[BACK]Return to subr_pool.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / kern

Annotation of src/sys/kern/subr_pool.c, Revision 1.209

1.209   ! riastrad    1: /*     $NetBSD: subr_pool.c,v 1.208 2017/06/08 04:00:01 chs Exp $      */
1.1       pk          2:
                      3: /*-
1.204     maxv        4:  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
1.183     ad          5:  *     The NetBSD Foundation, Inc.
1.1       pk          6:  * All rights reserved.
                      7:  *
                      8:  * This code is derived from software contributed to The NetBSD Foundation
1.20      thorpej     9:  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
1.204     maxv       10:  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
                     11:  * Maxime Villard.
1.1       pk         12:  *
                     13:  * Redistribution and use in source and binary forms, with or without
                     14:  * modification, are permitted provided that the following conditions
                     15:  * are met:
                     16:  * 1. Redistributions of source code must retain the above copyright
                     17:  *    notice, this list of conditions and the following disclaimer.
                     18:  * 2. Redistributions in binary form must reproduce the above copyright
                     19:  *    notice, this list of conditions and the following disclaimer in the
                     20:  *    documentation and/or other materials provided with the distribution.
                     21:  *
                     22:  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
                     23:  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
                     24:  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                     25:  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
                     26:  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
                     27:  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
                     28:  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
                     29:  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
                     30:  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
                     31:  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
                     32:  * POSSIBILITY OF SUCH DAMAGE.
                     33:  */
1.64      lukem      34:
                     35: #include <sys/cdefs.h>
1.209   ! riastrad   36: __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.208 2017/06/08 04:00:01 chs Exp $");
1.24      scottr     37:
1.205     pooka      38: #ifdef _KERNEL_OPT
1.141     yamt       39: #include "opt_ddb.h"
1.28      thorpej    40: #include "opt_lockdebug.h"
1.205     pooka      41: #endif
1.1       pk         42:
                     43: #include <sys/param.h>
                     44: #include <sys/systm.h>
1.203     joerg      45: #include <sys/sysctl.h>
1.135     yamt       46: #include <sys/bitops.h>
1.1       pk         47: #include <sys/proc.h>
                     48: #include <sys/errno.h>
                     49: #include <sys/kernel.h>
1.191     para       50: #include <sys/vmem.h>
1.1       pk         51: #include <sys/pool.h>
1.20      thorpej    52: #include <sys/syslog.h>
1.125     ad         53: #include <sys/debug.h>
1.134     ad         54: #include <sys/lockdebug.h>
                     55: #include <sys/xcall.h>
                     56: #include <sys/cpu.h>
1.145     ad         57: #include <sys/atomic.h>
1.3       pk         58:
1.187     uebayasi   59: #include <uvm/uvm_extern.h>
1.3       pk         60:
1.1       pk         61: /*
                     62:  * Pool resource management utility.
1.3       pk         63:  *
1.88      chs        64:  * Memory is allocated in pages which are split into pieces according to
                     65:  * the pool item size. Each page is kept on one of three lists in the
                     66:  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
                     67:  * for empty, full and partially-full pages respectively. The individual
                     68:  * pool items are on a linked list headed by `ph_itemlist' in each page
                     69:  * header. The memory for building the page list is either taken from
                     70:  * the allocated pages themselves (for small pool items) or taken from
                     71:  * an internal pool of page headers (`phpool').
1.1       pk         72:  */
                     73:
1.202     abs        74: /* List of all pools. Non static as needed by 'vmstat -i' */
                     75: TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
1.134     ad         76:
1.3       pk         77: /* Private pool for page header structures */
1.97      yamt       78: #define        PHPOOL_MAX      8
                     79: static struct pool phpool[PHPOOL_MAX];
1.135     yamt       80: #define        PHPOOL_FREELIST_NELEM(idx) \
                     81:        (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
1.3       pk         82:
1.62      bjh21      83: #ifdef POOL_SUBPAGE
                     84: /* Pool of subpages for use by normal pools. */
                     85: static struct pool psppool;
                     86: #endif
                     87:
1.204     maxv       88: #ifdef POOL_REDZONE
                     89: # define POOL_REDZONE_SIZE 2
                     90: static void pool_redzone_init(struct pool *, size_t);
                     91: static void pool_redzone_fill(struct pool *, void *);
                     92: static void pool_redzone_check(struct pool *, void *);
                     93: #else
                     94: # define pool_redzone_init(pp, sz)     /* NOTHING */
                     95: # define pool_redzone_fill(pp, ptr)    /* NOTHING */
                     96: # define pool_redzone_check(pp, ptr)   /* NOTHING */
                     97: #endif
                     98:
1.98      yamt       99: static void *pool_page_alloc_meta(struct pool *, int);
                    100: static void pool_page_free_meta(struct pool *, void *);
                    101:
                    102: /* allocator for pool metadata */
1.134     ad        103: struct pool_allocator pool_allocator_meta = {
1.191     para      104:        .pa_alloc = pool_page_alloc_meta,
                    105:        .pa_free = pool_page_free_meta,
                    106:        .pa_pagesz = 0
1.98      yamt      107: };
                    108:
1.208     chs       109: #define POOL_ALLOCATOR_BIG_BASE 13
                    110: extern struct pool_allocator pool_allocator_big[];
                    111: static int pool_bigidx(size_t);
                    112:
1.3       pk        113: /* # of seconds to retain page after last use */
                    114: int pool_inactive_time = 10;
                    115:
                    116: /* Next candidate for drainage (see pool_drain()) */
1.23      thorpej   117: static struct pool     *drainpp;
                    118:
1.134     ad        119: /* This lock protects both pool_head and drainpp. */
                    120: static kmutex_t pool_head_lock;
                    121: static kcondvar_t pool_busy;
1.3       pk        122:
1.178     elad      123: /* This lock protects initialization of a potentially shared pool allocator */
                    124: static kmutex_t pool_allocator_lock;
                    125:
1.135     yamt      126: typedef uint32_t pool_item_bitmap_t;
                    127: #define        BITMAP_SIZE     (CHAR_BIT * sizeof(pool_item_bitmap_t))
                    128: #define        BITMAP_MASK     (BITMAP_SIZE - 1)
1.99      yamt      129:
1.3       pk        130: struct pool_item_header {
