[BACK]Return to at_control.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / netatalk

File: [cvs.NetBSD.org] / src / sys / netatalk / at_control.c (download)

Revision 1.35, Tue Jul 1 05:49:18 2014 UTC (6 years, 9 months ago) by rtr
Branch: MAIN
CVS Tags: tls-maxphys-base, tls-earlyentropy-base, netbsd-7-nhusb-base-20170116, netbsd-7-nhusb-base, netbsd-7-nhusb, netbsd-7-base, netbsd-7-2-RELEASE, netbsd-7-1-RELEASE, netbsd-7-1-RC2, netbsd-7-1-RC1, netbsd-7-1-2-RELEASE, netbsd-7-1-1-RELEASE, netbsd-7-1, netbsd-7-0-RELEASE, netbsd-7-0-RC3, netbsd-7-0-RC2, netbsd-7-0-RC1, netbsd-7-0-2-RELEASE, netbsd-7-0-1-RELEASE, netbsd-7-0, netbsd-7
Changes since 1.34: +4 -4 lines

fix parameter types in pr_ioctl, called xx_control() functions and remove
abuse of pointer to struct mbuf type.

param2 changed to u_long type and uses parameter name 'cmd' (ioctl command)
param3 changed to void * type and uses parameter name 'data'
param4 changed to struct ifnet * and uses parameter name 'ifp'
param5 has been removed (formerly struct lwp *) and uses of 'l' have been
       replaced with curlwp from curproc(9).

callers have had (now unnecessary) casts to struct mbuf * removed, called
code has had (now unnecessary) casts to u_long, void * and struct ifnet *
respectively removed.

reviewed by rmind@

/*	$NetBSD: at_control.c,v 1.35 2014/07/01 05:49:18 rtr Exp $	 */

/*
 * Copyright (c) 1990,1994 Regents of The University of Michigan.
 * All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this software and
 * its documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appears in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation, and that the name of The University
 * of Michigan not be used in advertising or publicity pertaining to
 * distribution of the software without specific, written prior
 * permission. This software is supplied as is without expressed or
 * implied warranties of any kind.
 *
 * This product includes software developed by the University of
 * California, Berkeley and its contributors.
 *
 *	Research Systems Unix Group
 *	The University of Michigan
 *	c/o Wesley Craig
 *	535 W. William Street
 *	Ann Arbor, Michigan
 *	+1-313-764-2278
 *	netatalk@umich.edu
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.35 2014/07/01 05:49:18 rtr Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/kauth.h>
#include <net/if.h>
#include <net/route.h>
#include <net/if_ether.h>
#include <netinet/in.h>
#undef s_net

#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/aarp.h>
#include <netatalk/phase2.h>
#include <netatalk/at_extern.h>

static int aa_dorangeroute(struct ifaddr * ifa,
    u_int first, u_int last, int cmd);
static int aa_addsingleroute(struct ifaddr * ifa,
    struct at_addr * addr, struct at_addr * mask);
static int aa_delsingleroute(struct ifaddr * ifa,
    struct at_addr * addr, struct at_addr * mask);
static int aa_dosingleroute(struct ifaddr * ifa, struct at_addr * addr,
    struct at_addr * mask, int cmd, int flags);
static int at_scrub(struct ifnet * ifp, struct at_ifaddr * aa);
static int at_ifinit(struct ifnet *, struct at_ifaddr *,
    const struct sockaddr_at *);
#if 0
static void aa_clean(void);
#endif

#define sateqaddr(a,b)	((a)->sat_len == (b)->sat_len && \
			 (a)->sat_family == (b)->sat_family && \
			 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
			 (a)->sat_addr.s_node == (b)->sat_addr.s_node )

int
at_control(u_long cmd, void *data, struct ifnet *ifp)
{
	struct ifreq   *ifr = (struct ifreq *) data;
	const struct sockaddr_at *csat;
	struct netrange *nr;
	const struct netrange *cnr;
	struct at_aliasreq *ifra = (struct at_aliasreq *) data;
	struct at_ifaddr *aa0;
	struct at_ifaddr *aa = 0;

	/*
         * If we have an ifp, then find the matching at_ifaddr if it exists
         */
	if (ifp)
		for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
			if (aa->aa_ifp == ifp)
				break;

