/* m68k.y -- bison grammar for m68k operand parsing Copyright (C) 1995-2015 Free Software Foundation, Inc. Written by Ken Raeburn and Ian Lance Taylor, Cygnus Support This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* This file holds a bison grammar to parse m68k operands. The m68k has a complicated operand syntax, and gas supports two main variations of it. Using a grammar is probably overkill, but at least it makes clear exactly what we do support. */ %{ #include "as.h" #include "tc-m68k.h" #include "m68k-parse.h" #include "safe-ctype.h" /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), as well as gratuitously global symbol names If other parser generators (bison, byacc, etc) produce additional global names that conflict at link time, then those parser generators need to be fixed instead of adding those names to this list. */ #define yymaxdepth m68k_maxdepth #define yyparse m68k_parse #define yylex m68k_lex #define yyerror m68k_error #define yylval m68k_lval #define yychar m68k_char #define yydebug m68k_debug #define yypact m68k_pact #define yyr1 m68k_r1 #define yyr2 m68k_r2 #define yydef m68k_def #define yychk m68k_chk #define yypgo m68k_pgo #define yyact m68k_act #define yyexca m68k_exca #define yyerrflag m68k_errflag #define yynerrs m68k_nerrs #define yyps m68k_ps #define yypv m68k_pv #define yys m68k_s #define yy_yys m68k_yys #define yystate m68k_state #define yytmp m68k_tmp #define yyv m68k_v #define yy_yyv m68k_yyv #define yyval m68k_val #define yylloc m68k_lloc #define yyreds m68k_reds /* With YYDEBUG defined */ #define yytoks m68k_toks /* With YYDEBUG defined */ #define yylhs m68k_yylhs #define yylen m68k_yylen #define yydefred m68k_yydefred #define yydgoto m68k_yydgoto #define yysindex m68k_yysindex #define yyrindex m68k_yyrindex #define yygindex m68k_yygindex #define yytable m68k_yytable #define yycheck m68k_yycheck #ifndef YYDEBUG #define YYDEBUG 1 #endif /* Internal functions. */ static enum m68k_register m68k_reg_parse (char **); static int yylex (void); static void yyerror (const char *); /* The parser sets fields pointed to by this global variable. */ static struct m68k_op *op; %} %union { struct m68k_indexreg indexreg; enum m68k_register reg; struct m68k_exp exp; unsigned long mask; int onereg; int trailing_ampersand; } %token DR AR FPR FPCR LPC ZAR ZDR LZPC CREG %token INDEXREG %token EXPR %type zireg zdireg %type zadr zdr apc zapc zpc optzapc optczapc %type optcexpr optexprc %type reglist ireglist reglistpair %type reglistreg %type optional_ampersand %% /* An operand. */ operand: generic_operand | motorola_operand optional_ampersand { op->trailing_ampersand = $2; } | mit_operand optional_ampersand { op->trailing_ampersand = $2; } ; /* A trailing ampersand(for MAC/EMAC mask addressing). */ optional_ampersand: /* empty */ { $$ = 0; } | '&' { $$ = 1; } ; /* A generic operand. */ generic_operand: '<' '<' { op->mode = LSH; } | '>' '>' { op->mode = RSH; } | DR { op->mode = DREG; op->reg = $1; } | AR { op->mode = AREG; op->reg = $1; } | FPR { op->mode = FPREG; op->reg = $1; } | FPCR { op->mode = CONTROL; op->reg = $1; } | CREG { op->mode = CONTROL; op->reg = $1; } | EXPR { op->mode = ABSL; op->disp = $1; } | '#' EXPR { op->mode = IMMED; op->disp = $2; } | '&' EXPR { op->mode = IMMED; op->disp = $2; } | reglist { op->mode = REGLST; op->mask = $1; } ; /* An operand in Motorola syntax. This includes MRI syntax as well, which may or may not be different in that it permits commutativity of index and base registers, and permits an offset