                    131:        /* Page headers */
1.88      chs       132:        LIST_ENTRY(pool_item_header)
1.3       pk        133:                                ph_pagelist;    /* pool page list */
1.88      chs       134:        SPLAY_ENTRY(pool_item_header)
                    135:                                ph_node;        /* Off-page page headers */
1.128     christos  136:        void *                  ph_page;        /* this page's address */
1.151     yamt      137:        uint32_t                ph_time;        /* last referenced */
1.135     yamt      138:        uint16_t                ph_nmissing;    /* # of chunks in use */
1.141     yamt      139:        uint16_t                ph_off;         /* start offset in page */
1.97      yamt      140:        union {
                    141:                /* !PR_NOTOUCH */
                    142:                struct {
1.102     chs       143:                        LIST_HEAD(, pool_item)
1.97      yamt      144:                                phu_itemlist;   /* chunk list for this page */
                    145:                } phu_normal;
                    146:                /* PR_NOTOUCH */
                    147:                struct {
1.141     yamt      148:                        pool_item_bitmap_t phu_bitmap[1];
1.97      yamt      149:                } phu_notouch;
                    150:        } ph_u;
1.3       pk        151: };
1.97      yamt      152: #define        ph_itemlist     ph_u.phu_normal.phu_itemlist
1.135     yamt      153: #define        ph_bitmap       ph_u.phu_notouch.phu_bitmap
1.3       pk        154:
1.1       pk        155: struct pool_item {
1.3       pk        156: #ifdef DIAGNOSTIC
1.82      thorpej   157:        u_int pi_magic;
1.33      chs       158: #endif
1.134     ad        159: #define        PI_MAGIC 0xdeaddeadU
1.3       pk        160:        /* Other entries use only this list entry */
1.102     chs       161:        LIST_ENTRY(pool_item)   pi_list;
1.3       pk        162: };
                    163:
1.53      thorpej   164: #define        POOL_NEEDS_CATCHUP(pp)                                          \
                    165:        ((pp)->pr_nitems < (pp)->pr_minitems)
                    166:
1.43      thorpej   167: /*
                    168:  * Pool cache management.
                    169:  *
                    170:  * Pool caches provide a way for constructed objects to be cached by the
                    171:  * pool subsystem.  This can lead to performance improvements by avoiding
                    172:  * needless object construction/destruction; it is deferred until absolutely
                    173:  * necessary.
                    174:  *
1.134     ad        175:  * Caches are grouped into cache groups.  Each cache group references up
                    176:  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
                    177:  * object from the pool, it calls the object's constructor and places it
                    178:  * into a cache group.  When a cache group frees an object back to the
                    179:  * pool, it first calls the object's destructor.  This allows the object
                    180:  * to persist in constructed form while freed to the cache.
                    181:  *
                    182:  * The pool references each cache, so that when a pool is drained by the
                    183:  * pagedaemon, it can drain each individual cache as well.  Each time a
                    184:  * cache is drained, the most idle cache group is freed to the pool in
                    185:  * its entirety.
1.43      thorpej   186:  *
                    187:  * Pool caches are layed on top of pools.  By layering them, we can avoid
                    188:  * the complexity of cache management for pools which would not benefit
                    189:  * from it.
                    190:  */
                    191:
1.142     ad        192: static struct pool pcg_normal_pool;
                    193: static struct pool pcg_large_pool;
1.134     ad        194: static struct pool cache_pool;
                    195: static struct pool cache_cpu_pool;
1.3       pk        196:
1.189     pooka     197: pool_cache_t pnbuf_cache;      /* pathname buffer cache */
                    198:
1.145     ad        199: /* List of all caches. */
                    200: TAILQ_HEAD(,pool_cache) pool_cache_head =
                    201:     TAILQ_HEAD_INITIALIZER(pool_cache_head);
                    202:
1.162     ad        203: int pool_cache_disable;                /* global disable for caching */
1.169     yamt      204: static const pcg_t pcg_dummy;  /* zero sized: always empty, yet always full */
1.145     ad        205:
1.162     ad        206: static bool    pool_cache_put_slow(pool_cache_cpu_t *, int,
                    207:                                    void *);
                    208: static bool    pool_cache_get_slow(pool_cache_cpu_t *, int,
                    209:                                    void **, paddr_t *, int);
1.134     ad        210: static void    pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
                    211: static void    pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
1.175     jym       212: static void    pool_cache_invalidate_cpu(pool_cache_t, u_int);
1.196     jym       213: static void    pool_cache_transfer(pool_cache_t);
1.3       pk        214:
1.42      thorpej   215: static int     pool_catchup(struct pool *);
1.128     christos  216: static void    pool_prime_page(struct pool *, void *,
1.55      thorpej   217:                    struct pool_item_header *);
1.88      chs       218: static void    pool_update_curpage(struct pool *);
1.66      thorpej   219:
1.113     yamt      220: static int     pool_grow(struct pool *, int);
1.117     yamt      221: static void    *pool_allocator_alloc(struct pool *, int);
                    222: static void    pool_allocator_free(struct pool *, void *);
1.3       pk        223:
1.97      yamt      224: static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
1.199     christos  225:        void (*)(const char *, ...) __printflike(1, 2));
1.42      thorpej   226: static void pool_print1(struct pool *, const char *,
1.199     christos  227:        void (*)(const char *, ...) __printflike(1, 2));
1.3       pk        228:
1.88      chs       229: static int pool_chk_page(struct pool *, const char *,
                    230:                         struct pool_item_header *);
                    231:
1.135     yamt      232: static inline unsigned int
1.97      yamt      233: pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
                    234:     const void *v)
                    235: {
                    236:        const char *cp = v;
1.135     yamt      237:        unsigned int idx;
1.97      yamt      238:
                    239:        KASSERT(pp->pr_roflags & PR_NOTOUCH);
1.128     christos  240:        idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
1.97      yamt      241:        KASSERT(idx < pp->pr_itemsperpage);
                    242:        return idx;
                    243: }
                    244:
1.110     perry     245: static inline void
1.97      yamt      246: pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
                    247:     void *obj)
                    248: {
1.135     yamt      249:        unsigned int idx = pr_item_notouch_index(pp, ph, obj);
                    250:        pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
                    251:        pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
1.97      yamt      252:
1.135     yamt      253:        KASSERT((*bitmap & mask) == 0);
                    254:        *bitmap |= mask;