	/*
         * In this first switch table we are basically getting ready for
         * the second one, by getting the atalk-specific things set up
         * so that they start to look more similar to other protocols etc.
         */

	switch (cmd) {
	case SIOCAIFADDR:
	case SIOCDIFADDR:
		/*
		 * If we have an appletalk sockaddr, scan forward of where
		 * we are now on the at_ifaddr list to find one with a matching
		 * address on this interface.
		 * This may leave aa pointing to the first address on the
		 * NEXT interface!
		 */
		if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
			for (; aa; aa = aa->aa_list.tqe_next)
				if (aa->aa_ifp == ifp &&
				    sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
					break;
		}
		/*
		 * If we a retrying to delete an addres but didn't find such,
		 * then return with an error
		 */
		if (cmd == SIOCDIFADDR && aa == 0)
			return (EADDRNOTAVAIL);
		/* FALLTHROUGH */

	case SIOCSIFADDR:
		/*
		 * If we are not superuser, then we don't get to do these
		 * ops.
		 */
		if (kauth_authorize_network(curlwp->l_cred,
		    KAUTH_NETWORK_INTERFACE,
		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
		    NULL) != 0)
			return (EPERM);

		csat = satocsat(ifreq_getaddr(cmd, ifr));
		cnr = (const struct netrange *)csat->sat_zero;
		if (cnr->nr_phase == 1) {
			/*
		         * Look for a phase 1 address on this interface.
		         * This may leave aa pointing to the first address on
			 * the NEXT interface!
		         */
			for (; aa; aa = aa->aa_list.tqe_next) {
				if (aa->aa_ifp == ifp &&
				    (aa->aa_flags & AFA_PHASE2) == 0)
					break;
			}
		} else {	/* default to phase 2 */
			/*
		         * Look for a phase 2 address on this interface.
		         * This may leave aa pointing to the first address on
			 * the NEXT interface!
		         */
			for (; aa; aa = aa->aa_list.tqe_next) {
				if (aa->aa_ifp == ifp &&
				    (aa->aa_flags & AFA_PHASE2))
					break;
			}
		}

		if (ifp == 0)
			panic("at_control");

		/*
		 * If we failed to find an existing at_ifaddr entry, then we
		 * allocate a fresh one.
		 * XXX change this to use malloc
		 */
		if (aa == (struct at_ifaddr *) 0) {
			aa = (struct at_ifaddr *)
			    malloc(sizeof(struct at_ifaddr), M_IFADDR,
			    M_WAITOK|M_ZERO);

			if (aa == NULL)
				return (ENOBUFS);

			callout_init(&aa->aa_probe_ch, 0);

			if ((aa0 = at_ifaddr.tqh_first) != NULL) {
				/*
				 * Don't let the loopback be first, since the
				 * first address is the machine's default
				 * address for binding.
				 * If it is, stick ourself in front, otherwise
				 * go to the back of the list.
				 */
				if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
					TAILQ_INSERT_HEAD(&at_ifaddr, aa,
					    aa_list);
				} else {
					TAILQ_INSERT_TAIL(&at_ifaddr, aa,
					    aa_list);
				}
			} else {
				TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
			}
			IFAREF(&aa->aa_ifa);

			/*
		         * Find the end of the interface's addresses
		         * and link our new one on the end
		         */
			ifa_insert(ifp, &aa->aa_ifa);

			/*
		         * As the at_ifaddr contains the actual sockaddrs,
		         * and the ifaddr itself, link them al together
			 * correctly.
		         */
			aa->aa_ifa.ifa_addr =
			    (struct sockaddr *) &aa->aa_addr;
			aa->aa_ifa.ifa_dstaddr =
			    (struct sockaddr *) &aa->aa_addr;
			aa->aa_ifa.ifa_netmask =
			    (struct sockaddr *) &aa->aa_netmask;

			/*
		         * Set/clear the phase 2 bit.
		         */
			if (cnr->nr_phase == 1)
				aa->aa_flags &= ~AFA_PHASE2;
			else
				aa->aa_flags |= AFA_PHASE2;

