if (CPU_ID_ARM11_P(ci->ci_arm_cpuid) || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid) || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) { #if 0 const uint32_t nsacr = armreg_nsacr_read(); const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2); if ((nsacr & nsacr_vfp) != nsacr_vfp) { aprint_normal_dev(ci->ci_dev, "VFP access denied (NSACR=%#x)\n", nsacr); install_coproc_handler(VFP_COPROC, vfp_fpscr_handler); ci->ci_vfp_id = 0; evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname, "vfp fpscr traps"); return; } #endif const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC); const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2); /* * We first need to enable access to the coprocessors. */ uint32_t cpacr = armreg_cpacr_read(); cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp); cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2); armreg_cpacr_write(cpacr); arm_isb(); /* * If we could enable them, then they exist. */ cpacr = armreg_cpacr_read(); bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL; if (!vfp_p) { aprint_normal_dev(ci->ci_dev, "VFP access denied (CPACR=%#x)\n", cpacr); install_coproc_handler(VFP_COPROC, vfp_fpscr_handler); ci->ci_vfp_id = 0; evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname, "vfp fpscr traps"); return; } } void *uh = install_coproc_handler(VFP_COPROC, vfp_test); undefined_test = 0; const uint32_t fpsid = armreg_fpsid_read(); remove_coproc_handler(uh); if (undefined_test != 0) { aprint_normal_dev(ci->ci_dev, "No VFP detected\n"); install_coproc_handler(VFP_COPROC, vfp_fpscr_handler); ci->ci_vfp_id = 0; return; } ci->ci_vfp_id = fpsid; switch (fpsid & ~ VFP_FPSID_REV_MSK) { case FPU_VFP10_ARM10E: model = "VFP10 R1"; break; case FPU_VFP11_ARM11: model = "VFP11"; break; case FPU_VFP_MV88SV58XX: model = "VFP3"; break; case FPU_VFP_CORTEXA5: case FPU_VFP_CORTEXA7: case FPU_VFP_CORTEXA8: case FPU_VFP_CORTEXA9: case FPU_VFP_CORTEXA15: case FPU_VFP_CORTEXA15_QEMU: case FPU_VFP_CORTEXA53: case FPU_VFP_CORTEXA57: if (armreg_cpacr_read() & CPACR_V7_ASEDIS) { model = "VFP 4.0+"; } else { model = "NEON MPE (VFP 3.0+)"; cpu_neon_present = 1; } break; default: aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n", fpsid); install_coproc_handler(VFP_COPROC, vfp_fpscr_handler); vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM |VFP_FPSCR_RMODE; vfp_fpscr_default = 0; return; } cpu_fpu_present = 1; cpu_media_and_vfp_features[0] = armreg_mvfr0_read(); cpu_media_and_vfp_features[1] = armreg_mvfr1_read(); if (fpsid != 0) { uint32_t f0 = armreg_mvfr0_read(); uint32_t f1 = armreg_mvfr1_read(); aprint_normal("vfp%d at %s: %s%s%s%s%s\n", device_unit(ci->ci_dev), device_xname(ci->ci_dev), model, ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""), ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""), ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""), ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : "")); aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n", device_unit(ci->ci_dev), f0, f1); if (CPU_IS_PRIMARY(ci)) { if (f0 & ARM_MVFR0_ROUNDING_MASK) { vfp_fpscr_changable |= VFP_FPSCR_RMODE; } if (f1 & ARM_MVFR0_EXCEPT_MASK) { vfp_fpscr_changable |= VFP_FPSCR_ESUM; } // If hardware supports propagation of NaNs, select it. if (f1 & ARM_MVFR1_D_NAN_MASK) { vfp_fpscr_default &= ~VFP_FPSCR_DN; vfp_fpscr_changable |= VFP_FPSCR_DN; } // If hardware supports denormalized numbers, use it. if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) { vfp_fpscr_default &= ~VFP_FPSCR_FZ; vfp_fpscr_changable |= VFP_FPSCR_FZ; } } } evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL, ci->ci_cpuname, "vfp coproc use"); evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL, ci->ci_cpuname, "vfp coproc re-use"); evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname, "vfp coproc fault"); install_coproc_handler(VFP_COPROC, vfp_handler); install_coproc_handler(VFP_COPROC2, vfp_handler); #ifdef CPU_CORTEX if (cpu_neon_present) install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler); #endif } /* The real handler for VFP bounces. */ static int vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code) { struct cpu_info * const ci = curcpu(); /* This shouldn't ever happen. */ if (fault_code != FAULT_USER) panic("VFP fault at %#x in non-user mode", frame->tf_pc); if (ci->ci_vfp_id == 0) { /* No VFP detected, just fault. */ return 1; } /* * If we are just changing/fetching FPSCR, don't bother loading it * just emulate the instruction. */ if (!vfp_fpscr_handler(address, insn, frame, fault_code)) return 0; /* * If we already own the FPU and it's enabled (and no exception), raise * SIGILL. If there is an exception, drop through to raise a SIGFPE. */ if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN) return 1; /* * Make sure we own the FP. */ pcu_load(&arm_vfp_ops); uint32_t fpexc = armreg_fpexc_read(); if (fpexc & VFP_FPEXC_EX) { ksiginfo_t ksi; KASSERT(fpexc & VFP_FPEXC_EN); curcpu()->ci_vfp_evs[2].ev_count++; /* * Need the clear the exception condition so any signal * and future use can proceed. */ armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM)); pcu_save(&arm_vfp_ops, curlwp); /* * XXX Need to emulate bounce instructions