1.97      yamt      255: }
                    256:
1.110     perry     257: static inline void *
1.97      yamt      258: pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
                    259: {
1.135     yamt      260:        pool_item_bitmap_t *bitmap = ph->ph_bitmap;
                    261:        unsigned int idx;
                    262:        int i;
1.97      yamt      263:
1.135     yamt      264:        for (i = 0; ; i++) {
                    265:                int bit;
1.97      yamt      266:
1.135     yamt      267:                KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
                    268:                bit = ffs32(bitmap[i]);
                    269:                if (bit) {
                    270:                        pool_item_bitmap_t mask;
                    271:
                    272:                        bit--;
                    273:                        idx = (i * BITMAP_SIZE) + bit;
                    274:                        mask = 1 << bit;
                    275:                        KASSERT((bitmap[i] & mask) != 0);
                    276:                        bitmap[i] &= ~mask;
                    277:                        break;
                    278:                }
                    279:        }
                    280:        KASSERT(idx < pp->pr_itemsperpage);
1.128     christos  281:        return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
1.97      yamt      282: }
                    283:
1.135     yamt      284: static inline void
1.141     yamt      285: pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
1.135     yamt      286: {
                    287:        pool_item_bitmap_t *bitmap = ph->ph_bitmap;
                    288:        const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
                    289:        int i;
                    290:
                    291:        for (i = 0; i < n; i++) {
                    292:                bitmap[i] = (pool_item_bitmap_t)-1;
                    293:        }
                    294: }
                    295:
1.110     perry     296: static inline int
1.88      chs       297: phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
                    298: {
1.121     yamt      299:
                    300:        /*
                    301:         * we consider pool_item_header with smaller ph_page bigger.
                    302:         * (this unnatural ordering is for the benefit of pr_find_pagehead.)
                    303:         */
                    304:
1.88      chs       305:        if (a->ph_page < b->ph_page)
1.121     yamt      306:                return (1);
                    307:        else if (a->ph_page > b->ph_page)
1.88      chs       308:                return (-1);
                    309:        else
                    310:                return (0);
                    311: }
                    312:
                    313: SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
                    314: SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
                    315:
1.141     yamt      316: static inline struct pool_item_header *
                    317: pr_find_pagehead_noalign(struct pool *pp, void *v)
                    318: {
                    319:        struct pool_item_header *ph, tmp;
                    320:
                    321:        tmp.ph_page = (void *)(uintptr_t)v;
                    322:        ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
                    323:        if (ph == NULL) {
                    324:                ph = SPLAY_ROOT(&pp->pr_phtree);
                    325:                if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
                    326:                        ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
                    327:                }
                    328:                KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
                    329:        }
                    330:
                    331:        return ph;
                    332: }
                    333:
1.3       pk        334: /*
1.121     yamt      335:  * Return the pool page header based on item address.
1.3       pk        336:  */
1.110     perry     337: static inline struct pool_item_header *
1.121     yamt      338: pr_find_pagehead(struct pool *pp, void *v)
1.3       pk        339: {
1.88      chs       340:        struct pool_item_header *ph, tmp;
1.3       pk        341:
1.121     yamt      342:        if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1.141     yamt      343:                ph = pr_find_pagehead_noalign(pp, v);
1.121     yamt      344:        } else {
1.128     christos  345:                void *page =
                    346:                    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
1.121     yamt      347:
                    348:                if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1.128     christos  349:                        ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
1.121     yamt      350:                } else {
                    351:                        tmp.ph_page = page;
                    352:                        ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
                    353:                }
                    354:        }
1.3       pk        355:
1.121     yamt      356:        KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
1.128     christos  357:            ((char *)ph->ph_page <= (char *)v &&
                    358:            (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
1.88      chs       359:        return ph;
1.3       pk        360: }
                    361:
1.101     thorpej   362: static void
                    363: pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
                    364: {
                    365:        struct pool_item_header *ph;
                    366:
                    367:        while ((ph = LIST_FIRST(pq)) != NULL) {
                    368:                LIST_REMOVE(ph, ph_pagelist);
                    369:                pool_allocator_free(pp, ph->ph_page);
1.134     ad        370:                if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1.101     thorpej   371:                        pool_put(pp->pr_phpool, ph);
                    372:        }
                    373: }
                    374:
1.3       pk        375: /*
                    376:  * Remove a page from the pool.
                    377:  */
1.110     perry     378: static inline void
1.61      chs       379: pr_rmpage(struct pool *pp, struct pool_item_header *ph,
                    380:      struct pool_pagelist *pq)
1.3       pk        381: {
                    382:
1.134     ad        383:        KASSERT(mutex_owned(&pp->pr_lock));
1.91      yamt      384:
1.3       pk        385:        /*
1.7       thorpej   386:         * If the page was idle, decrement the idle page count.
1.3       pk        387:         */
1.6       thorpej   388:        if (ph->ph_nmissing == 0) {
1.207     riastrad  389:                KASSERT(pp->pr_nidle != 0);
                    390:                KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
                    391:                    "nitems=%u < itemsperpage=%u",
                    392:                    pp->pr_nitems, pp->pr_itemsperpage);
1.6       thorpej   393:                pp->pr_nidle--;
                    394:        }
1.7       thorpej   395:
1.20      thorpej   396:        pp->pr_nitems -= pp->pr_itemsperpage;
                    397:
1.7       thorpej   398:        /*
1.101     thorpej   399:         * Unlink the page from the pool and queue it for release.