expression to appear inside or outside of the parentheses. */ motorola_operand: '(' AR ')' { op->mode = AINDR; op->reg = $2; } | '(' AR ')' '+' { op->mode = AINC; op->reg = $2; } | '-' '(' AR ')' { op->mode = ADEC; op->reg = $3; } | '(' EXPR ',' zapc ')' { op->reg = $4; op->disp = $2; if (($4 >= ZADDR0 && $4 <= ZADDR7) || $4 == ZPC) op->mode = BASE; else op->mode = DISP; } | '(' zapc ',' EXPR ')' { op->reg = $2; op->disp = $4; if (($2 >= ZADDR0 && $2 <= ZADDR7) || $2 == ZPC) op->mode = BASE; else op->mode = DISP; } | EXPR '(' zapc ')' { op->reg = $3; op->disp = $1; if (($3 >= ZADDR0 && $3 <= ZADDR7) || $3 == ZPC) op->mode = BASE; else op->mode = DISP; } | '(' LPC ')' { op->mode = DISP; op->reg = $2; } | '(' ZAR ')' { op->mode = BASE; op->reg = $2; } | '(' LZPC ')' { op->mode = BASE; op->reg = $2; } | '(' EXPR ',' zapc ',' zireg ')' { op->mode = BASE; op->reg = $4; op->disp = $2; op->index = $6; } | '(' EXPR ',' zapc ',' zpc ')' { if ($4 == PC || $4 == ZPC) yyerror (_("syntax error")); op->mode = BASE; op->reg = $6; op->disp = $2; op->index.reg = $4; op->index.size = SIZE_UNSPEC; op->index.scale = 1; } | '(' EXPR ',' zdireg optczapc ')' { op->mode = BASE; op->reg = $5; op->disp = $2; op->index = $4; } | '(' zdireg ',' EXPR ')' { op->mode = BASE; op->disp = $4; op->index = $2; } | EXPR '(' zapc ',' zireg ')' { op->mode = BASE; op->reg = $3; op->disp = $1; op->index = $5; } | '(' zapc ',' zireg ')' { op->mode = BASE; op->reg = $2; op->index = $4; } | EXPR '(' zapc ',' zpc ')' { if ($3 == PC || $3 == ZPC) yyerror (_("syntax error")); op->mode = BASE; op->reg = $5; op->disp = $1; op->index.reg = $3; op->index.size = SIZE_UNSPEC; op->index.scale = 1; } | '(' zapc ',' zpc ')' { if ($2 == PC || $2 == ZPC) yyerror (_("syntax error")); op->mode = BASE; op->reg = $4; op->index.reg = $2; op->index.size = SIZE_UNSPEC; op->index.scale = 1; } | EXPR '(' zdireg optczapc ')' { op->mode = BASE; op->reg = $4; op->disp = $1; op->index = $3; } | '(' zdireg optczapc ')' { op->mode = BASE; op->reg = $3; op->index = $2; } | '(' '[' EXPR optczapc ']' ',' zireg optcexpr ')' { op->mode = POST; op->reg = $4; op->disp = $3; op->index = $7; op->odisp = $8; } | '(' '[' EXPR optczapc ']' optcexpr ')' { op->mode = POST; op->reg = $4; op->disp = $3; op->odisp = $6; } | '(' '[' zapc ']' ',' zireg optcexpr ')' { op->mode = POST; op->reg = $3; op->index = $6; op->odisp = $7; } | '(' '[' zapc ']' optcexpr ')' { op->mode = POST; op->reg = $3; op->odisp = $5; } | '(' '[' EXPR ',' zapc ',' zireg ']' optcexpr ')' { op->mode = PRE; op->reg = $5; op->disp = $3; op->index = $7; op->odisp = $9; } | '(' '[' zapc ',' zireg ']' optcexpr ')' { op->mode = PRE; op->reg = $3; op->index = $5; op->odisp = $7; } | '(' '[' EXPR ',' zapc ',' zpc ']' optcexpr ')' { if ($5 == PC || $5 == ZPC) yyerror (_("syntax error")); op->mode = PRE; op->reg = $7; op->disp = $3; op->index.reg = $5; op->index.size = SIZE_UNSPEC; op->index.scale = 1; op->odisp = $9; } | '(' '[' zapc ',' zpc ']' optcexpr ')' { if ($3 == PC || $3 == ZPC) yyerror (_("syntax error")); op->mode = PRE; op->reg = $5; op->index.reg = $3; op->index.size = SIZE_UNSPEC; op->index.scale = 1; op->odisp = $7; } | '(' '[' optexprc zdireg optczapc ']' optcexpr ')' { op->mode = PRE; op->reg = $5; op->disp = $3; op->index = $4; op->odisp = $7; } ; /* An operand in MIT syntax. */ mit_operand: optzapc '@' { /* We use optzapc to avoid a shift/reduce conflict. */ if ($1 < ADDR0 || $1 > ADDR7) yyerror (_("syntax error")); op->mode = AINDR; op->reg = $1; } | optzapc '@' '+' { /* We use