/* $NetBSD: pthread_mutex.c,v 1.47.2.1 2008/05/18 12:30:40 yamt Exp $ */ /*- * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __RCSID("$NetBSD: pthread_mutex.c,v 1.47.2.1 2008/05/18 12:30:40 yamt Exp $"); #include #include #include #include #include #include #include #include "pthread.h" #include "pthread_int.h" #define pt_nextwaiter pt_sleep.ptqe_next #define MUTEX_WAITERS_BIT ((uintptr_t)0x01) #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02) #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04) #define MUTEX_THREAD ((uintptr_t)-16L) #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT) #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT) #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD) #if __GNUC_PREREQ__(3, 0) #define NOINLINE __attribute ((noinline)) #else #define NOINLINE /* nothing */ #endif static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *); static int pthread__mutex_lock_slow(pthread_mutex_t *); static int pthread__mutex_unlock_slow(pthread_mutex_t *); static void pthread__mutex_pause(void); int _pthread_mutex_held_np(pthread_mutex_t *); pthread_t _pthread_mutex_owner_np(pthread_mutex_t *); __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np) __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np) __strong_alias(__libc_mutex_init,pthread_mutex_init) __strong_alias(__libc_mutex_lock,pthread_mutex_lock) __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock) __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock) __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy) __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init) __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy) __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype) __strong_alias(__libc_thr_once,pthread_once) int pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr) { intptr_t type; if (attr == NULL) type = PTHREAD_MUTEX_NORMAL; else type = (intptr_t)attr->ptma_private; switch (type) { case PTHREAD_MUTEX_ERRORCHECK: ptm->ptm_errorcheck = 1; ptm->ptm_owner = NULL; break; case PTHREAD_MUTEX_RECURSIVE: ptm->ptm_errorcheck = 0; ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT; break; default: ptm->ptm_errorcheck = 0; ptm->ptm_owner = NULL; break; } ptm->ptm_magic = _PT_MUTEX_MAGIC; ptm->ptm_waiters = NULL; ptm->ptm_recursed = 0; return 0; } int pthread_mutex_destroy(pthread_mutex_t *ptm) { pthread__error(EINVAL, "Invalid mutex", ptm->ptm_magic == _PT_MUTEX_MAGIC); pthread__error(EBUSY, "Destroying locked mutex", MUTEX_OWNER(ptm->ptm_owner) == 0); ptm->ptm_magic = _PT_MUTEX_DEAD; return 0; } int pthread_mutex_lock(pthread_mutex_t *ptm) { pthread_t self; void *val; self = pthread__self(); val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self); if (__predict_true(val == NULL)) { #ifndef PTHREAD__ATOMIC_IS_MEMBAR membar_enter(); #endif return 0; } return pthread__mutex_lock_slow(ptm); } /* We want function call overhead. */ NOINLINE static void pthread__mutex_pause(void) { pthread__smt_pause(); } /* * Spin while the holder is running. 'lwpctl' gives us the true * status of the thread. pt_blocking is set by libpthread in order * to cut out system call and kernel spinlock overhead on remote CPUs * (could represent many thousands of clock cycles). pt_blocking also * makes this thread yield if the target is calling sched_yield(). */ NOINLINE static void * pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner) { pthread_t thread; unsigned int count, i; for (count = 2;; owner = ptm->ptm_owner) { thread = (pthread_t)MUTEX_OWNER(owner); if (thread == NULL) break; if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE || thread->pt_blocking) break; if (count < 128) count += count; for (i = count; i != 0; i--) pthread__mutex_pause(); } return owner; } NOINLINE static int pthread__mutex_lock_slow(pthread_mutex_t *ptm) { void *waiters, *new, *owner, *next; pthread_t self; pthread__error(EINVAL, "Invalid mutex", ptm->ptm_magic == _PT_MUTEX_MAGIC); owner = ptm->ptm_owner; self = pthread__self(); /* Recursive or errorcheck? */ if (MUTEX_OWNER(owner) == (uintptr_t)self) { if (MUTEX_RECURSIVE(owner)) { if (ptm->ptm_recursed == INT_MAX) return EAGAIN; ptm->ptm_recursed++; return 0; } if (ptm->ptm_errorcheck) return EDEADLK; } for (;; owner = ptm->ptm_owner) { /* Spin while the owner is running. */ owner = pthread__mutex_spin(ptm, owner); /* If