1.7       thorpej   400:         */
1.88      chs       401:        LIST_REMOVE(ph, ph_pagelist);
1.91      yamt      402:        if ((pp->pr_roflags & PR_PHINPAGE) == 0)
                    403:                SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
1.101     thorpej   404:        LIST_INSERT_HEAD(pq, ph, ph_pagelist);
                    405:
1.7       thorpej   406:        pp->pr_npages--;
                    407:        pp->pr_npagefree++;
1.6       thorpej   408:
1.88      chs       409:        pool_update_curpage(pp);
1.3       pk        410: }
                    411:
                    412: /*
1.94      simonb    413:  * Initialize all the pools listed in the "pools" link set.
                    414:  */
                    415: void
1.117     yamt      416: pool_subsystem_init(void)
1.94      simonb    417: {
1.192     rmind     418:        size_t size;
1.191     para      419:        int idx;
1.94      simonb    420:
1.134     ad        421:        mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
1.179     mlelstv   422:        mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
1.134     ad        423:        cv_init(&pool_busy, "poolbusy");
                    424:
1.191     para      425:        /*
                    426:         * Initialize private page header pool and cache magazine pool if we
                    427:         * haven't done so yet.
                    428:         */
                    429:        for (idx = 0; idx < PHPOOL_MAX; idx++) {
                    430:                static char phpool_names[PHPOOL_MAX][6+1+6+1];
                    431:                int nelem;
                    432:                size_t sz;
                    433:
                    434:                nelem = PHPOOL_FREELIST_NELEM(idx);
                    435:                snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
                    436:                    "phpool-%d", nelem);
                    437:                sz = sizeof(struct pool_item_header);
                    438:                if (nelem) {
                    439:                        sz = offsetof(struct pool_item_header,
                    440:                            ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
                    441:                }
                    442:                pool_init(&phpool[idx], sz, 0, 0, 0,
                    443:                    phpool_names[idx], &pool_allocator_meta, IPL_VM);
1.117     yamt      444:        }
1.191     para      445: #ifdef POOL_SUBPAGE
                    446:        pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
                    447:            PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
                    448: #endif
                    449:
                    450:        size = sizeof(pcg_t) +
                    451:            (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
                    452:        pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
                    453:            "pcgnormal", &pool_allocator_meta, IPL_VM);
                    454:
                    455:        size = sizeof(pcg_t) +
                    456:            (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
                    457:        pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
                    458:            "pcglarge", &pool_allocator_meta, IPL_VM);
1.134     ad        459:
1.156     ad        460:        pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
1.191     para      461:            0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
1.134     ad        462:
1.156     ad        463:        pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
1.191     para      464:            0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
1.94      simonb    465: }
                    466:
                    467: /*
1.3       pk        468:  * Initialize the given pool resource structure.
                    469:  *
                    470:  * We export this routine to allow other kernel parts to declare
1.195     rmind     471:  * static pools that must be initialized before kmem(9) is available.
1.3       pk        472:  */
                    473: void
1.42      thorpej   474: pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
1.129     ad        475:     const char *wchan, struct pool_allocator *palloc, int ipl)
1.3       pk        476: {
1.116     simonb    477:        struct pool *pp1;
1.204     maxv      478:        size_t trysize, phsize, prsize;
1.134     ad        479:        int off, slack;
1.3       pk        480:
1.116     simonb    481: #ifdef DEBUG
1.198     christos  482:        if (__predict_true(!cold))
                    483:                mutex_enter(&pool_head_lock);
1.116     simonb    484:        /*
                    485:         * Check that the pool hasn't already been initialised and
                    486:         * added to the list of all pools.
                    487:         */
1.145     ad        488:        TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
1.116     simonb    489:                if (pp == pp1)
                    490:                        panic("pool_init: pool %s already initialised",
                    491:                            wchan);
                    492:        }
1.198     christos  493:        if (__predict_true(!cold))
                    494:                mutex_exit(&pool_head_lock);
1.116     simonb    495: #endif
                    496:
1.66      thorpej   497:        if (palloc == NULL)
                    498:                palloc = &pool_allocator_kmem;
1.112     bjh21     499: #ifdef POOL_SUBPAGE
                    500:        if (size > palloc->pa_pagesz) {
                    501:                if (palloc == &pool_allocator_kmem)
                    502:                        palloc = &pool_allocator_kmem_fullpage;
                    503:                else if (palloc == &pool_allocator_nointr)
                    504:                        palloc = &pool_allocator_nointr_fullpage;
                    505:        }
1.66      thorpej   506: #endif /* POOL_SUBPAGE */
1.180     mlelstv   507:        if (!cold)
                    508:                mutex_enter(&pool_allocator_lock);
1.178     elad      509:        if (palloc->pa_refcnt++ == 0) {
1.112     bjh21     510:                if (palloc->pa_pagesz == 0)
1.66      thorpej   511:                        palloc->pa_pagesz = PAGE_SIZE;
                    512:
                    513:                TAILQ_INIT(&palloc->pa_list);
                    514:
1.134     ad        515:                mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
1.66      thorpej   516:                palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
                    517:                palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
1.4       thorpej   518:        }
1.180     mlelstv   519:        if (!cold)
                    520:                mutex_exit(&pool_allocator_lock);
1.3       pk        521:
                    522:        if (align == 0)
                    523:                align = ALIGN(1);
1.14      thorpej   524:
1.204     maxv      525:        prsize = size;
                    526:        if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
                    527:                prsize = sizeof(struct pool_item);
1.3       pk        528:
1.204     maxv      529:        prsize = roundup(prsize, align);
1.207     riastrad  530:        KASSERTMSG((prsize <= palloc->pa_pagesz),
                    531:            "pool_init: pool item size (%zu) larger than page size (%u)",
                    532:            prsize, palloc->pa_pagesz);
1.35      pk        533:
1.3       pk        534:        /*
                    535:         * Initialize the pool structure.
