[BACK]Return to subr_vmem.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / kern

Annotation of src/sys/kern/subr_vmem.c, Revision 1.60

1.60    ! dyoung      1: /*     $NetBSD: subr_vmem.c,v 1.59 2011/07/26 13:09:11 yamt Exp $      */
1.1       yamt        2:
                      3: /*-
1.55      yamt        4:  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
1.1       yamt        5:  * All rights reserved.
                      6:  *
                      7:  * Redistribution and use in source and binary forms, with or without
                      8:  * modification, are permitted provided that the following conditions
                      9:  * are met:
                     10:  * 1. Redistributions of source code must retain the above copyright
                     11:  *    notice, this list of conditions and the following disclaimer.
                     12:  * 2. Redistributions in binary form must reproduce the above copyright
                     13:  *    notice, this list of conditions and the following disclaimer in the
                     14:  *    documentation and/or other materials provided with the distribution.
                     15:  *
                     16:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
                     17:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     18:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     19:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
                     20:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     21:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     22:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     23:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     24:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     25:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     26:  * SUCH DAMAGE.
                     27:  */
                     28:
                     29: /*
                     30:  * reference:
                     31:  * -   Magazines and Vmem: Extending the Slab Allocator
                     32:  *     to Many CPUs and Arbitrary Resources
                     33:  *     http://www.usenix.org/event/usenix01/bonwick.html
1.18      yamt       34:  *
                     35:  * todo:
                     36:  * -   decide how to import segments for vmem_xalloc.
                     37:  * -   don't rely on malloc(9).
1.1       yamt       38:  */
                     39:
                     40: #include <sys/cdefs.h>
1.60    ! dyoung     41: __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.59 2011/07/26 13:09:11 yamt Exp $");
1.1       yamt       42:
1.5       yamt       43: #if defined(_KERNEL)
1.37      yamt       44: #include "opt_ddb.h"
1.5       yamt       45: #define        QCACHE
                     46: #endif /* defined(_KERNEL) */
1.1       yamt       47:
                     48: #include <sys/param.h>
                     49: #include <sys/hash.h>
                     50: #include <sys/queue.h>
                     51:
                     52: #if defined(_KERNEL)
                     53: #include <sys/systm.h>
1.30      yamt       54: #include <sys/kernel.h>        /* hz */
                     55: #include <sys/callout.h>
1.1       yamt       56: #include <sys/malloc.h>
                     57: #include <sys/once.h>
                     58: #include <sys/pool.h>
                     59: #include <sys/vmem.h>
1.30      yamt       60: #include <sys/workqueue.h>
1.1       yamt       61: #else /* defined(_KERNEL) */
                     62: #include "../sys/vmem.h"
                     63: #endif /* defined(_KERNEL) */
                     64:
                     65: #if defined(_KERNEL)
1.52      ad         66: #define        LOCK_DECL(name)         \
                     67:     kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
1.1       yamt       68: #else /* defined(_KERNEL) */
                     69: #include <errno.h>
                     70: #include <assert.h>
                     71: #include <stdlib.h>
                     72:
1.55      yamt       73: #define        UNITTEST
1.1       yamt       74: #define        KASSERT(a)              assert(a)
1.31      ad         75: #define        LOCK_DECL(name)         /* nothing */
                     76: #define        mutex_init(a, b, c)     /* nothing */
                     77: #define        mutex_destroy(a)        /* nothing */
                     78: #define        mutex_enter(a)          /* nothing */
1.55      yamt       79: #define        mutex_tryenter(a)       true
1.31      ad         80: #define        mutex_exit(a)           /* nothing */
                     81: #define        mutex_owned(a)          /* nothing */
1.55      yamt       82: #define        ASSERT_SLEEPABLE()      /* nothing */
                     83: #define        panic(...)              printf(__VA_ARGS__); abort()
1.1       yamt       84: #endif /* defined(_KERNEL) */
                     85:
                     86: struct vmem;
                     87: struct vmem_btag;
                     88:
1.55      yamt       89: #if defined(VMEM_SANITY)
                     90: static void vmem_check(vmem_t *);
                     91: #else /* defined(VMEM_SANITY) */
                     92: #define vmem_check(vm) /* nothing */
                     93: #endif /* defined(VMEM_SANITY) */
1.1       yamt       94:
1.4       yamt       95: #define        VMEM_MAXORDER           (sizeof(vmem_size_t) * CHAR_BIT)
1.30      yamt       96:
                     97: #define        VMEM_HASHSIZE_MIN       1       /* XXX */
1.54      yamt       98: #define        VMEM_HASHSIZE_MAX       65536   /* XXX */
1.53      pooka      99: #define        VMEM_HASHSIZE_INIT      128
1.1       yamt      100:
                    101: #define        VM_FITMASK      (VM_BESTFIT | VM_INSTANTFIT)
                    102:
                    103: CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
                    104: LIST_HEAD(vmem_freelist, vmem_btag);
                    105: LIST_HEAD(vmem_hashlist, vmem_btag);
                    106:
1.5       yamt      107: #if defined(QCACHE)
                    108: #define        VMEM_QCACHE_IDX_MAX     32
                    109:
                    110: #define        QC_NAME_MAX     16
                    111:
                    112: struct qcache {
1.35      ad        113:        pool_cache_t qc_cache;
1.5       yamt      114:        vmem_t *qc_vmem;
                    115:        char qc_name[QC_NAME_MAX];
                    116: };
                    117: typedef struct qcache qcache_t;
1.35      ad        118: #define        QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
1.5       yamt      119: #endif /* defined(QCACHE) */
                    120:
1.1       yamt      121: /* vmem arena */
                    122: struct vmem {
1.31      ad        123:        LOCK_DECL(vm_lock);
1.1       yamt      124:        vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
                    125:            vm_flag_t);
                    126:        void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
                    127:        vmem_t *vm_source;
                    128:        struct vmem_seglist vm_seglist;
                    129:        struct vmem_freelist vm_freelist[VMEM_MAXORDER];
                    130:        size_t vm_hashsize;
                    131:        size_t vm_nbusytag;
                    132:        struct vmem_hashlist *vm_hashlist;
                    133:        size_t vm_quantum_mask;
                    134:        int vm_quantum_shift;
                    135:        const char *vm_name;
1.30      yamt      136:        LIST_ENTRY(vmem) vm_alllist;
1.5       yamt      137:
                    138: #if defined(QCACHE)
                    139:        /* quantum cache */
                    140:        size_t vm_qcache_max;
                    141:        struct pool_allocator vm_qcache_allocator;
1.22      yamt      142:        qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
                    143:        qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
1.5       yamt      144: #endif /* defined(QCACHE) */
1.1       yamt      145: };
                    146:
1.31      ad        147: #define        VMEM_LOCK(vm)           mutex_enter(&vm->vm_lock)
                    148: #define        VMEM_TRYLOCK(vm)        mutex_tryenter(&vm->vm_lock)
                    149: #define        VMEM_UNLOCK(vm)         mutex_exit(&vm->vm_lock)
1.36      ad        150: #define        VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
1.31      ad        151: #define        VMEM_LOCK_DESTROY(vm)   mutex_destroy(&vm->vm_lock)
                    152: #define        VMEM_ASSERT_LOCKED(vm)  KASSERT(mutex_owned(&vm->vm_lock))
1.1       yamt      153:
                    154: /* boundary tag */
                    155: struct vmem_btag {
                    156:        CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
                    157:        union {
                    158:                LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
                    159:                LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
                    160:        } bt_u;
                    161: #define        bt_hashlist     bt_u.u_hashlist
                    162: #define        bt_freelist     bt_u.u_freelist
                    163:        vmem_addr_t bt_start;
                    164:        vmem_size_t bt_size;
                    165:        int bt_type;
                    166: };
                    167:
                    168: #define        BT_TYPE_SPAN            1
                    169: #define        BT_TYPE_SPAN_STATIC     2
                    170: #define        BT_TYPE_FREE            3
                    171: #define        BT_TYPE_BUSY            4
                    172: #define        BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
                    173:
1.60    ! dyoung    174: #define        BT_END(bt)      ((bt)->bt_start + (bt)->bt_size - 1)
1.1       yamt      175:
                    176: typedef struct vmem_btag bt_t;
                    177:
                    178: /* ---- misc */
                    179:
1.19      yamt      180: #define        VMEM_ALIGNUP(addr, align) \
                    181:        (-(-(addr) & -(align)))
                    182: #define        VMEM_CROSS_P(addr1, addr2, boundary) \
                    183:        ((((addr1) ^ (addr2)) & -(boundary)) != 0)
                    184:
1.4       yamt      185: #define        ORDER2SIZE(order)       ((vmem_size_t)1 << (order))
                    186:
1.1       yamt      187: static int
                    188: calc_order(vmem_size_t size)
                    189: {
1.4       yamt      190:        vmem_size_t target;
1.1       yamt      191:        int i;
                    192:
                    193:        KASSERT(size != 0);