it has become free, try to acquire it again. */ if (MUTEX_OWNER(owner) == 0) { do { new = (void *) ((uintptr_t)self | (uintptr_t)owner); next = atomic_cas_ptr(&ptm->ptm_owner, owner, new); if (next == owner) { #ifndef PTHREAD__ATOMIC_IS_MEMBAR membar_enter(); #endif return 0; } owner = next; } while (MUTEX_OWNER(owner) == 0); /* * We have lost the race to acquire the mutex. * The new owner could be running on another * CPU, in which case we should spin and avoid * the overhead of blocking. */ continue; } /* * Nope, still held. Add thread to the list of waiters. * Issue a memory barrier to ensure sleeponq/nextwaiter * are visible before we enter the waiters list. */ self->pt_sleeponq = 1; for (waiters = ptm->ptm_waiters;; waiters = next) { self->pt_nextwaiter = waiters; membar_producer(); next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self); if (next == waiters) break; } /* * Set the waiters bit and block. * * Note that the mutex can become unlocked before we set * the waiters bit. If that happens it's not safe to sleep * as we may never be awoken: we must remove the current * thread from the waiters list and try again. * * Because we are doing this atomically, we can't remove * one waiter: we must remove all waiters and awken them, * then sleep in _lwp_park() until we have been awoken. * * Issue a memory barrier to ensure that we are reading * the value of ptm_owner/pt_sleeponq after we have entered * the waiters list (the CAS itself must be atomic). */ membar_consumer(); for (owner = ptm->ptm_owner;; owner = next) { if (MUTEX_HAS_WAITERS(owner)) break; if (MUTEX_OWNER(owner) == 0) { pthread__mutex_wakeup(self, ptm); break; } new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT); next = atomic_cas_ptr(&ptm->ptm_owner, owner, new); if (next == owner) { /* * pthread_mutex_unlock() can do a * non-interlocked CAS. We cannot * know if our attempt to set the * waiters bit has succeeded while * the holding thread is running. * There are many assumptions; see * sys/kern/kern_mutex.c for details. * In short, we must spin if we see * that the holder is running again. */ membar_sync(); next = pthread__mutex_spin(ptm, owner); } } /* * We may have been awoken by the current thread above, * or will be awoken by the current holder of the mutex. * The key requirement is that we must not proceed until * told that we are no longer waiting (via pt_sleeponq * being set to zero). Otherwise it is unsafe to re-enter * the thread onto the waiters list. */ while (self->pt_sleeponq) { self->pt_blocking++; (void)_lwp_park(NULL, 0, __UNVOLATILE(&ptm->ptm_waiters), NULL); self->pt_blocking--; membar_sync(); } } } int pthread_mutex_trylock(pthread_mutex_t *ptm) { pthread_t self; void *val, *new, *next; self = pthread__self(); val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self); if (__predict_true(val == NULL)) { #ifndef PTHREAD__ATOMIC_IS_MEMBAR membar_enter(); #endif return 0; } if (MUTEX_RECURSIVE(val)) { if (MUTEX_OWNER(val) == 0) { new = (void *)((uintptr_t)self | (uintptr_t)val); next = atomic_cas_ptr(&ptm->ptm_owner, val, new); if (__predict_true(next == val)) { #ifndef PTHREAD__ATOMIC_IS_MEMBAR membar_enter(); #endif return 0; } } if (MUTEX_OWNER(val) == (uintptr_t)self) { if (ptm->ptm_recursed == INT_MAX) return EAGAIN; ptm->ptm_recursed++; return 0; } } return EBUSY; } int pthread_mutex_unlock(pthread_mutex_t *ptm) { pthread_t self; void *value; /* * Note this may be a non-interlocked CAS. See lock_slow() * above and sys/kern/kern_mutex.c for details. */ #ifndef PTHREAD__ATOMIC_IS_MEMBAR membar_exit(); #endif self = pthread__self(); value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL); if (__predict_true(value == self)) return 0; return pthread__mutex_unlock_slow(ptm); } NOINLINE static int pthread__mutex_unlock_slow(pthread_mutex_t *ptm) { pthread_t self, owner, new; int weown, error, deferred; pthread__error(EINVAL, "Invalid mutex", ptm->ptm_magic == _PT_MUTEX_MAGIC); self = pthread__self(); owner = ptm->ptm_owner; weown = (MUTEX_OWNER(owner) == (uintptr_t)self); deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT); error = 0; if (ptm->ptm_errorcheck) { if (!weown) { error = EPERM; new = owner; } else { new = NULL; } } else if (MUTEX_RECURSIVE(owner)) { if (!weown) { error = EPERM; new = owner; } else if (ptm->ptm_recursed) { ptm->ptm_recursed--; new = owner; } else { new = (pthread_t)MUTEX_RECURSIVE_BIT; } } else { pthread__error(EPERM, "Unlocking unlocked mutex", (owner != NULL)); pthread__error(EPERM, "Unlocking mutex owned by another thread", weown); new = NULL; } /* * Release the mutex. If there appear to be waiters, then * wake them up. */ if (new != owner) { owner = atomic_swap_ptr(&ptm->ptm_owner, new); if (MUTEX_HAS_WAITERS(owner) != 0) { pthread__mutex_wakeup(self, ptm); return 0; } } /* * There were no waiters, but we may have deferred waking * other threads until mutex unlock - we must wake them now. */ if (!deferred) return error; if (self->pt_nwaiters == 1) { /* * If the calling thread is about to block, defer * unparking the target until _lwp_park() is called. */ if (self->pt_willpark && self->pt_unpark == 0) { self->pt_unpark = self->pt_waiters[0]; self->pt_unparkhint = __UNVOLATILE(&ptm->ptm_waiters); } else { (void)_lwp_unpark(self->pt_waiters[0], __UNVOLATILE(&ptm->ptm_waiters)); } } else { (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters, __UNVOLATILE(&ptm->ptm_waiters)); } self->pt_nwaiters = 0; return error; } static void pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm) { pthread_t thread, next; ssize_t n, rv; /* * Take ownership of the current set of waiters. No * need for a memory barrier following this, all loads * are dependent upon 'thread'. */ thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL); for (;;) { /* * Pull waiters from the queue and add to our list. * Use a memory barrier to ensure that we safely * read the value of pt_nextwaiter before 'thread' * sees pt_sleeponq being cleared. */ for (n = self->pt_nwaiters, self->pt_nwaiters = 0; n < pthread__unpark_max && thread != NULL; thread = next) { next = thread->pt_nextwaiter; if (thread != self) { self->pt_waiters[n++] = thread->pt_lid; membar_sync(); } thread->pt_sleeponq = 0; /* No longer safe to touch 'thread' */ } switch (n) { case 0: return; case 1: /* * If the calling thread is about to block, * defer unparking the target until _lwp_park() * is called. */ if (self->pt_willpark && self->pt_unpark == 0) { self->pt_unpark = self->pt_waiters[0]; self->pt_unparkhint = __UNVOLATILE(&ptm->ptm_waiters); return; } rv = (ssize_t)_lwp_unpark(self->pt_waiters[0], __UNVOLATILE(&ptm->ptm_waiters)); if (rv != 0 && errno != EALREADY && errno != EINTR && errno != ESRCH) { pthread__errorfunc(__FILE__, __LINE__, __func__, "_lwp_unpark failed"); } return; default: rv = _lwp_unpark_all(self->pt_waiters, (size_t)n, __UNVOLATILE(&ptm->ptm_waiters)); if (rv != 0 && errno != EINTR) { pthread__errorfunc(__FILE__, __LINE__, __func__, "_lwp_unpark_all failed"); } break; } } } int pthread_mutexattr_init(pthread_mutexattr_t *attr) { attr->ptma_magic = _PT_MUTEXATTR_MAGIC; attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT; return 0; } int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) { pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); return 0; } int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep) { pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); *typep = (int)(intptr_t)attr->ptma_private; return 0; } int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) { pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); switch (type) { case PTHREAD_MUTEX_NORMAL: case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_RECURSIVE: attr->ptma_private = (void *)(intptr_t)type; return 0; default: return EINVAL; } } static void once_cleanup(void *closure) { pthread_mutex_unlock((pthread_mutex_t *)closure); } int pthread_once(pthread_once_t *once_control, void (*routine)(void)) { if (once_control->pto_done == 0) { pthread_mutex_lock(&once_control->pto_mutex); pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex); if (once_control->pto_done == 0) { routine(); once_control->pto_done = 1; } pthread_cleanup_pop(1); } return 0; } int pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm) { if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread) return 0; atomic_or_ulong((volatile unsigned long *) (uintptr_t)&ptm->ptm_owner, (unsigned long)MUTEX_DEFERRED_BIT); return 1; } int _pthread_mutex_held_np(pthread_mutex_t *ptm) { return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self(); } pthread_t _pthread_mutex_owner_np(pthread_mutex_t *ptm) { return (pthread_t)MUTEX_OWNER(ptm->ptm_owner); }