                    536:         */
1.88      chs       537:        LIST_INIT(&pp->pr_emptypages);
                    538:        LIST_INIT(&pp->pr_fullpages);
                    539:        LIST_INIT(&pp->pr_partpages);
1.134     ad        540:        pp->pr_cache = NULL;
1.3       pk        541:        pp->pr_curpage = NULL;
                    542:        pp->pr_npages = 0;
                    543:        pp->pr_minitems = 0;
                    544:        pp->pr_minpages = 0;
                    545:        pp->pr_maxpages = UINT_MAX;
1.20      thorpej   546:        pp->pr_roflags = flags;
                    547:        pp->pr_flags = 0;
1.204     maxv      548:        pp->pr_size = prsize;
1.3       pk        549:        pp->pr_align = align;
                    550:        pp->pr_wchan = wchan;
1.66      thorpej   551:        pp->pr_alloc = palloc;
1.20      thorpej   552:        pp->pr_nitems = 0;
                    553:        pp->pr_nout = 0;
                    554:        pp->pr_hardlimit = UINT_MAX;
                    555:        pp->pr_hardlimit_warning = NULL;
1.31      thorpej   556:        pp->pr_hardlimit_ratecap.tv_sec = 0;
                    557:        pp->pr_hardlimit_ratecap.tv_usec = 0;
                    558:        pp->pr_hardlimit_warning_last.tv_sec = 0;
                    559:        pp->pr_hardlimit_warning_last.tv_usec = 0;
1.68      thorpej   560:        pp->pr_drain_hook = NULL;
                    561:        pp->pr_drain_hook_arg = NULL;
1.125     ad        562:        pp->pr_freecheck = NULL;
1.204     maxv      563:        pool_redzone_init(pp, size);
1.3       pk        564:
                    565:        /*
                    566:         * Decide whether to put the page header off page to avoid
1.92      enami     567:         * wasting too large a part of the page or too big item.
                    568:         * Off-page page headers go on a hash table, so we can match
                    569:         * a returned item with its header based on the page address.
                    570:         * We use 1/16 of the page size and about 8 times of the item
                    571:         * size as the threshold (XXX: tune)
                    572:         *
                    573:         * However, we'll put the header into the page if we can put
                    574:         * it without wasting any items.
                    575:         *
                    576:         * Silently enforce `0 <= ioff < align'.
1.3       pk        577:         */
1.92      enami     578:        pp->pr_itemoffset = ioff %= align;
                    579:        /* See the comment below about reserved bytes. */
                    580:        trysize = palloc->pa_pagesz - ((align - ioff) % align);
                    581:        phsize = ALIGN(sizeof(struct pool_item_header));
1.201     para      582:        if (pp->pr_roflags & PR_PHINPAGE ||
                    583:            ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
1.97      yamt      584:            (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
1.201     para      585:            trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
1.3       pk        586:                /* Use the end of the page for the page header */
1.20      thorpej   587:                pp->pr_roflags |= PR_PHINPAGE;
1.92      enami     588:                pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
1.2       pk        589:        } else {
1.3       pk        590:                /* The page header will be taken from our page header pool */
                    591:                pp->pr_phoffset = 0;
1.66      thorpej   592:                off = palloc->pa_pagesz;
1.88      chs       593:                SPLAY_INIT(&pp->pr_phtree);
1.2       pk        594:        }
1.1       pk        595:
1.3       pk        596:        /*
                    597:         * Alignment is to take place at `ioff' within the item. This means
                    598:         * we must reserve up to `align - 1' bytes on the page to allow
                    599:         * appropriate positioning of each item.
                    600:         */
                    601:        pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
1.43      thorpej   602:        KASSERT(pp->pr_itemsperpage != 0);
1.97      yamt      603:        if ((pp->pr_roflags & PR_NOTOUCH)) {
                    604:                int idx;
                    605:
                    606:                for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
                    607:                    idx++) {
                    608:                        /* nothing */
                    609:                }
                    610:                if (idx >= PHPOOL_MAX) {
                    611:                        /*
                    612:                         * if you see this panic, consider to tweak
                    613:                         * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
                    614:                         */
                    615:                        panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
                    616:                            pp->pr_wchan, pp->pr_itemsperpage);
                    617:                }
                    618:                pp->pr_phpool = &phpool[idx];
                    619:        } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
                    620:                pp->pr_phpool = &phpool[0];
                    621:        }
                    622: #if defined(DIAGNOSTIC)
                    623:        else {
                    624:                pp->pr_phpool = NULL;
                    625:        }
                    626: #endif
1.3       pk        627:
                    628:        /*
                    629:         * Use the slack between the chunks and the page header
                    630:         * for "cache coloring".
                    631:         */
                    632:        slack = off - pp->pr_itemsperpage * pp->pr_size;
                    633:        pp->pr_maxcolor = (slack / align) * align;
                    634:        pp->pr_curcolor = 0;
                    635:
                    636:        pp->pr_nget = 0;
                    637:        pp->pr_nfail = 0;
                    638:        pp->pr_nput = 0;
                    639:        pp->pr_npagealloc = 0;
                    640:        pp->pr_npagefree = 0;
1.1       pk        641:        pp->pr_hiwat = 0;
1.8       thorpej   642:        pp->pr_nidle = 0;
1.134     ad        643:        pp->pr_refcnt = 0;
1.3       pk        644:
1.157     ad        645:        mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
1.134     ad        646:        cv_init(&pp->pr_cv, wchan);
                    647:        pp->pr_ipl = ipl;
1.1       pk        648:
1.145     ad        649:        /* Insert into the list of all pools. */
1.181     mlelstv   650:        if (!cold)
1.134     ad        651:                mutex_enter(&pool_head_lock);
1.145     ad        652:        TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
                    653:                if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
                    654:                        break;
                    655:        }
                    656:        if (pp1 == NULL)
                    657:                TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
                    658:        else
                    659:                TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
1.181     mlelstv   660:        if (!cold)
1.134     ad        661:                mutex_exit(&pool_head_lock);
                    662:
1.167     skrll     663:        /* Insert this into the list of pools using this allocator. */
1.181     mlelstv   664:        if (!cold)
1.134     ad        665:                mutex_enter(&palloc->pa_lock);
1.145     ad        666:        TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
1.181     mlelstv   667:        if (!cold)
1.134     ad        668:                mutex_exit(&palloc->pa_lock);
1.1       pk        669: }
                    670:
                    671: /*
                    672:  * De-commision a pool resource.