                    194:
                    195:        i = 0;
1.4       yamt      196:        target = size >> 1;
                    197:        while (ORDER2SIZE(i) <= target) {
1.1       yamt      198:                i++;
                    199:        }
                    200:
1.4       yamt      201:        KASSERT(ORDER2SIZE(i) <= size);
                    202:        KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
1.1       yamt      203:
                    204:        return i;
                    205: }
                    206:
                    207: #if defined(_KERNEL)
                    208: static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
                    209: #endif /* defined(_KERNEL) */
                    210:
                    211: static void *
                    212: xmalloc(size_t sz, vm_flag_t flags)
                    213: {
                    214:
                    215: #if defined(_KERNEL)
                    216:        return malloc(sz, M_VMEM,
                    217:            M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
                    218: #else /* defined(_KERNEL) */
                    219:        return malloc(sz);
                    220: #endif /* defined(_KERNEL) */
                    221: }
                    222:
                    223: static void
                    224: xfree(void *p)
                    225: {
                    226:
                    227: #if defined(_KERNEL)
                    228:        return free(p, M_VMEM);
                    229: #else /* defined(_KERNEL) */
                    230:        return free(p);
                    231: #endif /* defined(_KERNEL) */
                    232: }
                    233:
                    234: /* ---- boundary tag */
                    235:
                    236: #if defined(_KERNEL)
1.35      ad        237: static struct pool_cache bt_cache;
1.1       yamt      238: #endif /* defined(_KERNEL) */
                    239:
                    240: static bt_t *
1.17      yamt      241: bt_alloc(vmem_t *vm, vm_flag_t flags)
1.1       yamt      242: {
                    243:        bt_t *bt;
                    244:
                    245: #if defined(_KERNEL)
1.35      ad        246:        bt = pool_cache_get(&bt_cache,
1.1       yamt      247:            (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
                    248: #else /* defined(_KERNEL) */
                    249:        bt = malloc(sizeof *bt);
                    250: #endif /* defined(_KERNEL) */
                    251:
                    252:        return bt;
                    253: }
                    254:
                    255: static void
1.17      yamt      256: bt_free(vmem_t *vm, bt_t *bt)
1.1       yamt      257: {
                    258:
                    259: #if defined(_KERNEL)
1.35      ad        260:        pool_cache_put(&bt_cache, bt);
1.1       yamt      261: #else /* defined(_KERNEL) */
                    262:        free(bt);
                    263: #endif /* defined(_KERNEL) */
                    264: }
                    265:
                    266: /*
                    267:  * freelist[0] ... [1, 1]
                    268:  * freelist[1] ... [2, 3]
                    269:  * freelist[2] ... [4, 7]
                    270:  * freelist[3] ... [8, 15]
                    271:  *  :
                    272:  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
                    273:  *  :
                    274:  */
                    275:
                    276: static struct vmem_freelist *
                    277: bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
                    278: {
                    279:        const vmem_size_t qsize = size >> vm->vm_quantum_shift;
                    280:        int idx;
                    281:
                    282:        KASSERT((size & vm->vm_quantum_mask) == 0);
                    283:        KASSERT(size != 0);
                    284:
                    285:        idx = calc_order(qsize);
                    286:        KASSERT(idx >= 0);
                    287:        KASSERT(idx < VMEM_MAXORDER);
                    288:
                    289:        return &vm->vm_freelist[idx];
                    290: }
                    291:
1.59      yamt      292: /*
                    293:  * bt_freehead_toalloc: return the freelist for the given size and allocation
                    294:  * strategy.
                    295:  *
                    296:  * for VM_INSTANTFIT, return the list in which any blocks are large enough
                    297:  * for the requested size.  otherwise, return the list which can have blocks
                    298:  * large enough for the requested size.
                    299:  */
                    300:
1.1       yamt      301: static struct vmem_freelist *
                    302: bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
                    303: {
                    304:        const vmem_size_t qsize = size >> vm->vm_quantum_shift;
                    305:        int idx;
                    306:
                    307:        KASSERT((size & vm->vm_quantum_mask) == 0);
                    308:        KASSERT(size != 0);
                    309:
                    310:        idx = calc_order(qsize);
1.4       yamt      311:        if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
1.1       yamt      312:                idx++;
                    313:                /* check too large request? */
                    314:        }
                    315:        KASSERT(idx >= 0);
                    316:        KASSERT(idx < VMEM_MAXORDER);
                    317:
                    318:        return &vm->vm_freelist[idx];
                    319: }
                    320:
                    321: /* ---- boundary tag hash */
                    322:
                    323: static struct vmem_hashlist *
                    324: bt_hashhead(vmem_t *vm, vmem_addr_t addr)
                    325: {
                    326:        struct vmem_hashlist *list;
                    327:        unsigned int hash;
                    328:
                    329:        hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
                    330:        list = &vm->vm_hashlist[hash % vm->vm_hashsize];
                    331:
                    332:        return list;
                    333: }
                    334:
                    335: static bt_t *
                    336: bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
                    337: {
                    338:        struct vmem_hashlist *list;
                    339:        bt_t *bt;
                    340:
                    341:        list = bt_hashhead(vm, addr);
                    342:        LIST_FOREACH(bt, list, bt_hashlist) {
                    343:                if (bt->bt_start == addr) {
                    344:                        break;
                    345:                }
                    346:        }
                    347:
                    348:        return bt;
                    349: }
                    350:
                    351: static void
                    352: bt_rembusy(vmem_t *vm, bt_t *bt)
                    353: {
                    354:
                    355:        KASSERT(vm->vm_nbusytag > 0);
                    356:        vm->vm_nbusytag--;
                    357:        LIST_REMOVE(bt, bt_hashlist);
                    358: }
                    359:
                    360: static void
                    361: bt_insbusy(vmem_t *vm, bt_t *bt)
                    362: {
                    363:        struct vmem_hashlist *list;
                    364:
                    365:        KASSERT(bt->bt_type == BT_TYPE_BUSY);
                    366:
                    367:        list = bt_hashhead(vm, bt->bt_start);
                    368:        LIST_INSERT_HEAD(list, bt, bt_hashlist);
                    369:        vm->vm_nbusytag++;
                    370: }
                    371:
                    372: /* ---- boundary tag list */
                    373:
                    374: static void
                    375: bt_remseg(vmem_t *vm, bt_t *bt)
                    376: {
                    377:
                    378:        CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
                    379: }
                    380:
                    381: static void
                    382: bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
                    383: {
                    384:
                    385:        CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
                    386: }
                    387:
                    388: static void
                    389: bt_insseg_tail(vmem_t *vm, bt_t *bt)
                    390: {
                    391:
                    392:        CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
                    393: }
                    394:
                    395: static void
1.17      yamt      396: bt_remfree(vmem_t *vm, bt_t *bt)
1.1       yamt      397: {
                    398:
                    399:        KASSERT(bt->bt_type == BT_TYPE_FREE);
                    400:
                    401:        LIST_REMOVE(bt, bt_freelist);
                    402: }
                    403:
                    404: static void
                    405: bt_insfree(vmem_t *vm, bt_t *bt)
                    406: {
                    407:        struct vmem_freelist *list;
                    408:
                    409:        list = bt_freehead_tofree(vm, bt->bt_size);
                    410:        LIST_INSERT_HEAD(list, bt, bt_freelist);
                    411: }
                    412:
                    413: /* ---- vmem internal functions */
                    414:
1.30      yamt      415: #if defined(_KERNEL)
                    416: static kmutex_t vmem_list_lock;
                    417: static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
                    418: #endif /* defined(_KERNEL) */
                    419:
1.5       yamt      420: #if defined(QCACHE)
                    421: static inline vm_flag_t
                    422: prf_to_vmf(int prflags)
                    423: {
                    424:        vm_flag_t vmflags;
                    425:
                    426:        KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
                    427:        if ((prflags & PR_WAITOK) != 0) {
                    428:                vmflags = VM_SLEEP;
                    429:        } else {
                    430:                vmflags = VM_NOSLEEP;
                    431:        }
                    432:        return vmflags;
                    433: }
                    434:
                    435: static inline int