			/*
		         * and link it all together
		         */
			aa->aa_ifp = ifp;
		} else {
			/*
		         * If we DID find one then we clobber any routes
			 * dependent on it..
		         */
			at_scrub(ifp, aa);
		}
		break;

	case SIOCGIFADDR:
		csat = satocsat(ifreq_getaddr(cmd, ifr));
		cnr = (const struct netrange *)csat->sat_zero;
		if (cnr->nr_phase == 1) {
			/*
		         * If the request is specifying phase 1, then
		         * only look at a phase one address
		         */
			for (; aa; aa = aa->aa_list.tqe_next) {
				if (aa->aa_ifp == ifp &&
				    (aa->aa_flags & AFA_PHASE2) == 0)
					break;
			}
		} else if (cnr->nr_phase == 2) {
			/*
		         * If the request is specifying phase 2, then
		         * only look at a phase two address
		         */
			for (; aa; aa = aa->aa_list.tqe_next) {
				if (aa->aa_ifp == ifp &&
				    (aa->aa_flags & AFA_PHASE2))
					break;
			}
		} else {
			/*
		         * default to everything
		         */
			for (; aa; aa = aa->aa_list.tqe_next) {
				if (aa->aa_ifp == ifp)
					break;
			}
		}

		if (aa == (struct at_ifaddr *) 0)
			return (EADDRNOTAVAIL);
		break;
	}

	/*
         * By the time this switch is run we should be able to assume that
         * the "aa" pointer is valid when needed.
         */
	switch (cmd) {
	case SIOCGIFADDR: {
		union {
			struct sockaddr sa;
			struct sockaddr_at sat;
		} u;

		/*
		 * copy the contents of the sockaddr blindly.
		 */
		sockaddr_copy(&u.sa, sizeof(u),
		    (const struct sockaddr *)&aa->aa_addr);
		/*
		 * and do some cleanups
		 */
		nr = (struct netrange *)&u.sat.sat_zero;
		nr->nr_phase = (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
		nr->nr_firstnet = aa->aa_firstnet;
		nr->nr_lastnet = aa->aa_lastnet;
		ifreq_setaddr(cmd, ifr, &u.sa);
		break;
	}

	case SIOCSIFADDR:
		return at_ifinit(ifp, aa,
		    (const struct sockaddr_at *)ifreq_getaddr(cmd, ifr));

	case SIOCAIFADDR:
		if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
			return 0;
		return at_ifinit(ifp, aa,
		    (const struct sockaddr_at *)ifreq_getaddr(cmd, ifr));

	case SIOCDIFADDR:
		at_purgeaddr(&aa->aa_ifa);
		break;

	default:
		return ENOTTY;
	}
	return (0);
}

void
at_purgeaddr(struct ifaddr *ifa)
{
	struct ifnet *ifp = ifa->ifa_ifp;
	struct at_ifaddr *aa = (void *) ifa;

	/*
	 * scrub all routes.. didn't we just DO this? XXX yes, del it
	 * XXX above XXX not necessarily true anymore
	 */
	at_scrub(ifp, aa);

	/*
	 * remove the ifaddr from the interface
	 */
	ifa_remove(ifp, &aa->aa_ifa);
	TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
	IFAFREE(&aa->aa_ifa);
}

void
at_purgeif(struct ifnet *ifp)
{
	if_purgeaddrs(ifp, AF_APPLETALK, at_purgeaddr);
}

/*
 * Given an interface and an at_ifaddr (supposedly on that interface) remove
 * any routes that depend on this. Why ifp is needed I'm not sure, as
 * aa->at_ifaddr.ifa_ifp should be the same.
 */
static int
at_scrub(struct ifnet *ifp, struct at_ifaddr *aa)
{
	int error = 0;

	if (aa->aa_flags & AFA_ROUTE) {
		if (ifp->if_flags & IFF_LOOPBACK)
			error = aa_delsingleroute(&aa->aa_ifa,
			    &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
		else if (ifp->if_flags & IFF_POINTOPOINT)
			error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
		else if (ifp->if_flags & IFF_BROADCAST)
			error = aa_dorangeroute(&aa->aa_ifa,
			    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
			    RTM_DELETE);

		aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
		aa->aa_flags &= ~AFA_ROUTE;
	}
	return error;
}

/*
 * given an at_ifaddr,a sockaddr_at and an ifp,
 * bang them all together at high speed and see what happens
 */
static int
at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa, const struct sockaddr_at *sat)
{
	struct netrange nr, onr;
	struct sockaddr_at oldaddr;
	int             s = splnet(), error = 0, i, j;
	int             netinc, nodeinc, nnets;
	u_short         net;

	/*
	 * save the old addresses in the at_ifaddr just in case we need them.
	 */
	oldaddr = aa->aa_addr;
	onr.nr_firstnet = aa->aa_firstnet;
	onr.nr_lastnet = aa->aa_lastnet;