                    673:  */
                    674: void
1.42      thorpej   675: pool_destroy(struct pool *pp)
1.1       pk        676: {
1.101     thorpej   677:        struct pool_pagelist pq;
1.3       pk        678:        struct pool_item_header *ph;
1.43      thorpej   679:
1.101     thorpej   680:        /* Remove from global pool list */
1.134     ad        681:        mutex_enter(&pool_head_lock);
                    682:        while (pp->pr_refcnt != 0)
                    683:                cv_wait(&pool_busy, &pool_head_lock);
1.145     ad        684:        TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1.101     thorpej   685:        if (drainpp == pp)
                    686:                drainpp = NULL;
1.134     ad        687:        mutex_exit(&pool_head_lock);
1.101     thorpej   688:
                    689:        /* Remove this pool from its allocator's list of pools. */
1.134     ad        690:        mutex_enter(&pp->pr_alloc->pa_lock);
1.66      thorpej   691:        TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1.134     ad        692:        mutex_exit(&pp->pr_alloc->pa_lock);
1.66      thorpej   693:
1.178     elad      694:        mutex_enter(&pool_allocator_lock);
                    695:        if (--pp->pr_alloc->pa_refcnt == 0)
                    696:                mutex_destroy(&pp->pr_alloc->pa_lock);
                    697:        mutex_exit(&pool_allocator_lock);
                    698:
1.134     ad        699:        mutex_enter(&pp->pr_lock);
1.101     thorpej   700:
1.134     ad        701:        KASSERT(pp->pr_cache == NULL);
1.207     riastrad  702:        KASSERTMSG((pp->pr_nout == 0),
                    703:            "pool_destroy: pool busy: still out: %u", pp->pr_nout);
1.101     thorpej   704:        KASSERT(LIST_EMPTY(&pp->pr_fullpages));
                    705:        KASSERT(LIST_EMPTY(&pp->pr_partpages));
                    706:
1.3       pk        707:        /* Remove all pages */
1.101     thorpej   708:        LIST_INIT(&pq);
1.88      chs       709:        while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1.101     thorpej   710:                pr_rmpage(pp, ph, &pq);
                    711:
1.134     ad        712:        mutex_exit(&pp->pr_lock);
1.3       pk        713:
1.101     thorpej   714:        pr_pagelist_free(pp, &pq);
1.134     ad        715:        cv_destroy(&pp->pr_cv);
                    716:        mutex_destroy(&pp->pr_lock);
1.1       pk        717: }
                    718:
1.68      thorpej   719: void
                    720: pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
                    721: {
                    722:
                    723:        /* XXX no locking -- must be used just after pool_init() */
1.207     riastrad  724:        KASSERTMSG((pp->pr_drain_hook == NULL),
                    725:            "pool_set_drain_hook(%s): already set", pp->pr_wchan);
1.68      thorpej   726:        pp->pr_drain_hook = fn;
                    727:        pp->pr_drain_hook_arg = arg;
                    728: }
                    729:
1.88      chs       730: static struct pool_item_header *
1.128     christos  731: pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1.55      thorpej   732: {
                    733:        struct pool_item_header *ph;
                    734:
                    735:        if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1.128     christos  736:                ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
1.134     ad        737:        else
1.97      yamt      738:                ph = pool_get(pp->pr_phpool, flags);
1.55      thorpej   739:
                    740:        return (ph);
                    741: }
1.1       pk        742:
                    743: /*
1.134     ad        744:  * Grab an item from the pool.
1.1       pk        745:  */
1.3       pk        746: void *
1.56      sommerfe  747: pool_get(struct pool *pp, int flags)
1.1       pk        748: {
                    749:        struct pool_item *pi;
1.3       pk        750:        struct pool_item_header *ph;
1.55      thorpej   751:        void *v;
1.1       pk        752:
1.207     riastrad  753:        KASSERTMSG((pp->pr_itemsperpage != 0),
                    754:            "pool_get: pool '%s': pr_itemsperpage is zero, "
                    755:            "pool not initialized?", pp->pr_wchan);
                    756:        KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
                    757:                || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
                    758:            "pool '%s' is IPL_NONE, but called from interrupt context",
                    759:            pp->pr_wchan);
1.155     ad        760:        if (flags & PR_WAITOK) {
1.154     yamt      761:                ASSERT_SLEEPABLE();
1.155     ad        762:        }
1.1       pk        763:
1.134     ad        764:        mutex_enter(&pp->pr_lock);
1.20      thorpej   765:  startover:
                    766:        /*
                    767:         * Check to see if we've reached the hard limit.  If we have,
                    768:         * and we can wait, then wait until an item has been returned to
                    769:         * the pool.
                    770:         */
1.207     riastrad  771:        KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
                    772:            "pool_get: %s: crossed hard limit", pp->pr_wchan);
1.34      thorpej   773:        if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1.68      thorpej   774:                if (pp->pr_drain_hook != NULL) {
                    775:                        /*
                    776:                         * Since the drain hook is going to free things
                    777:                         * back to the pool, unlock, call the hook, re-lock,
                    778:                         * and check the hardlimit condition again.
                    779:                         */
1.134     ad        780:                        mutex_exit(&pp->pr_lock);
1.68      thorpej   781:                        (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1.134     ad        782:                        mutex_enter(&pp->pr_lock);
1.68      thorpej   783:                        if (pp->pr_nout < pp->pr_hardlimit)
                    784:                                goto startover;
                    785:                }
                    786:
1.29      sommerfe  787:                if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1.20      thorpej   788:                        /*
                    789:                         * XXX: A warning isn't logged in this case.  Should
                    790:                         * it be?