                    436: vmf_to_prf(vm_flag_t vmflags)
                    437: {
                    438:        int prflags;
                    439:
1.7       yamt      440:        if ((vmflags & VM_SLEEP) != 0) {
1.5       yamt      441:                prflags = PR_WAITOK;
1.7       yamt      442:        } else {
1.5       yamt      443:                prflags = PR_NOWAIT;
                    444:        }
                    445:        return prflags;
                    446: }
                    447:
                    448: static size_t
                    449: qc_poolpage_size(size_t qcache_max)
                    450: {
                    451:        int i;
                    452:
                    453:        for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
                    454:                /* nothing */
                    455:        }
                    456:        return ORDER2SIZE(i);
                    457: }
                    458:
                    459: static void *
                    460: qc_poolpage_alloc(struct pool *pool, int prflags)
                    461: {
                    462:        qcache_t *qc = QC_POOL_TO_QCACHE(pool);
                    463:        vmem_t *vm = qc->qc_vmem;
                    464:
                    465:        return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
                    466:            prf_to_vmf(prflags) | VM_INSTANTFIT);
                    467: }
                    468:
                    469: static void
                    470: qc_poolpage_free(struct pool *pool, void *addr)
                    471: {
                    472:        qcache_t *qc = QC_POOL_TO_QCACHE(pool);
                    473:        vmem_t *vm = qc->qc_vmem;
                    474:
                    475:        vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
                    476: }
                    477:
                    478: static void
1.31      ad        479: qc_init(vmem_t *vm, size_t qcache_max, int ipl)
1.5       yamt      480: {
1.22      yamt      481:        qcache_t *prevqc;
1.5       yamt      482:        struct pool_allocator *pa;
                    483:        int qcache_idx_max;
                    484:        int i;
                    485:
                    486:        KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
                    487:        if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
                    488:                qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
                    489:        }
                    490:        vm->vm_qcache_max = qcache_max;
                    491:        pa = &vm->vm_qcache_allocator;
                    492:        memset(pa, 0, sizeof(*pa));
                    493:        pa->pa_alloc = qc_poolpage_alloc;
                    494:        pa->pa_free = qc_poolpage_free;
                    495:        pa->pa_pagesz = qc_poolpage_size(qcache_max);
                    496:
                    497:        qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
1.22      yamt      498:        prevqc = NULL;
                    499:        for (i = qcache_idx_max; i > 0; i--) {
                    500:                qcache_t *qc = &vm->vm_qcache_store[i - 1];
1.5       yamt      501:                size_t size = i << vm->vm_quantum_shift;
                    502:
                    503:                qc->qc_vmem = vm;
1.8       martin    504:                snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
1.5       yamt      505:                    vm->vm_name, size);
1.35      ad        506:                qc->qc_cache = pool_cache_init(size,
                    507:                    ORDER2SIZE(vm->vm_quantum_shift), 0,
                    508:                    PR_NOALIGN | PR_NOTOUCH /* XXX */,
                    509:                    qc->qc_name, pa, ipl, NULL, NULL, NULL);
                    510:                KASSERT(qc->qc_cache != NULL);  /* XXX */
1.22      yamt      511:                if (prevqc != NULL &&
1.35      ad        512:                    qc->qc_cache->pc_pool.pr_itemsperpage ==
                    513:                    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
                    514:                        pool_cache_destroy(qc->qc_cache);
1.22      yamt      515:                        vm->vm_qcache[i - 1] = prevqc;
1.27      ad        516:                        continue;
1.22      yamt      517:                }
1.35      ad        518:                qc->qc_cache->pc_pool.pr_qcache = qc;
1.22      yamt      519:                vm->vm_qcache[i - 1] = qc;
                    520:                prevqc = qc;
1.5       yamt      521:        }
                    522: }
1.6       yamt      523:
1.23      yamt      524: static void
                    525: qc_destroy(vmem_t *vm)
                    526: {
                    527:        const qcache_t *prevqc;
                    528:        int i;
                    529:        int qcache_idx_max;
                    530:
                    531:        qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
                    532:        prevqc = NULL;
1.24      yamt      533:        for (i = 0; i < qcache_idx_max; i++) {
                    534:                qcache_t *qc = vm->vm_qcache[i];
1.23      yamt      535:
                    536:                if (prevqc == qc) {
                    537:                        continue;
                    538:                }
1.35      ad        539:                pool_cache_destroy(qc->qc_cache);
1.23      yamt      540:                prevqc = qc;
                    541:        }
                    542: }
                    543:
1.25      thorpej   544: static bool
1.6       yamt      545: qc_reap(vmem_t *vm)
                    546: {
1.22      yamt      547:        const qcache_t *prevqc;
1.6       yamt      548:        int i;
                    549:        int qcache_idx_max;
1.26      thorpej   550:        bool didsomething = false;
1.6       yamt      551:
                    552:        qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
1.22      yamt      553:        prevqc = NULL;
1.24      yamt      554:        for (i = 0; i < qcache_idx_max; i++) {
                    555:                qcache_t *qc = vm->vm_qcache[i];
1.6       yamt      556:
1.22      yamt      557:                if (prevqc == qc) {
                    558:                        continue;
                    559:                }
1.35      ad        560:                if (pool_cache_reclaim(qc->qc_cache) != 0) {
1.26      thorpej   561:                        didsomething = true;
1.6       yamt      562:                }
1.22      yamt      563:                prevqc = qc;
1.6       yamt      564:        }
                    565:
                    566:        return didsomething;
                    567: }
1.5       yamt      568: #endif /* defined(QCACHE) */
                    569:
1.1       yamt      570: #if defined(_KERNEL)
                    571: static int
                    572: vmem_init(void)
                    573: {
                    574:
1.30      yamt      575:        mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
1.35      ad        576:        pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
                    577:            NULL, IPL_VM, NULL, NULL, NULL);
1.1       yamt      578:        return 0;
                    579: }
                    580: #endif /* defined(_KERNEL) */
                    581:
                    582: static vmem_addr_t
                    583: vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
                    584:     int spanbttype)
                    585: {
                    586:        bt_t *btspan;
                    587:        bt_t *btfree;
                    588:
                    589:        KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
                    590:        KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1.58      yamt      591:        KASSERT(spanbttype == BT_TYPE_SPAN ||
                    592:            spanbttype == BT_TYPE_SPAN_STATIC);
1.1       yamt      593:
                    594:        btspan = bt_alloc(vm, flags);
                    595:        if (btspan == NULL) {
                    596:                return VMEM_ADDR_NULL;
                    597:        }
                    598:        btfree = bt_alloc(vm, flags);
                    599:        if (btfree == NULL) {
                    600:                bt_free(vm, btspan);
                    601:                return VMEM_ADDR_NULL;
                    602:        }
                    603:
                    604:        btspan->bt_type = spanbttype;
                    605:        btspan->bt_start = addr;
                    606:        btspan->bt_size = size;
                    607:
                    608:        btfree->bt_type = BT_TYPE_FREE;
                    609:        btfree->bt_start = addr;
                    610:        btfree->bt_size = size;
                    611:
                    612:        VMEM_LOCK(vm);
                    613:        bt_insseg_tail(vm, btspan);
                    614:        bt_insseg(vm, btfree, btspan);
                    615:        bt_insfree(vm, btfree);
                    616:        VMEM_UNLOCK(vm);
                    617:
                    618:        return addr;
                    619: }
                    620:
1.30      yamt      621: static void
                    622: vmem_destroy1(vmem_t *vm)
                    623: {
                    624:
                    625: #if defined(QCACHE)
                    626:        qc_destroy(vm);
                    627: #endif /* defined(QCACHE) */
                    628:        if (vm->vm_hashlist != NULL) {
                    629:                int i;
                    630:
                    631:                for (i = 0; i < vm->vm_hashsize; i++) {
                    632:                        bt_t *bt;
                    633:
                    634:                        while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
                    635:                                KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
                    636:                                bt_free(vm, bt);
                    637:                        }
                    638:                }
                    639:                xfree(vm->vm_hashlist);
                    640:        }
1.31      ad        641:        VMEM_LOCK_DESTROY(vm);
1.30      yamt      642:        xfree(vm);
                    643: }
                    644:
1.1       yamt      645: static int
                    646: vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
                    647: {
                    648:        vmem_addr_t addr;
                    649:
                    650:        if (vm->vm_allocfn == NULL) {
                    651:                return EINVAL;
                    652:        }
                    653:
                    654:        addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
                    655:        if (addr == VMEM_ADDR_NULL) {
                    656:                return ENOMEM;
                    657:        }
                    658:
                    659:        if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
                    660:                (*vm->vm_freefn)(vm->vm_source, addr, size);
                    661:                return ENOMEM;
                    662:        }
                    663:
                    664:        return 0;
                    665: }
                    666:
                    667: static int
                    668: vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
                    669: {
                    670:        bt_t *bt;
                    671:        int i;
                    672:        struct vmem_hashlist *newhashlist;
                    673:        struct vmem_hashlist *oldhashlist;
                    674:        size_t oldhashsize;
                    675:
                    676:        KASSERT(newhashsize > 0);
                    677:
                    678:        newhashlist =
                    679:            xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
                    680:        if (newhashlist == NULL) {
                    681:                return ENOMEM;
                    682:        }
                    683:        for (i = 0; i < newhashsize; i++) {
                    684:                LIST_INIT(&newhashlist[i]);
                    685:        }
                    686:
1.30      yamt      687:        if (!VMEM_TRYLOCK(vm)) {
                    688:                xfree(newhashlist);
                    689:                return EBUSY;
                    690:        }
1.1       yamt      691:        oldhashlist = vm->vm_hashlist;
                    692:        oldhashsize = vm->vm_hashsize;
                    693:        vm->vm_hashlist = newhashlist;
                    694:        vm->vm_hashsize = newhashsize;
                    695:        if (oldhashlist == NULL) {
                    696:                VMEM_UNLOCK(vm);
                    697:                return 0;
                    698:        }
                    699:        for (i = 0; i < oldhashsize; i++) {
                    700:                while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
                    701:                        bt_rembusy(vm, bt); /* XXX */
                    702:                        bt_insbusy(vm, bt);
                    703:                }
                    704:        }
                    705:        VMEM_UNLOCK(vm);
                    706:
                    707:        xfree(oldhashlist);
                    708:
                    709:        return 0;
                    710: }
                    711:
1.10      yamt      712: /*
                    713:  * vmem_fit: check if a bt can satisfy the given restrictions.
1.59      yamt      714:  *
                    715:  * it's a caller's responsibility to ensure the region is big enough
                    716:  * before calling us.
1.10      yamt      717:  */
                    718:
                    719: static vmem_addr_t
1.60    ! dyoung    720: vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
        !           721:     vmem_size_t phase, vmem_size_t nocross,
        !           722:     vmem_addr_t minaddr, vmem_addr_t maxaddr)
1.10      yamt      723: {
                    724:        vmem_addr_t start;
                    725:        vmem_addr_t end;
                    726:
1.60    ! dyoung    727:        KASSERT(size > 0);
1.59      yamt      728:        KASSERT(bt->bt_size >= size); /* caller's responsibility */
1.10      yamt      729:
                    730:        /*
                    731:         * XXX assumption: vmem_addr_t and vmem_size_t are
                    732:         * unsigned integer of the same size.
                    733:         */
                    734:
                    735:        start = bt->bt_start;
                    736:        if (start < minaddr) {
                    737:                start = minaddr;
                    738:        }
                    739:        end = BT_END(bt);
1.60    ! dyoung    740:        if (end > maxaddr) {
        !           741:                end = maxaddr;
1.10      yamt      742:        }
1.60    ! dyoung    743:        if (start > end) {
1.10      yamt      744:                return VMEM_ADDR_NULL;
                    745:        }
1.19      yamt      746:
                    747:        start = VMEM_ALIGNUP(start - phase, align) + phase;
1.10      yamt      748:        if (start < bt->bt_start) {
                    749:                start += align;
                    750:        }
1.19      yamt      751:        if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
1.10      yamt      752:                KASSERT(align < nocross);
1.19      yamt      753:                start = VMEM_ALIGNUP(start - phase, nocross) + phase;
1.10      yamt      754:        }
1.60    ! dyoung    755:        if (start <= end && end - start >= size - 1) {
1.10      yamt      756:                KASSERT((start & (align - 1)) == phase);
1.19      yamt      757:                KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
1.10      yamt      758:                KASSERT(minaddr <= start);
1.60    ! dyoung    759:                KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
1.10      yamt      760:                KASSERT(bt->bt_start <= start);
1.60    ! dyoung    761:                KASSERT(BT_END(bt) - start >= size - 1);
1.10      yamt      762:                return start;
                    763:        }
                    764:        return VMEM_ADDR_NULL;
                    765: }
                    766:
1.1       yamt      767: /* ---- vmem API */
                    768:
                    769: /*
                    770:  * vmem_create: create an arena.
                    771:  *
                    772:  * => must not be called from interrupt context.
                    773:  */
                    774:
                    775: vmem_t *
                    776: vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
                    777:     vmem_size_t quantum,
                    778:     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
                    779:     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
1.31      ad        780:     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
                    781:     int ipl)
1.1       yamt      782: {
                    783:        vmem_t *vm;
                    784:        int i;
                    785: #if defined(_KERNEL)
                    786:        static ONCE_DECL(control);
                    787: #endif /* defined(_KERNEL) */
                    788:
                    789:        KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
                    790:        KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
                    791:
                    792: #if defined(_KERNEL)
                    793:        if (RUN_ONCE(&control, vmem_init)) {
                    794:                return NULL;
                    795:        }
                    796: #endif /* defined(_KERNEL) */
                    797:        vm = xmalloc(sizeof(*vm), flags);
                    798:        if (vm == NULL) {
                    799:                return NULL;
                    800:        }
                    801:
1.31      ad        802:        VMEM_LOCK_INIT(vm, ipl);
1.1       yamt      803:        vm->vm_name = name;
                    804:        vm->vm_quantum_mask = quantum - 1;
                    805:        vm->vm_quantum_shift = calc_order(quantum);
1.4       yamt      806:        KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
1.1       yamt      807:        vm->vm_allocfn = allocfn;
                    808:        vm->vm_freefn = freefn;
                    809:        vm->vm_source = source;
                    810:        vm->vm_nbusytag = 0;
1.5       yamt      811: #if defined(QCACHE)
1.31      ad        812:        qc_init(vm, qcache_max, ipl);
1.5       yamt      813: #endif /* defined(QCACHE) */
1.1       yamt      814:
                    815:        CIRCLEQ_INIT(&vm->vm_seglist);
                    816:        for (i = 0; i < VMEM_MAXORDER; i++) {
                    817:                LIST_INIT(&vm->vm_freelist[i]);
                    818:        }
                    819:        vm->vm_hashlist = NULL;
                    820:        if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
1.30      yamt      821:                vmem_destroy1(vm);
1.1       yamt      822:                return NULL;
                    823:        }
                    824:
                    825:        if (size != 0) {
                    826:                if (vmem_add(vm, base, size, flags) == 0) {
1.30      yamt      827:                        vmem_destroy1(vm);
1.1       yamt      828:                        return NULL;
                    829:                }
                    830:        }
                    831:
1.30      yamt      832: #if defined(_KERNEL)
                    833:        mutex_enter(&vmem_list_lock);
                    834:        LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
                    835:        mutex_exit(&vmem_list_lock);
                    836: #endif /* defined(_KERNEL) */
                    837:
1.1       yamt      838:        return vm;
                    839: }
                    840:
                    841: void
                    842: vmem_destroy(vmem_t *vm)
                    843: {
                    844:
1.30      yamt      845: #if defined(_KERNEL)
                    846:        mutex_enter(&vmem_list_lock);
                    847:        LIST_REMOVE(vm, vm_alllist);
                    848:        mutex_exit(&vmem_list_lock);
                    849: #endif /* defined(_KERNEL) */
1.1       yamt      850:
1.30      yamt      851:        vmem_destroy1(vm);
1.1       yamt      852: }
                    853:
                    854: vmem_size_t
                    855: vmem_roundup_size(vmem_t *vm, vmem_size_t size)
                    856: {
                    857:
                    858:        return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
                    859: }
                    860:
                    861: /*
                    862:  * vmem_alloc:
                    863:  *
                    864:  * => caller must ensure appropriate spl,
                    865:  *    if the arena can be accessed from interrupt context.