here to get correct * XXX exception codes, etc. */ KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGFPE; if (fpexc & VFP_FPEXC_IXF) ksi.ksi_code = FPE_FLTRES; else if (fpexc & VFP_FPEXC_UFF) ksi.ksi_code = FPE_FLTUND; else if (fpexc & VFP_FPEXC_OFF) ksi.ksi_code = FPE_FLTOVF; else if (fpexc & VFP_FPEXC_DZF) ksi.ksi_code = FPE_FLTDIV; else if (fpexc & VFP_FPEXC_IOF) ksi.ksi_code = FPE_FLTINV; ksi.ksi_addr = (uint32_t *)address; ksi.ksi_trap = 0; trapsignal(curlwp, &ksi); return 0; } /* Need to restart the faulted instruction. */ // frame->tf_pc -= INSN_SIZE; return 0; } #ifdef CPU_CORTEX /* The real handler for NEON bounces. */ static int neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code) { struct cpu_info * const ci = curcpu(); if (ci->ci_vfp_id == 0) /* No VFP detected, just fault. */ return 1; if ((insn & 0xfe000000) != 0xf2000000 && (insn & 0xfe000000) != 0xf4000000) /* Not NEON instruction, just fault. */ return 1; /* This shouldn't ever happen. */ if (fault_code != FAULT_USER) panic("NEON fault in non-user mode"); /* if we already own the FPU and it's enabled, raise SIGILL */ if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0) return 1; pcu_load(&arm_vfp_ops); /* Need to restart the faulted instruction. */ // frame->tf_pc -= INSN_SIZE; return 0; } #endif static void vfp_state_load(lwp_t *l, u_int flags) { struct pcb * const pcb = lwp_getpcb(l); struct vfpreg * const fregs = &pcb->pcb_vfp; /* * Instrument VFP usage -- if a process has not previously * used the VFP, mark it as having used VFP for the first time, * and count this event. * * If a process has used the VFP, count a "used VFP, and took * a trap to use it again" event. */ if (__predict_false((flags & PCU_VALID) == 0)) { curcpu()->ci_vfp_evs[0].ev_count++; pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default; } else { curcpu()->ci_vfp_evs[1].ev_count++; } KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0); /* * If the VFP is already enabled we must be bouncing an instruction. */ if (flags & PCU_REENABLE) { uint32_t fpexc = armreg_fpexc_read(); armreg_fpexc_write(fpexc | VFP_FPEXC_EN); fregs->vfp_fpexc |= VFP_FPEXC_EN; return; } KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0); /* * Load and Enable the VFP (so that we can write the registers). */ fregs->vfp_fpexc |= VFP_FPEXC_EN; armreg_fpexc_write(fregs->vfp_fpexc); KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL); KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL); load_vfpregs(fregs); armreg_fpscr_write(fregs->vfp_fpscr); if (fregs->vfp_fpexc & VFP_FPEXC_EX) { /* Need to restore the exception handling state. */ armreg_fpinst_write(fregs->vfp_fpinst); if (fregs->vfp_fpexc & VFP_FPEXC_FP2V) armreg_fpinst2_write(fregs->vfp_fpinst2); } } void vfp_state_save(lwp_t *l) { struct pcb * const pcb = lwp_getpcb(l); struct vfpreg * const fregs = &pcb->pcb_vfp; uint32_t fpexc = armreg_fpexc_read(); KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l); KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]); KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu()); /* * Enable the VFP (so we can read the registers). * Make sure the exception bit is cleared so that we can * safely dump the registers. */ armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX); fregs->vfp_fpexc = fpexc; if (fpexc & VFP_FPEXC_EX) { /* Need to save the exception handling state */ fregs->vfp_fpinst = armreg_fpinst_read(); if (fpexc & VFP_FPEXC_FP2V) fregs->vfp_fpinst2 = armreg_fpinst2_read(); } fregs->vfp_fpscr = armreg_fpscr_read(); save_vfpregs(fregs); /* Disable the VFP. */ armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN); } void vfp_state_release(lwp_t *l) { struct pcb * const pcb = lwp_getpcb(l); /* * Now mark the VFP as disabled (and our state * has been already saved or is being discarded). */ pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN; /* * Turn off the FPU so the next time a VFP instruction is issued * an exception happens. We don't know if this LWP's state was * loaded but if we turned off the FPU for some other LWP, when * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN * is still set so it just restore fpexc and return since its * contents are still sitting in the VFP. */ armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN); } void vfp_savecontext(lwp_t *l) { pcu_save(&arm_vfp_ops, l); } void vfp_discardcontext(lwp_t *l, bool used_p) { pcu_discard(&arm_vfp_ops, l, used_p); } bool vfp_used_p(const lwp_t *l) { return pcu_valid_p(&arm_vfp_ops, l); } void vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp) { if (vfp_used_p(l)) { const struct pcb * const pcb = lwp_getpcb(l); pcu_save(&arm_vfp_ops, l); mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr; memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs, sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx)); *flagsp |= _UC_FPU|_UC_ARM_VFP; } } void vfp_setcontext(struct lwp *l, const mcontext_t *mcp) { struct pcb * const pcb = lwp_getpcb(l); pcu_discard(&arm_vfp_ops, l, true); pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr; memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx, sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx)); } #endif /* FPU_VFP */