                    791:                         */
                    792:                        pp->pr_flags |= PR_WANTED;
1.134     ad        793:                        cv_wait(&pp->pr_cv, &pp->pr_lock);
1.20      thorpej   794:                        goto startover;
                    795:                }
1.31      thorpej   796:
                    797:                /*
                    798:                 * Log a message that the hard limit has been hit.
                    799:                 */
                    800:                if (pp->pr_hardlimit_warning != NULL &&
                    801:                    ratecheck(&pp->pr_hardlimit_warning_last,
                    802:                              &pp->pr_hardlimit_ratecap))
                    803:                        log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1.21      thorpej   804:
                    805:                pp->pr_nfail++;
                    806:
1.134     ad        807:                mutex_exit(&pp->pr_lock);
1.20      thorpej   808:                return (NULL);
                    809:        }
                    810:
1.3       pk        811:        /*
                    812:         * The convention we use is that if `curpage' is not NULL, then
                    813:         * it points at a non-empty bucket. In particular, `curpage'
                    814:         * never points at a page header which has PR_PHINPAGE set and
                    815:         * has no items in its bucket.
                    816:         */
1.20      thorpej   817:        if ((ph = pp->pr_curpage) == NULL) {
1.113     yamt      818:                int error;
                    819:
1.207     riastrad  820:                KASSERTMSG((pp->pr_nitems == 0),
                    821:                    "pool_get: nitems inconsistent"
                    822:                    ": %s: curpage NULL, nitems %u",
                    823:                    pp->pr_wchan, pp->pr_nitems);
1.20      thorpej   824:
1.21      thorpej   825:                /*
                    826:                 * Call the back-end page allocator for more memory.
                    827:                 * Release the pool lock, as the back-end page allocator
                    828:                 * may block.
                    829:                 */
1.113     yamt      830:                error = pool_grow(pp, flags);
                    831:                if (error != 0) {
1.21      thorpej   832:                        /*
1.55      thorpej   833:                         * We were unable to allocate a page or item
                    834:                         * header, but we released the lock during
                    835:                         * allocation, so perhaps items were freed
                    836:                         * back to the pool.  Check for this case.
1.21      thorpej   837:                         */
                    838:                        if (pp->pr_curpage != NULL)
                    839:                                goto startover;
1.15      pk        840:
1.117     yamt      841:                        pp->pr_nfail++;
1.134     ad        842:                        mutex_exit(&pp->pr_lock);
1.117     yamt      843:                        return (NULL);
1.1       pk        844:                }
1.3       pk        845:
1.20      thorpej   846:                /* Start the allocation process over. */
                    847:                goto startover;
1.3       pk        848:        }
1.97      yamt      849:        if (pp->pr_roflags & PR_NOTOUCH) {
1.207     riastrad  850:                KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
                    851:                    "pool_get: %s: page empty", pp->pr_wchan);
1.97      yamt      852:                v = pr_item_notouch_get(pp, ph);
                    853:        } else {
1.102     chs       854:                v = pi = LIST_FIRST(&ph->ph_itemlist);
1.97      yamt      855:                if (__predict_false(v == NULL)) {
1.134     ad        856:                        mutex_exit(&pp->pr_lock);
1.97      yamt      857:                        panic("pool_get: %s: page empty", pp->pr_wchan);
                    858:                }
1.207     riastrad  859:                KASSERTMSG((pp->pr_nitems > 0),
                    860:                    "pool_get: nitems inconsistent"
                    861:                    ": %s: items on itemlist, nitems %u",
                    862:                    pp->pr_wchan, pp->pr_nitems);
                    863:                KASSERTMSG((pi->pi_magic == PI_MAGIC),
                    864:                    "pool_get(%s): free list modified: "
                    865:                    "magic=%x; page %p; item addr %p",
                    866:                    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1.3       pk        867:
1.97      yamt      868:                /*
                    869:                 * Remove from item list.
                    870:                 */
1.102     chs       871:                LIST_REMOVE(pi, pi_list);
1.97      yamt      872:        }
1.20      thorpej   873:        pp->pr_nitems--;
                    874:        pp->pr_nout++;
1.6       thorpej   875:        if (ph->ph_nmissing == 0) {
1.207     riastrad  876:                KASSERT(pp->pr_nidle > 0);
1.6       thorpej   877:                pp->pr_nidle--;
1.88      chs       878:
                    879:                /*
                    880:                 * This page was previously empty.  Move it to the list of
                    881:                 * partially-full pages.  This page is already curpage.
                    882:                 */
                    883:                LIST_REMOVE(ph, ph_pagelist);
                    884:                LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1.6       thorpej   885:        }
1.3       pk        886:        ph->ph_nmissing++;
1.97      yamt      887:        if (ph->ph_nmissing == pp->pr_itemsperpage) {
1.207     riastrad  888:                KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
                    889:                        LIST_EMPTY(&ph->ph_itemlist)),
                    890:                    "pool_get: %s: nmissing inconsistent", pp->pr_wchan);
1.3       pk        891:                /*
1.88      chs       892:                 * This page is now full.  Move it to the full list
                    893:                 * and select a new current page.
1.3       pk        894:                 */
1.88      chs       895:                LIST_REMOVE(ph, ph_pagelist);
                    896:                LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
                    897:                pool_update_curpage(pp);
1.1       pk        898:        }
1.3       pk        899:
                    900:        pp->pr_nget++;
1.20      thorpej   901:
                    902:        /*
                    903:         * If we have a low water mark and we are now below that low
                    904:         * water mark, add more items to the pool.
                    905:         */
1.53      thorpej   906:        if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1.20      thorpej   907:                /*
                    908:                 * XXX: Should we log a warning?  Should we set up a timeout
                    909:                 * to try again in a second or so?  The latter could break
                    910:                 * a caller's assumptions about interrupt protection, etc.