                    866:  */
                    867:
                    868: vmem_addr_t
1.38      yamt      869: vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
1.1       yamt      870: {
1.12      yamt      871:        const vm_flag_t strat __unused = flags & VM_FITMASK;
1.1       yamt      872:
                    873:        KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
                    874:        KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
                    875:
                    876:        KASSERT(size > 0);
                    877:        KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1.3       yamt      878:        if ((flags & VM_SLEEP) != 0) {
1.42      yamt      879:                ASSERT_SLEEPABLE();
1.3       yamt      880:        }
1.1       yamt      881:
1.5       yamt      882: #if defined(QCACHE)
                    883:        if (size <= vm->vm_qcache_max) {
1.38      yamt      884:                int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1.22      yamt      885:                qcache_t *qc = vm->vm_qcache[qidx - 1];
1.5       yamt      886:
1.35      ad        887:                return (vmem_addr_t)pool_cache_get(qc->qc_cache,
1.5       yamt      888:                    vmf_to_prf(flags));
                    889:        }
                    890: #endif /* defined(QCACHE) */
                    891:
1.60    ! dyoung    892:        return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
        !           893:            flags);
1.10      yamt      894: }
                    895:
                    896: vmem_addr_t
1.60    ! dyoung    897: vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
        !           898:     const vmem_size_t phase, const vmem_size_t nocross,
        !           899:     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags)
1.10      yamt      900: {
                    901:        struct vmem_freelist *list;
                    902:        struct vmem_freelist *first;
                    903:        struct vmem_freelist *end;
                    904:        bt_t *bt;
                    905:        bt_t *btnew;
                    906:        bt_t *btnew2;
                    907:        const vmem_size_t size = vmem_roundup_size(vm, size0);
                    908:        vm_flag_t strat = flags & VM_FITMASK;
                    909:        vmem_addr_t start;
                    910:
                    911:        KASSERT(size0 > 0);
                    912:        KASSERT(size > 0);
                    913:        KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
                    914:        if ((flags & VM_SLEEP) != 0) {
1.42      yamt      915:                ASSERT_SLEEPABLE();
1.10      yamt      916:        }
                    917:        KASSERT((align & vm->vm_quantum_mask) == 0);
                    918:        KASSERT((align & (align - 1)) == 0);
                    919:        KASSERT((phase & vm->vm_quantum_mask) == 0);
                    920:        KASSERT((nocross & vm->vm_quantum_mask) == 0);
                    921:        KASSERT((nocross & (nocross - 1)) == 0);
                    922:        KASSERT((align == 0 && phase == 0) || phase < align);
                    923:        KASSERT(nocross == 0 || nocross >= size);
1.60    ! dyoung    924:        KASSERT(minaddr <= maxaddr);
1.19      yamt      925:        KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1.10      yamt      926:
                    927:        if (align == 0) {
                    928:                align = vm->vm_quantum_mask + 1;
                    929:        }
1.59      yamt      930:
                    931:        /*
                    932:         * allocate boundary tags before acquiring the vmem lock.
                    933:         */
1.1       yamt      934:        btnew = bt_alloc(vm, flags);
                    935:        if (btnew == NULL) {
                    936:                return VMEM_ADDR_NULL;
                    937:        }
1.10      yamt      938:        btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
                    939:        if (btnew2 == NULL) {
                    940:                bt_free(vm, btnew);
                    941:                return VMEM_ADDR_NULL;
                    942:        }
1.1       yamt      943:
1.59      yamt      944:        /*
                    945:         * choose a free block from which we allocate.
                    946:         */
1.1       yamt      947: retry_strat:
                    948:        first = bt_freehead_toalloc(vm, size, strat);
                    949:        end = &vm->vm_freelist[VMEM_MAXORDER];
                    950: retry:
                    951:        bt = NULL;
                    952:        VMEM_LOCK(vm);
1.55      yamt      953:        vmem_check(vm);
1.2       yamt      954:        if (strat == VM_INSTANTFIT) {
1.59      yamt      955:                /*
                    956:                 * just choose the first block which satisfies our restrictions.
                    957:                 *
                    958:                 * note that we don't need to check the size of the blocks
                    959:                 * because any blocks found on these list should be larger than
                    960:                 * the given size.
                    961:                 */
1.2       yamt      962:                for (list = first; list < end; list++) {
                    963:                        bt = LIST_FIRST(list);
                    964:                        if (bt != NULL) {
1.10      yamt      965:                                start = vmem_fit(bt, size, align, phase,
                    966:                                    nocross, minaddr, maxaddr);
                    967:                                if (start != VMEM_ADDR_NULL) {
                    968:                                        goto gotit;
                    969:                                }
1.59      yamt      970:                                /*
                    971:                                 * don't bother to follow the bt_freelist link
                    972:                                 * here.  the list can be very long and we are
                    973:                                 * told to run fast.  blocks from the later free
                    974:                                 * lists are larger and have better chances to
                    975:                                 * satisfy our restrictions.
                    976:                                 */
1.2       yamt      977:                        }
                    978:                }
                    979:        } else { /* VM_BESTFIT */
1.59      yamt      980:                /*
                    981:                 * we assume that, for space efficiency, it's better to
                    982:                 * allocate from a smaller block.  thus we will start searching
                    983:                 * from the lower-order list than VM_INSTANTFIT.
                    984:                 * however, don't bother to find the smallest block in a free
                    985:                 * list because the list can be very long.  we can revisit it
                    986:                 * if/when it turns out to be a problem.
                    987:                 *
                    988:                 * note that the 'first' list can contain blocks smaller than
                    989:                 * the requested size.  thus we need to check bt_size.
                    990:                 */
1.2       yamt      991:                for (list = first; list < end; list++) {
                    992:                        LIST_FOREACH(bt, list, bt_freelist) {
                    993:                                if (bt->bt_size >= size) {
1.10      yamt      994:                                        start = vmem_fit(bt, size, align, phase,
                    995:                                            nocross, minaddr, maxaddr);
                    996:                                        if (start != VMEM_ADDR_NULL) {
                    997:                                                goto gotit;
                    998:                                        }
1.2       yamt      999:                                }
1.1       yamt     1000:                        }
                   1001:                }
                   1002:        }
1.2       yamt     1003:        VMEM_UNLOCK(vm);
1.1       yamt     1004: #if 1
1.2       yamt     1005:        if (strat == VM_INSTANTFIT) {
                   1006:                strat = VM_BESTFIT;
                   1007:                goto retry_strat;
                   1008:        }
1.1       yamt     1009: #endif
1.10      yamt     1010:        if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1.60    ! dyoung   1011:            nocross != 0) {
1.10      yamt     1012:
                   1013:                /*
                   1014:                 * XXX should try to import a region large enough to
                   1015:                 * satisfy restrictions?