	/*
         * take the address supplied as an argument, and add it to the
         * at_ifnet (also given). Remember ing to update
         * those parts of the at_ifaddr that need special processing
         */
	memset(AA_SAT(aa), 0, sizeof(struct sockaddr_at));
	memcpy(&nr, sat->sat_zero, sizeof(struct netrange));
	memcpy(AA_SAT(aa)->sat_zero, sat->sat_zero, sizeof(struct netrange));
	nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
	aa->aa_firstnet = nr.nr_firstnet;
	aa->aa_lastnet = nr.nr_lastnet;

#ifdef NETATALKDEBUG
	printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
	    ifp->if_xname,
	    ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
	    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
	    (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
#endif

	/*
         * We could eliminate the need for a second phase 1 probe (post
         * autoconf) if we check whether we're resetting the node. Note
         * that phase 1 probes use only nodes, not net.node pairs.  Under
         * phase 2, both the net and node must be the same.
         */
	AA_SAT(aa)->sat_len = sat->sat_len;
	AA_SAT(aa)->sat_family = AF_APPLETALK;
	if (ifp->if_flags & IFF_LOOPBACK) {
		AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
		AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
#if 0
	} else if (fp->if_flags & IFF_POINTOPOINT) {
		/* unimplemented */
		/*
		 * we'd have to copy the dstaddr field over from the sat
		 * but it's not clear that it would contain the right info..
		 */
#endif
	} else {
		/*
		 * We are a normal (probably ethernet) interface.
		 * apply the new address to the interface structures etc.
		 * We will probe this address on the net first, before
		 * applying it to ensure that it is free.. If it is not, then
		 * we will try a number of other randomly generated addresses
		 * in this net and then increment the net.  etc.etc. until
		 * we find an unused address.
		 */
		aa->aa_flags |= AFA_PROBING;	/* if not loopback we Must
						 * probe? */
		if (aa->aa_flags & AFA_PHASE2) {
			if (sat->sat_addr.s_net == ATADDR_ANYNET) {
				/*
				 * If we are phase 2, and the net was not
				 * specified * then we select a random net
				 * within the supplied netrange.
				 * XXX use /dev/random?
				 */
				if (nnets != 1) {
					net = ntohs(nr.nr_firstnet) +
					    time_second % (nnets - 1);
				} else {
					net = ntohs(nr.nr_firstnet);
				}
			} else {
				/*
				 * if a net was supplied, then check that it
				 * is within the netrange. If it is not then
				 * replace the old values and return an error
				 */
				if (ntohs(sat->sat_addr.s_net) <
				    ntohs(nr.nr_firstnet) ||
				    ntohs(sat->sat_addr.s_net) >
				    ntohs(nr.nr_lastnet)) {
					aa->aa_addr = oldaddr;
					aa->aa_firstnet = onr.nr_firstnet;
					aa->aa_lastnet = onr.nr_lastnet;
					splx(s);
					return (EINVAL);
				}
				/*
				 * otherwise just use the new net number..
				 */
				net = ntohs(sat->sat_addr.s_net);
			}
		} else {
			/*
		         * we must be phase one, so just use whatever we were
			 * given. I guess it really isn't going to be used...
			 * RIGHT?
		         */
			net = ntohs(sat->sat_addr.s_net);
		}

		/*
		 * set the node part of the address into the ifaddr. If it's
		 * not specified, be random about it... XXX use /dev/random?
		 */
		if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
			AA_SAT(aa)->sat_addr.s_node = time_second;
		} else {
			AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
		}

		/*
		 * step through the nets in the range starting at the
		 * (possibly random) start point.
		 */
		for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
		     ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
			AA_SAT(aa)->sat_addr.s_net = htons(net);

			/*
		         * using a rather strange stepping method,
		         * stagger through the possible node addresses
		         * Once again, starting at the (possibly random)
		         * initial node address.
		         */
			for (j = 0, nodeinc = time_second | 1; j < 256;
			     j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
				if (AA_SAT(aa)->sat_addr.s_node > 253 ||
				    AA_SAT(aa)->sat_addr.s_node < 1) {
					continue;
				}
				aa->aa_probcnt = 10;

				/*
				 * start off the probes as an asynchronous
				 * activity. though why wait 200mSec?
				 */
				callout_reset(&aa->aa_probe_ch, hz / 5,
				    aarpprobe, ifp);
				if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
				    0)) {
					/*
				         * theoretically we shouldn't time out
					 * here so if we returned with an error.
				         */
					printf("at_ifinit: timeout?!\n");
					aa->aa_addr = oldaddr;
					aa->aa_firstnet = onr.nr_firstnet;
					aa->aa_lastnet = onr.nr_lastnet;
					splx(s);
					return (EINTR);
				}
				/*
				 * The async activity should have woken us
				 * up. We need to see if it was successful in
				 * finding a free spot, or if we need to
				 * iterate to the next address to try.
				 */
				if ((aa->aa_flags & AFA_PROBING) == 0)
					break;
			}