optzapc to avoid a shift/reduce conflict. */ if ($1 < ADDR0 || $1 > ADDR7) yyerror (_("syntax error")); op->mode = AINC; op->reg = $1; } | optzapc '@' '-' { /* We use optzapc to avoid a shift/reduce conflict. */ if ($1 < ADDR0 || $1 > ADDR7) yyerror (_("syntax error")); op->mode = ADEC; op->reg = $1; } | optzapc '@' '(' EXPR ')' { op->reg = $1; op->disp = $4; if (($1 >= ZADDR0 && $1 <= ZADDR7) || $1 == ZPC) op->mode = BASE; else op->mode = DISP; } | optzapc '@' '(' optexprc zireg ')' { op->mode = BASE; op->reg = $1; op->disp = $4; op->index = $5; } | optzapc '@' '(' EXPR ')' '@' '(' optexprc zireg ')' { op->mode = POST; op->reg = $1; op->disp = $4; op->index = $9; op->odisp = $8; } | optzapc '@' '(' EXPR ')' '@' '(' EXPR ')' { op->mode = POST; op->reg = $1; op->disp = $4; op->odisp = $8; } | optzapc '@' '(' optexprc zireg ')' '@' '(' EXPR ')' { op->mode = PRE; op->reg = $1; op->disp = $4; op->index = $5; op->odisp = $9; } ; /* An index register, possibly suppressed, which need not have a size or scale. */ zireg: INDEXREG | zadr { $$.reg = $1; $$.size = SIZE_UNSPEC; $$.scale = 1; } ; /* A register which may be an index register, but which may not be an address register. This nonterminal is used to avoid ambiguity when trying to parse something like (0,d5,a6) as compared to (0,a6,d5). */ zdireg: INDEXREG | zdr { $$.reg = $1; $$.size = SIZE_UNSPEC; $$.scale = 1; } ; /* An address or data register, or a suppressed address or data register. */ zadr: zdr | AR | ZAR ; /* A data register which may be suppressed. */ zdr: DR | ZDR ; /* Either an address register or the PC. */ apc: AR | LPC ; /* Either an address register, or the PC, or a suppressed address register, or a suppressed PC. */ zapc: apc | LZPC | ZAR ; /* An optional zapc. */ optzapc: /* empty */ { $$ = ZADDR0; } | zapc ; /* The PC, optionally suppressed. */ zpc: LPC | LZPC ; /* ',' zapc when it may be omitted. */ optczapc: /* empty */ { $$ = ZADDR0; } | ',' zapc { $$ = $2; } ; /* ',' EXPR when it may be omitted. */ optcexpr: /* empty */ { $$.exp.X_op = O_absent; $$.size = SIZE_UNSPEC; } | ',' EXPR { $$ = $2; } ; /* EXPR ',' when it may be omitted. */ optexprc: /* empty */ { $$.exp.X_op = O_absent; $$.size = SIZE_UNSPEC; } | EXPR ',' { $$ = $1; } ; /* A register list for the movem instruction. */ reglist: reglistpair | reglistpair '/' ireglist { $$ = $1 | $3; } | reglistreg '/' ireglist { $$ = (1 << $1) | $3; } ; /* We use ireglist when we know we are looking at a reglist, and we can safely reduce a simple register to reglistreg. If we permitted reglist to reduce to reglistreg, it would be ambiguous whether a plain register were a DREG/AREG/FPREG or a REGLST. */ ireglist: reglistreg { $$ = 1 << $1; } | reglistpair | reglistpair '/' ireglist { $$ = $1 | $3; } | reglistreg '/' ireglist { $$ = (1 << $1) | $3; } ; reglistpair: reglistreg '-' reglistreg { if ($1 <= $3) $$ = (1 << ($3 + 1)) - 1 - ((1 << $1) - 1); else $$ = (1 << ($1 + 1)) - 1 - ((1 << $3) - 1); } ; reglistreg: DR { $$ = $1 - DATA0; } | AR { $$ = $1 - ADDR0 + 8; } | FPR { $$ = $1 - FP0 + 16; } | FPCR { if ($1 == FPI) $$ = 24; else if ($1 == FPS) $$ = 25; else $$ = 26; } ; %% /* The string to parse is stored here, and modified by yylex. */ static char *str; /* The original string pointer. */ static char *strorig; /* If *CCP could be a register, return the register number and advance *CCP. Otherwise don't change *CCP, and return 0. */ static enum m68k_register m68k_reg_parse (char **ccp) { char *start = *ccp; char c; char *p; symbolS *symbolp; if (flag_reg_prefix_optional) { if (*start == REGISTER_PREFIX) start++; p = start; } else { if (*start != REGISTER_PREFIX) return 0; p = start + 1; } if (! is_name_beginner (*p)) return 0; p++; while (is_part_of_name (*p) && *p != '.' && *p != ':' && *p != '*') p++; c = *p; *p = 0; symbolp = symbol_find (start); *p = c; if (symbolp != NULL && S_GET_SEGMENT (symbolp) == reg_section) { *ccp = p; return S_GET_VALUE (symbolp); } /* In MRI mode, something like foo.bar can be equated to a register name. */ while (flag_mri && c == '.') { ++p; while (is_part_of_name (*p) && *p != '.' && *p != ':' && *p != '*') p++; c = *p; *p = '\0'; symbolp = symbol_find (start); *p = c; if (symbolp != NULL && S_GET_SEGMENT (symbolp) == reg_section) { *ccp = p; return S_GET_VALUE (symbolp); } } return 0; } /* The lexer. */ static int yylex (void) { enum m68k_register reg; char *s; int parens; int c = 0; int tail = 0; char *hold; if (*str == ' ') ++str; if (*str == '\0') return 0; /* Various special characters are just returned directly. */ switch (*str) { case '@': /* In MRI mode, this can be the start of an octal number. */ if (flag_mri) { if (ISDIGIT (str[1]) || ((str[1] == '+' || str[1] == '-') && ISDIGIT (str[2]))) break; } /* Fall through. */ case '#': case '&': case ',': case ')': case '/': case '[': case ']': case '<': case '>': return *str++; case '+': /* It so happens that a '+' can only appear at the end of an operand, or if it is trailed by an '&'(see mac load insn). If it appears anywhere else, it must be a unary. */ if (str[1] == '\0' || (str[1] == '&' && str[2] == '\0')) return *str++; break; case '-': /* A '-' can only appear in -(ar), rn-rn, or ar@-. If it appears anywhere else, it must be a unary minus on an expression, unless it it trailed by a '&'(see mac load insn). */ if (str[1] == '\0' || (str[1] == '&' && str[2] == '\0')) return *str++; s = str + 1; if (*s == '(') ++s; if (m68k_reg_parse (&s) != 0) return *str++; break; case '(': /* A '(' can only appear in `(reg)', `(expr,...', `([', `@(', or `)('. If it appears anywhere else, it must be starting an expression. */ if (str[1] == '[' || (str > strorig && (str[-1] == '@' || str[-1] == ')'))) return *str++; s = str + 1; if (m68k_reg_parse (&s) != 0) return *str++; /* Check for the case of '(expr,...' by scanning ahead. If we find a comma outside of balanced parentheses, we return '('. If we find an unbalanced right parenthesis, then presumably the '(' really starts an expression. */ parens = 0; for (s = str + 1; *s != '\0'; s++) { if (*s == '(') ++parens; else if (*s == ')') { if (parens == 0) break; --parens; } else if (*s == ',' && parens == 0) { /* A comma can not normally appear in an expression, so this is a case of '(expr,...'. */ return *str++; } } } /* See if it's a register. */ reg = m68k_reg_parse (&str); if (reg != 0) { int ret; yylval.reg = reg; if (reg >= DATA0 && reg <= DATA7) ret = DR; else if (reg >= ADDR0 && reg <= ADDR7) ret = AR; else if (reg >= FP0 && reg <= FP7) return FPR; else if (reg == FPI || reg == FPS || reg == FPC) return FPCR; else if (reg == PC) return LPC; else if (reg >= ZDATA0 && reg <= ZDATA7) ret = ZDR; else if (reg >= ZADDR0 && reg <= ZADDR7) ret = ZAR; else if (reg == ZPC) return LZPC; else return CREG; /* If we get here, we have a data or address register. We must check for a size or scale; if we find one, we must return INDEXREG. */ s = str; if (*s != '.' && *s != ':' && *s != '*') return ret; yylval.indexreg.reg = reg; if (*s != '.' && *s != ':') yylval.indexreg.size = SIZE_UNSPEC; else { ++s; switch (*s) { case 'w': case 'W': yylval.indexreg.size = SIZE_WORD; ++s; break; case 'l': case 'L': yylval.indexreg.size = SIZE_LONG; ++s; break; default: yyerror (_("illegal size specification")); yylval.indexreg.size = SIZE_UNSPEC; break; } } yylval.indexreg.scale = 1; if (*s == '*' || *s == ':') { expressionS scale; ++s; hold = input_line_pointer; input_line_pointer = s; expression (&scale); s = input_line_pointer; input_line_pointer = hold; if (scale.X_op != O_constant) yyerror (_("scale specification must resolve to a number")); else { switch (scale.X_add_number) { case 1: case 2: case 4: case 8: yylval.indexreg.scale = scale.X_add_number; break; default: yyerror (_("invalid scale value")); break; } } } str = s; return INDEXREG; } /* It must be an expression. Before we call expression, we need to look ahead to see if there is a size specification. We must do that first, because otherwise foo.l will be treated as the symbol foo.l, rather than as the symbol foo with a long size specification. The grammar requires that all expressions end at the end of the operand, or with ',', '(', ']', ')'. */ parens = 0; for (s = str; *s != '\0'; s++) { if (*s == '(') { if (parens == 0 && s > str && (s[-1] == ')' || ISALNUM (s[-1]))) break; ++parens; } else if (*s == ')') { if (parens == 0) break; --parens; } else if (parens == 0 && (*s == ',' || *s == ']')) break; } yylval.exp.size = SIZE_UNSPEC; if (s <= str + 2 || (s[-2] != '.' && s[-2] != ':')) tail = 0; else { switch (s[-1]) { case 's': case 'S': case 'b': case 'B': yylval.exp.size = SIZE_BYTE; break; case 'w': case 'W': yylval.exp.size = SIZE_WORD; break; case 'l': case 'L': yylval.exp.size = SIZE_LONG; break; default: break; } if (yylval.exp.size != SIZE_UNSPEC) tail = 2; } #ifdef OBJ_ELF { /* Look for @PLTPC, etc. */ char *cp; yylval.exp.pic_reloc = pic_none; cp = s - tail; if (cp - 7 > str && cp[-7] == '@') { if (strncmp (cp - 7, "@TLSLDM", 7) == 0) { yylval.exp.pic_reloc = pic_tls_ldm; tail += 7; } else if (strncmp (cp - 7, "@TLSLDO", 7) == 0) { yylval.exp.pic_reloc = pic_tls_ldo; tail += 7; } } else if (cp - 6 > str && cp[-6] == '@') { if (strncmp (cp - 6, "@PLTPC", 6) == 0) { yylval.exp.pic_reloc = pic_plt_pcrel; tail += 6; } else if (strncmp (cp - 6, "@GOTPC", 6) == 0) { yylval.exp.pic_reloc = pic_got_pcrel; tail += 6; } else if (strncmp (cp - 6, "@TLSGD", 6) == 0) { yylval.exp.pic_reloc = pic_tls_gd; tail += 6; } else if (strncmp (cp - 6, "@TLSIE", 6) == 0) { yylval.exp.pic_reloc = pic_tls_ie; tail += 6; } else if (strncmp (cp - 6, "@TLSLE", 6) == 0) { yylval.exp.pic_reloc = pic_tls_le; tail += 6; } } else if (cp - 4 > str && cp[-4] == '@') { if (strncmp (cp - 4, "@PLT", 4) == 0) { yylval.exp.pic_reloc = pic_plt_off; tail += 4; } else if (strncmp (cp - 4, "@GOT", 4) == 0) { yylval.exp.pic_reloc = pic_got_off; tail += 4; } } } #endif if (tail != 0) { c = s[-tail]; s[-tail] = 0; } hold = input_line_pointer; input_line_pointer = str; expression (&yylval.exp.exp); str = input_line_pointer; input_line_pointer = hold; if (tail != 0) { s[-tail] = c; str = s; } return EXPR; } /* Parse an m68k operand. This is the only function which is called from outside this file. */ int m68k_ip_op (char *s, struct m68k_op *oparg) { memset (oparg, 0, sizeof *oparg); oparg->error = NULL; oparg->index.reg = ZDATA0; oparg->index.scale = 1; oparg->disp.exp.X_op = O_absent; oparg->odisp.exp.X_op = O_absent; str = strorig = s; op = oparg; return yyparse (); } /* The error handler. */ static void yyerror (const char *s) { op->error = s; }