                   1016:                 */
                   1017:
1.20      yamt     1018:                goto fail;
1.10      yamt     1019:        }
1.60    ! dyoung   1020:        /* XXX eeek, minaddr & maxaddr not respected */
1.2       yamt     1021:        if (vmem_import(vm, size, flags) == 0) {
                   1022:                goto retry;
1.1       yamt     1023:        }
1.2       yamt     1024:        /* XXX */
1.20      yamt     1025: fail:
                   1026:        bt_free(vm, btnew);
                   1027:        bt_free(vm, btnew2);
1.2       yamt     1028:        return VMEM_ADDR_NULL;
                   1029:
                   1030: gotit:
1.1       yamt     1031:        KASSERT(bt->bt_type == BT_TYPE_FREE);
                   1032:        KASSERT(bt->bt_size >= size);
                   1033:        bt_remfree(vm, bt);
1.55      yamt     1034:        vmem_check(vm);
1.10      yamt     1035:        if (bt->bt_start != start) {
                   1036:                btnew2->bt_type = BT_TYPE_FREE;
                   1037:                btnew2->bt_start = bt->bt_start;
                   1038:                btnew2->bt_size = start - bt->bt_start;
                   1039:                bt->bt_start = start;
                   1040:                bt->bt_size -= btnew2->bt_size;
                   1041:                bt_insfree(vm, btnew2);
                   1042:                bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
                   1043:                btnew2 = NULL;
1.55      yamt     1044:                vmem_check(vm);
1.10      yamt     1045:        }
                   1046:        KASSERT(bt->bt_start == start);
1.1       yamt     1047:        if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
                   1048:                /* split */
                   1049:                btnew->bt_type = BT_TYPE_BUSY;
                   1050:                btnew->bt_start = bt->bt_start;
                   1051:                btnew->bt_size = size;
                   1052:                bt->bt_start = bt->bt_start + size;
                   1053:                bt->bt_size -= size;
                   1054:                bt_insfree(vm, bt);
                   1055:                bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
                   1056:                bt_insbusy(vm, btnew);
1.55      yamt     1057:                vmem_check(vm);
1.1       yamt     1058:                VMEM_UNLOCK(vm);
                   1059:        } else {
                   1060:                bt->bt_type = BT_TYPE_BUSY;
                   1061:                bt_insbusy(vm, bt);
1.55      yamt     1062:                vmem_check(vm);
1.1       yamt     1063:                VMEM_UNLOCK(vm);
                   1064:                bt_free(vm, btnew);
                   1065:                btnew = bt;
                   1066:        }
1.10      yamt     1067:        if (btnew2 != NULL) {
                   1068:                bt_free(vm, btnew2);
                   1069:        }
1.1       yamt     1070:        KASSERT(btnew->bt_size >= size);
                   1071:        btnew->bt_type = BT_TYPE_BUSY;
                   1072:
                   1073:        return btnew->bt_start;
                   1074: }
                   1075:
                   1076: /*
                   1077:  * vmem_free:
                   1078:  *
                   1079:  * => caller must ensure appropriate spl,
                   1080:  *    if the arena can be accessed from interrupt context.
                   1081:  */
                   1082:
                   1083: void
                   1084: vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
                   1085: {
                   1086:
                   1087:        KASSERT(addr != VMEM_ADDR_NULL);
                   1088:        KASSERT(size > 0);
                   1089:
1.5       yamt     1090: #if defined(QCACHE)
                   1091:        if (size <= vm->vm_qcache_max) {
                   1092:                int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1.22      yamt     1093:                qcache_t *qc = vm->vm_qcache[qidx - 1];
1.5       yamt     1094:
1.35      ad       1095:                return pool_cache_put(qc->qc_cache, (void *)addr);
1.5       yamt     1096:        }
                   1097: #endif /* defined(QCACHE) */
                   1098:
1.10      yamt     1099:        vmem_xfree(vm, addr, size);
                   1100: }
                   1101:
                   1102: void
1.17      yamt     1103: vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1.10      yamt     1104: {
                   1105:        bt_t *bt;
                   1106:        bt_t *t;
                   1107:
                   1108:        KASSERT(addr != VMEM_ADDR_NULL);
                   1109:        KASSERT(size > 0);
                   1110:
1.1       yamt     1111:        VMEM_LOCK(vm);
                   1112:
                   1113:        bt = bt_lookupbusy(vm, addr);
                   1114:        KASSERT(bt != NULL);
                   1115:        KASSERT(bt->bt_start == addr);
                   1116:        KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
                   1117:            bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
                   1118:        KASSERT(bt->bt_type == BT_TYPE_BUSY);
                   1119:        bt_rembusy(vm, bt);
                   1120:        bt->bt_type = BT_TYPE_FREE;
                   1121:
                   1122:        /* coalesce */
                   1123:        t = CIRCLEQ_NEXT(bt, bt_seglist);
                   1124:        if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1.60    ! dyoung   1125:                KASSERT(BT_END(bt) < t->bt_start);      /* YYY */
1.1       yamt     1126:                bt_remfree(vm, t);
                   1127:                bt_remseg(vm, t);
                   1128:                bt->bt_size += t->bt_size;
                   1129:                bt_free(vm, t);
                   1130:        }
                   1131:        t = CIRCLEQ_PREV(bt, bt_seglist);
                   1132:        if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1.60    ! dyoung   1133:                KASSERT(BT_END(t) < bt->bt_start);      /* YYY */
1.1       yamt     1134:                bt_remfree(vm, t);
                   1135:                bt_remseg(vm, t);
                   1136:                bt->bt_size += t->bt_size;
                   1137:                bt->bt_start = t->bt_start;
                   1138:                bt_free(vm, t);
                   1139:        }
                   1140:
                   1141:        t = CIRCLEQ_PREV(bt, bt_seglist);
                   1142:        KASSERT(t != NULL);
                   1143:        KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
                   1144:        if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
                   1145:            t->bt_size == bt->bt_size) {
                   1146:                vmem_addr_t spanaddr;
                   1147:                vmem_size_t spansize;
                   1148:
                   1149:                KASSERT(t->bt_start == bt->bt_start);
                   1150:                spanaddr = bt->bt_start;
                   1151:                spansize = bt->bt_size;
                   1152:                bt_remseg(vm, bt);
                   1153:                bt_free(vm, bt);
                   1154:                bt_remseg(vm, t);
                   1155:                bt_free(vm, t);
                   1156:                VMEM_UNLOCK(vm);
                   1157:                (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
                   1158:        } else {
                   1159:                bt_insfree(vm, bt);
                   1160:                VMEM_UNLOCK(vm);
                   1161:        }
                   1162: }
                   1163:
                   1164: /*
                   1165:  * vmem_add:
                   1166:  *
                   1167:  * => caller must ensure appropriate spl,
                   1168:  *    if the arena can be accessed from interrupt context.
                   1169:  */
                   1170:
                   1171: vmem_addr_t
                   1172: vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
                   1173: {
                   1174:
                   1175:        return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
                   1176: }
                   1177:
1.6       yamt     1178: /*
                   1179:  * vmem_reap: reap unused resources.
                   1180:  *
1.26      thorpej  1181:  * => return true if we successfully reaped something.