			/*
		         * of course we need to break out through two loops...
		         */
			if ((aa->aa_flags & AFA_PROBING) == 0)
				break;

			/* reset node for next network */
			AA_SAT(aa)->sat_addr.s_node = time_second;
		}

		/*
		 * if we are still trying to probe, then we have finished all
		 * the possible addresses, so we need to give up
		 */
		if (aa->aa_flags & AFA_PROBING) {
			aa->aa_addr = oldaddr;
			aa->aa_firstnet = onr.nr_firstnet;
			aa->aa_lastnet = onr.nr_lastnet;
			splx(s);
			return (EADDRINUSE);
		}
	}

	/*
	 * Now that we have selected an address, we need to tell the
	 * interface about it, just in case it needs to adjust something.
	 */
	if ((error = if_addr_init(ifp, &aa->aa_ifa, true)) != 0) {
		/*
		 * of course this could mean that it objects violently
		 * so if it does, we back out again..
		 */
		aa->aa_addr = oldaddr;
		aa->aa_firstnet = onr.nr_firstnet;
		aa->aa_lastnet = onr.nr_lastnet;
		splx(s);
		return (error);
	}
	/*
	 * set up the netmask part of the at_ifaddr and point the appropriate
	 * pointer in the ifaddr to it. probably pointless, but what the
	 * heck.. XXX
	 */
	memset(&aa->aa_netmask, 0, sizeof(aa->aa_netmask));
	aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
	aa->aa_netmask.sat_family = AF_APPLETALK;
	aa->aa_netmask.sat_addr.s_net = 0xffff;
	aa->aa_netmask.sat_addr.s_node = 0;
#if 0
	aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
#endif

	/*
         * Initialize broadcast (or remote p2p) address
         */
	memset(&aa->aa_broadaddr, 0, sizeof(aa->aa_broadaddr));
	aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
	aa->aa_broadaddr.sat_family = AF_APPLETALK;

	aa->aa_ifa.ifa_metric = ifp->if_metric;
	if (ifp->if_flags & IFF_BROADCAST) {
		aa->aa_broadaddr.sat_addr.s_net = htons(ATADDR_ANYNET);
		aa->aa_broadaddr.sat_addr.s_node = ATADDR_BCAST;
		aa->aa_ifa.ifa_broadaddr =
		    (struct sockaddr *) &aa->aa_broadaddr;
		/* add the range of routes needed */
		error = aa_dorangeroute(&aa->aa_ifa,
		    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
	} else if (ifp->if_flags & IFF_POINTOPOINT) {
		struct at_addr  rtaddr, rtmask;

		memset(&rtaddr, 0, sizeof(rtaddr));
		memset(&rtmask, 0, sizeof(rtmask));
		/* fill in the far end if we know it here XXX */
		aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
	} else if (ifp->if_flags & IFF_LOOPBACK) {
		struct at_addr  rtaddr, rtmask;

		memset(&rtaddr, 0, sizeof(rtaddr));
		memset(&rtmask, 0, sizeof(rtmask));
		rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
		rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
		rtmask.s_net = 0xffff;
		rtmask.s_node = 0x0;
		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
	}
	/*
         * of course if we can't add these routes we back out, but it's getting
         * risky by now XXX
         */
	if (error) {
		at_scrub(ifp, aa);
		aa->aa_addr = oldaddr;
		aa->aa_firstnet = onr.nr_firstnet;
		aa->aa_lastnet = onr.nr_lastnet;
		splx(s);
		return (error);
	}
	/*
         * note that the address has a route associated with it....
         */
	aa->aa_ifa.ifa_flags |= IFA_ROUTE;
	aa->aa_flags |= AFA_ROUTE;
	splx(s);
	return (0);
}

/*
 * check whether a given address is a broadcast address for us..
 */
int
at_broadcast(const struct sockaddr_at *sat)
{
	struct at_ifaddr *aa;

	/*
         * If the node is not right, it can't be a broadcast
         */
	if (sat->sat_addr.s_node != ATADDR_BCAST)
		return 0;

	/*
         * If the node was right then if the net is right, it's a broadcast
         */
	if (sat->sat_addr.s_net == ATADDR_ANYNET)
		return 1;

	/*
         * failing that, if the net is one we have, it's a broadcast as well.
         */
	for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
		if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
		    && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
		  && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
			return 1;
	}
	return 0;
}


/*
 * aa_dorangeroute()
 *
 * Add a route for a range of networks from bot to top - 1.
 * Algorithm:
 *
 * Split the range into two subranges such that the middle
 * of the two ranges is the point where the highest bit of difference
 * between the two addresses, makes it's transition
 * Each of the upper and lower ranges might not exist, or might be
 * representable by 1 or more netmasks. In addition, if both
 * ranges can be represented by the same netmask, then teh can be merged
 * by using the next higher netmask..
 */

static int
aa_dorangeroute(struct ifaddr *ifa, u_int bot, u_int top, int cmd)
{
	u_int           mask1;
	struct at_addr  addr;
	struct at_addr  mask;
	int             error;

	/*
	 * slight sanity check
	 */
	if (bot > top)
		return (EINVAL);

	addr.s_node = 0;
	mask.s_node = 0;
	/*
	 * just start out with the lowest boundary
	 * and keep extending the mask till it's too big.
	 */

	while (bot <= top) {
		mask1 = 1;
		while (((bot & ~mask1) >= bot)
		       && ((bot | mask1) <= top)) {
			mask1 <<= 1;
			mask1 |= 1;
		}
		mask1 >>= 1;
		mask.s_net = htons(~mask1);
		addr.s_net = htons(bot);
		if (cmd == RTM_ADD) {
			error = aa_addsingleroute(ifa, &addr, &mask);
			if (error) {
				/* XXX clean up? */
				return (error);
			}
		} else {
			error = aa_delsingleroute(ifa, &addr, &mask);
		}
		bot = (bot | mask1) + 1;
	}
	return 0;
}

static int
aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask)
{
	int error;

#ifdef NETATALKDEBUG
	printf("aa_addsingleroute: %x.%x mask %x.%x ...",
	       ntohs(addr->s_net), addr->s_node,
	       ntohs(mask->s_net), mask->s_node);
#endif

	error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
#ifdef NETATALKDEBUG
	if (error)
		printf("aa_addsingleroute: error %d\n", error);
#endif
	return (error);
}

static int
aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask)
{
	int error;

#ifdef NETATALKDEBUG
	printf("aa_delsingleroute: %x.%x mask %x.%x ...",
	       ntohs(addr->s_net), addr->s_node,
	       ntohs(mask->s_net), mask->s_node);
#endif

	error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
#ifdef NETATALKDEBUG
	if (error)
		printf("aa_delsingleroute: error %d\n", error);
#endif
	return (error);
}

static int
aa_dosingleroute(struct ifaddr *ifa, struct at_addr *at_addr, struct at_addr *at_mask, int cmd, int flags)
{
	struct sockaddr_at addr, mask, *gate;

	memset(&addr, 0, sizeof(addr));
	memset(&mask, 0, sizeof(mask));
	addr.sat_family = AF_APPLETALK;
	addr.sat_len = sizeof(struct sockaddr_at);
	addr.sat_addr.s_net = at_addr->s_net;
	addr.sat_addr.s_node = at_addr->s_node;
	mask.sat_family = AF_APPLETALK;
	mask.sat_len = sizeof(struct sockaddr_at);
	mask.sat_addr.s_net = at_mask->s_net;
	mask.sat_addr.s_node = at_mask->s_node;

	if (at_mask->s_node) {
		gate = satosat(ifa->ifa_dstaddr);
		flags |= RTF_HOST;
	} else {
		gate = satosat(ifa->ifa_addr);
	}

#ifdef NETATALKDEBUG
	printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
	       ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
#endif
	return (rtrequest(cmd, (struct sockaddr *) &addr,
	    (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
}

#if 0
static void
aa_clean(void)
{
	struct at_ifaddr *aa;
	struct ifaddr  *ifa;
	struct ifnet   *ifp;

	while ((aa = TAILQ_FIRST(&at_ifaddr)) != NULL) {
		TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
		ifp = aa->aa_ifp;
		at_scrub(ifp, aa);
		IFADDR_FOREACH(ifa, ifp) {
			if (ifa == &aa->aa_ifa)
				break;
		}
		if (ifa == NULL)
			panic("aa not present");
		ifa_remove(ifp, ifa);
	}
}
#endif