1.6       yamt     1182:  */
                   1183:
1.25      thorpej  1184: bool
1.6       yamt     1185: vmem_reap(vmem_t *vm)
                   1186: {
1.26      thorpej  1187:        bool didsomething = false;
1.6       yamt     1188:
                   1189: #if defined(QCACHE)
                   1190:        didsomething = qc_reap(vm);
                   1191: #endif /* defined(QCACHE) */
                   1192:        return didsomething;
                   1193: }
                   1194:
1.30      yamt     1195: /* ---- rehash */
                   1196:
                   1197: #if defined(_KERNEL)
                   1198: static struct callout vmem_rehash_ch;
                   1199: static int vmem_rehash_interval;
                   1200: static struct workqueue *vmem_rehash_wq;
                   1201: static struct work vmem_rehash_wk;
                   1202:
                   1203: static void
                   1204: vmem_rehash_all(struct work *wk, void *dummy)
                   1205: {
                   1206:        vmem_t *vm;
                   1207:
                   1208:        KASSERT(wk == &vmem_rehash_wk);
                   1209:        mutex_enter(&vmem_list_lock);
                   1210:        LIST_FOREACH(vm, &vmem_list, vm_alllist) {
                   1211:                size_t desired;
                   1212:                size_t current;
                   1213:
                   1214:                if (!VMEM_TRYLOCK(vm)) {
                   1215:                        continue;
                   1216:                }
                   1217:                desired = vm->vm_nbusytag;
                   1218:                current = vm->vm_hashsize;
                   1219:                VMEM_UNLOCK(vm);
                   1220:
                   1221:                if (desired > VMEM_HASHSIZE_MAX) {
                   1222:                        desired = VMEM_HASHSIZE_MAX;
                   1223:                } else if (desired < VMEM_HASHSIZE_MIN) {
                   1224:                        desired = VMEM_HASHSIZE_MIN;
                   1225:                }
                   1226:                if (desired > current * 2 || desired * 2 < current) {
                   1227:                        vmem_rehash(vm, desired, VM_NOSLEEP);
                   1228:                }
                   1229:        }
                   1230:        mutex_exit(&vmem_list_lock);
                   1231:
                   1232:        callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
                   1233: }
                   1234:
                   1235: static void
                   1236: vmem_rehash_all_kick(void *dummy)
                   1237: {
                   1238:
1.32      rmind    1239:        workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1.30      yamt     1240: }
                   1241:
                   1242: void
                   1243: vmem_rehash_start(void)
                   1244: {
                   1245:        int error;
                   1246:
                   1247:        error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1.41      ad       1248:            vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1.30      yamt     1249:        if (error) {
                   1250:                panic("%s: workqueue_create %d\n", __func__, error);
                   1251:        }
1.41      ad       1252:        callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1.30      yamt     1253:        callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
                   1254:
                   1255:        vmem_rehash_interval = hz * 10;
                   1256:        callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
                   1257: }
                   1258: #endif /* defined(_KERNEL) */
                   1259:
1.1       yamt     1260: /* ---- debug */
                   1261:
1.55      yamt     1262: #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
                   1263:
                   1264: static void bt_dump(const bt_t *, void (*)(const char *, ...));
                   1265:
                   1266: static const char *
                   1267: bt_type_string(int type)
                   1268: {
                   1269:        static const char * const table[] = {
                   1270:                [BT_TYPE_BUSY] = "busy",
                   1271:                [BT_TYPE_FREE] = "free",
                   1272:                [BT_TYPE_SPAN] = "span",
                   1273:                [BT_TYPE_SPAN_STATIC] = "static span",
                   1274:        };
                   1275:
                   1276:        if (type >= __arraycount(table)) {
                   1277:                return "BOGUS";
                   1278:        }
                   1279:        return table[type];
                   1280: }
                   1281:
                   1282: static void
                   1283: bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
                   1284: {
                   1285:
                   1286:        (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
                   1287:            bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
                   1288:            bt->bt_type, bt_type_string(bt->bt_type));
                   1289: }
                   1290:
                   1291: static void
                   1292: vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
                   1293: {
                   1294:        const bt_t *bt;
                   1295:        int i;
                   1296:
                   1297:        (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
                   1298:        CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
                   1299:                bt_dump(bt, pr);
                   1300:        }
                   1301:
                   1302:        for (i = 0; i < VMEM_MAXORDER; i++) {
                   1303:                const struct vmem_freelist *fl = &vm->vm_freelist[i];
                   1304:
                   1305:                if (LIST_EMPTY(fl)) {
                   1306:                        continue;
                   1307:                }
                   1308:
                   1309:                (*pr)("freelist[%d]\n", i);
                   1310:                LIST_FOREACH(bt, fl, bt_freelist) {
                   1311:                        bt_dump(bt, pr);
                   1312:                }
                   1313:        }
                   1314: }
                   1315:
                   1316: #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
                   1317:
1.37      yamt     1318: #if defined(DDB)
                   1319: static bt_t *
                   1320: vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
                   1321: {
1.39      yamt     1322:        bt_t *bt;
1.37      yamt     1323:
1.39      yamt     1324:        CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
                   1325:                if (BT_ISSPAN_P(bt)) {
                   1326:                        continue;
                   1327:                }
1.60    ! dyoung   1328:                if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1.39      yamt     1329:                        return bt;
1.37      yamt     1330:                }
                   1331:        }
                   1332:
                   1333:        return NULL;
                   1334: }
                   1335:
                   1336: void
                   1337: vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
                   1338: {
                   1339:        vmem_t *vm;
                   1340:
                   1341:        LIST_FOREACH(vm, &vmem_list, vm_alllist) {
                   1342:                bt_t *bt;
                   1343:
                   1344:                bt = vmem_whatis_lookup(vm, addr);
                   1345:                if (bt == NULL) {
                   1346:                        continue;
                   1347:                }
1.39      yamt     1348:                (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1.37      yamt     1349:                    (void *)addr, (void *)bt->bt_start,
1.39      yamt     1350:                    (size_t)(addr - bt->bt_start), vm->vm_name,
                   1351:                    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1.37      yamt     1352:        }
                   1353: }
1.43      cegger   1354:
1.55      yamt     1355: void
                   1356: vmem_printall(const char *modif, void (*pr)(const char *, ...))
1.43      cegger   1357: {
1.55      yamt     1358:        const vmem_t *vm;
1.43      cegger   1359:
1.47      cegger   1360:        LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1.55      yamt     1361:                vmem_dump(vm, pr);
1.43      cegger   1362:        }
                   1363: }
                   1364:
                   1365: void
                   1366: vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
                   1367: {
1.55      yamt     1368:        const vmem_t *vm = (const void *)addr;
1.43      cegger   1369:
1.55      yamt     1370:        vmem_dump(vm, pr);
1.43      cegger   1371: }
1.37      yamt     1372: #endif /* defined(DDB) */
                   1373:
1.60    ! dyoung   1374: #if defined(_KERNEL)
        !          1375: #define vmem_printf printf
        !          1376: #else
1.1       yamt     1377: #include <stdio.h>
1.60    ! dyoung   1378: #include <stdarg.h>
        !          1379:
        !          1380: static void
        !          1381: vmem_printf(const char *fmt, ...)
        !          1382: {
        !          1383:        va_list ap;
        !          1384:        va_start(ap, fmt);
        !          1385:        vprintf(fmt, ap);
        !          1386:        va_end(ap);
        !          1387: }
        !          1388: #endif
1.1       yamt     1389:
1.55      yamt     1390: #if defined(VMEM_SANITY)
1.1       yamt     1391:
1.55      yamt     1392: static bool
                   1393: vmem_check_sanity(vmem_t *vm)
1.1       yamt     1394: {
1.55      yamt     1395:        const bt_t *bt, *bt2;
1.1       yamt     1396:
1.55      yamt     1397:        KASSERT(vm != NULL);
1.1       yamt     1398:
                   1399:        CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1.60    ! dyoung   1400:                if (bt->bt_start > BT_END(bt)) {
1.55      yamt     1401:                        printf("corrupted tag\n");
1.60    ! dyoung   1402:                        bt_dump(bt, vmem_printf);
1.55      yamt     1403:                        return false;
                   1404:                }
                   1405:        }
                   1406:        CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
                   1407:                CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
                   1408:                        if (bt == bt2) {
                   1409:                                continue;
                   1410:                        }
                   1411:                        if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
                   1412:                                continue;
                   1413:                        }
1.60    ! dyoung   1414:                        if (bt->bt_start <= BT_END(bt2) &&
        !          1415:                            bt2->bt_start <= BT_END(bt)) {
1.55      yamt     1416:                                printf("overwrapped tags\n");
1.60    ! dyoung   1417:                                bt_dump(bt, vmem_printf);
        !          1418:                                bt_dump(bt2, vmem_printf);
1.55      yamt     1419:                                return false;
                   1420:                        }
                   1421:                }
1.1       yamt     1422:        }
                   1423:
1.55      yamt     1424:        return true;
                   1425: }
1.1       yamt     1426:
1.55      yamt     1427: static void
                   1428: vmem_check(vmem_t *vm)
                   1429: {
1.1       yamt     1430:
1.55      yamt     1431:        if (!vmem_check_sanity(vm)) {
                   1432:                panic("insanity vmem %p", vm);
1.1       yamt     1433:        }
                   1434: }
                   1435:
1.55      yamt     1436: #endif /* defined(VMEM_SANITY) */
1.1       yamt     1437:
1.55      yamt     1438: #if defined(UNITTEST)
1.1       yamt     1439: int
1.57      cegger   1440: main(void)
1.1       yamt     1441: {
                   1442:        vmem_t *vm;
                   1443:        vmem_addr_t p;
                   1444:        struct reg {
                   1445:                vmem_addr_t p;
                   1446:                vmem_size_t sz;
1.25      thorpej  1447:                bool x;
1.1       yamt     1448:        } *reg = NULL;
                   1449:        int nreg = 0;
                   1450:        int nalloc = 0;
                   1451:        int nfree = 0;
                   1452:        vmem_size_t total = 0;
                   1453: #if 1
                   1454:        vm_flag_t strat = VM_INSTANTFIT;
                   1455: #else
                   1456:        vm_flag_t strat = VM_BESTFIT;
                   1457: #endif
                   1458:
                   1459:        vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1.55      yamt     1460:            NULL, NULL, NULL, 0, VM_SLEEP, 0/*XXX*/);
1.1       yamt     1461:        if (vm == NULL) {
                   1462:                printf("vmem_create\n");
                   1463:                exit(EXIT_FAILURE);
                   1464:        }
1.60    ! dyoung   1465:        vmem_dump(vm, vmem_printf);
1.1       yamt     1466:
                   1467:        p = vmem_add(vm, 100, 200, VM_SLEEP);
1.60    ! dyoung   1468:        assert(p != VMEM_ADDR_NULL);
1.1       yamt     1469:        p = vmem_add(vm, 2000, 1, VM_SLEEP);
1.60    ! dyoung   1470:        assert(p != VMEM_ADDR_NULL);
        !          1471:        p = vmem_add(vm, 40000, 65536, VM_SLEEP);
        !          1472:        assert(p != VMEM_ADDR_NULL);
1.1       yamt     1473:        p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1.60    ! dyoung   1474:        assert(p != VMEM_ADDR_NULL);
1.1       yamt     1475:        p = vmem_add(vm, 500, 1000, VM_SLEEP);
1.60    ! dyoung   1476:        assert(p != VMEM_ADDR_NULL);
        !          1477:        p = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
        !          1478:        assert(p != VMEM_ADDR_NULL);
        !          1479:        p = vmem_xalloc(vm, 0x101, 0, 0, 0,
        !          1480:            0xffffff00, 0xffffffff, strat|VM_SLEEP);
        !          1481:        assert(p == VMEM_ADDR_NULL);
        !          1482:        p = vmem_xalloc(vm, 0x100, 0, 0, 0,
        !          1483:            0xffffff01, 0xffffffff, strat|VM_SLEEP);
        !          1484:        assert(p == VMEM_ADDR_NULL);
        !          1485:        p = vmem_xalloc(vm, 0x100, 0, 0, 0,
        !          1486:            0xffffff00, 0xfffffffe, strat|VM_SLEEP);
        !          1487:        assert(p == VMEM_ADDR_NULL);
        !          1488:        p = vmem_xalloc(vm, 0x100, 0, 0, 0,
        !          1489:            0xffffff00, 0xffffffff, strat|VM_SLEEP);
        !          1490:        assert(p != VMEM_ADDR_NULL);
        !          1491:        vmem_dump(vm, vmem_printf);
1.1       yamt     1492:        for (;;) {
                   1493:                struct reg *r;
1.10      yamt     1494:                int t = rand() % 100;
1.1       yamt     1495:
1.10      yamt     1496:                if (t > 45) {
                   1497:                        /* alloc */
1.1       yamt     1498:                        vmem_size_t sz = rand() % 500 + 1;
1.25      thorpej  1499:                        bool x;
1.10      yamt     1500:                        vmem_size_t align, phase, nocross;
                   1501:                        vmem_addr_t minaddr, maxaddr;
                   1502:
                   1503:                        if (t > 70) {
1.26      thorpej  1504:                                x = true;
1.10      yamt     1505:                                /* XXX */
                   1506:                                align = 1 << (rand() % 15);
                   1507:                                phase = rand() % 65536;
                   1508:                                nocross = 1 << (rand() % 15);
                   1509:                                if (align <= phase) {
                   1510:                                        phase = 0;
                   1511:                                }
1.19      yamt     1512:                                if (VMEM_CROSS_P(phase, phase + sz - 1,
                   1513:                                    nocross)) {
1.10      yamt     1514:                                        nocross = 0;
                   1515:                                }
1.60    ! dyoung   1516:                                do {
        !          1517:                                        minaddr = rand() % 50000;
        !          1518:                                        maxaddr = rand() % 70000;
        !          1519:                                } while (minaddr > maxaddr);
1.10      yamt     1520:                                printf("=== xalloc %" PRIu64
                   1521:                                    " align=%" PRIu64 ", phase=%" PRIu64
                   1522:                                    ", nocross=%" PRIu64 ", min=%" PRIu64
                   1523:                                    ", max=%" PRIu64 "\n",
                   1524:                                    (uint64_t)sz,
                   1525:                                    (uint64_t)align,
                   1526:                                    (uint64_t)phase,
                   1527:                                    (uint64_t)nocross,
                   1528:                                    (uint64_t)minaddr,
                   1529:                                    (uint64_t)maxaddr);
                   1530:                                p = vmem_xalloc(vm, sz, align, phase, nocross,
                   1531:                                    minaddr, maxaddr, strat|VM_SLEEP);
                   1532:                        } else {
1.26      thorpej  1533:                                x = false;
1.10      yamt     1534:                                printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
                   1535:                                p = vmem_alloc(vm, sz, strat|VM_SLEEP);
                   1536:                        }
1.1       yamt     1537:                        printf("-> %" PRIu64 "\n", (uint64_t)p);
1.60    ! dyoung   1538:                        vmem_dump(vm, vmem_printf);
1.1       yamt     1539:                        if (p == VMEM_ADDR_NULL) {
1.10      yamt     1540:                                if (x) {
                   1541:                                        continue;
                   1542:                                }
1.1       yamt     1543:                                break;
                   1544:                        }
                   1545:                        nreg++;
                   1546:                        reg = realloc(reg, sizeof(*reg) * nreg);
                   1547:                        r = &reg[nreg - 1];
                   1548:                        r->p = p;
                   1549:                        r->sz = sz;
1.10      yamt     1550:                        r->x = x;
1.1       yamt     1551:                        total += sz;
                   1552:                        nalloc++;
                   1553:                } else if (nreg != 0) {
1.10      yamt     1554:                        /* free */
1.1       yamt     1555:                        r = &reg[rand() % nreg];
                   1556:                        printf("=== free %" PRIu64 ", %" PRIu64 "\n",
                   1557:                            (uint64_t)r->p, (uint64_t)r->sz);
1.10      yamt     1558:                        if (r->x) {
                   1559:                                vmem_xfree(vm, r->p, r->sz);
                   1560:                        } else {
                   1561:                                vmem_free(vm, r->p, r->sz);
                   1562:                        }
1.1       yamt     1563:                        total -= r->sz;
1.60    ! dyoung   1564:                        vmem_dump(vm, vmem_printf);
1.1       yamt     1565:                        *r = reg[nreg - 1];
                   1566:                        nreg--;
                   1567:                        nfree++;
                   1568:                }
                   1569:                printf("total=%" PRIu64 "\n", (uint64_t)total);
                   1570:        }
                   1571:        fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
                   1572:            (uint64_t)total, nalloc, nfree);
                   1573:        exit(EXIT_SUCCESS);
                   1574: }
1.55      yamt     1575: #endif /* defined(UNITTEST) */

CVSweb <webmaster@jp.NetBSD.org>