                    911:                 */
                    912:        }
                    913:
1.134     ad        914:        mutex_exit(&pp->pr_lock);
1.125     ad        915:        KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
                    916:        FREECHECK_OUT(&pp->pr_freecheck, v);
1.204     maxv      917:        pool_redzone_fill(pp, v);
1.1       pk        918:        return (v);
                    919: }
                    920:
                    921: /*
1.43      thorpej   922:  * Internal version of pool_put().  Pool is already locked/entered.
1.1       pk        923:  */
1.43      thorpej   924: static void
1.101     thorpej   925: pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1.1       pk        926: {
                    927:        struct pool_item *pi = v;
1.3       pk        928:        struct pool_item_header *ph;
                    929:
1.134     ad        930:        KASSERT(mutex_owned(&pp->pr_lock));
1.204     maxv      931:        pool_redzone_check(pp, v);
1.125     ad        932:        FREECHECK_IN(&pp->pr_freecheck, v);
1.134     ad        933:        LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1.61      chs       934:
1.207     riastrad  935:        KASSERTMSG((pp->pr_nout > 0),
                    936:            "pool_put: pool %s: putting with none out", pp->pr_wchan);
1.3       pk        937:
1.121     yamt      938:        if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1.3       pk        939:                panic("pool_put: %s: page header missing", pp->pr_wchan);
                    940:        }
1.28      thorpej   941:
1.3       pk        942:        /*
                    943:         * Return to item list.
                    944:         */
1.97      yamt      945:        if (pp->pr_roflags & PR_NOTOUCH) {
                    946:                pr_item_notouch_put(pp, ph, v);
                    947:        } else {
1.2       pk        948: #ifdef DIAGNOSTIC
1.97      yamt      949:                pi->pi_magic = PI_MAGIC;
1.3       pk        950: #endif
1.32      chs       951: #ifdef DEBUG
1.97      yamt      952:                {
                    953:                        int i, *ip = v;
1.32      chs       954:
1.97      yamt      955:                        for (i = 0; i < pp->pr_size / sizeof(int); i++) {
                    956:                                *ip++ = PI_MAGIC;
                    957:                        }
1.32      chs       958:                }
                    959: #endif
                    960:
1.102     chs       961:                LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1.97      yamt      962:        }
1.79      thorpej   963:        KDASSERT(ph->ph_nmissing != 0);
1.3       pk        964:        ph->ph_nmissing--;
                    965:        pp->pr_nput++;
1.20      thorpej   966:        pp->pr_nitems++;
                    967:        pp->pr_nout--;
1.3       pk        968:
                    969:        /* Cancel "pool empty" condition if it exists */
                    970:        if (pp->pr_curpage == NULL)
                    971:                pp->pr_curpage = ph;
                    972:
                    973:        if (pp->pr_flags & PR_WANTED) {
                    974:                pp->pr_flags &= ~PR_WANTED;
1.134     ad        975:                cv_broadcast(&pp->pr_cv);
1.3       pk        976:        }
                    977:
                    978:        /*
1.88      chs       979:         * If this page is now empty, do one of two things:
1.21      thorpej   980:         *
1.88      chs       981:         *      (1) If we have more pages than the page high water mark,
1.96      thorpej   982:         *          free the page back to the system.  ONLY CONSIDER
1.90      thorpej   983:         *          FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
                    984:         *          CLAIM.
1.21      thorpej   985:         *
1.88      chs       986:         *      (2) Otherwise, move the page to the empty page list.
                    987:         *
                    988:         * Either way, select a new current page (so we use a partially-full
                    989:         * page if one is available).
1.3       pk        990:         */
                    991:        if (ph->ph_nmissing == 0) {
1.6       thorpej   992:                pp->pr_nidle++;
1.90      thorpej   993:                if (pp->pr_npages > pp->pr_minpages &&
1.152     yamt      994:                    pp->pr_npages > pp->pr_maxpages) {
1.101     thorpej   995:                        pr_rmpage(pp, ph, pq);
1.3       pk        996:                } else {
1.88      chs       997:                        LIST_REMOVE(ph, ph_pagelist);
                    998:                        LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1.3       pk        999:
1.21      thorpej  1000:                        /*
                   1001:                         * Update the timestamp on the page.  A page must
                   1002:                         * be idle for some period of time before it can
                   1003:                         * be reclaimed by the pagedaemon.  This minimizes
                   1004:                         * ping-pong'ing for memory.
1.151     yamt     1005:                         *
                   1006:                         * note for 64-bit time_t: truncating to 32-bit is not
                   1007:                         * a problem for our usage.
1.21      thorpej  1008:                         */
1.151     yamt     1009:                        ph->ph_time = time_uptime;
1.1       pk       1010:                }
1.88      chs      1011:                pool_update_curpage(pp);
1.1       pk       1012:        }
1.88      chs      1013:
1.21      thorpej  1014:        /*
1.88      chs      1015:         * If the page was previously completely full, move it to the
                   1016:         * partially-full list and make it the current page.  The next
                   1017:         * allocation will get the item from this page, instead of
                   1018:         * further fragmenting the pool.
1.21      thorpej  1019:         */
                   1020:        else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1.88      chs      1021:                LIST_REMOVE(ph, ph_pagelist);
                   1022:                LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1.21      thorpej  1023:                pp->pr_curpage = ph;
                   1024:        }
1.43      thorpej  1025: }
                   1026:
1.56      sommerfe 1027: void
                   1028: pool_put(struct pool *pp, void *v)
                   1029: {
1.101     thorpej  1030:        struct pool_pagelist pq;
                   1031:
                   1032:        LIST_INIT(&pq);
1.56      sommerfe 1033:
1.134     ad       1034:        mutex_enter(&pp->pr_lock);
1.101     thorpej  1035:        pool_do_put(pp, v, &pq);
1.134     ad       1036:        mutex_exit(&pp->pr_lock);
1.56      sommerfe 1037:
1.102     chs      1038:        pr_pagelist_free(pp, &pq);
1.56      sommerfe 1039: }
1.57      sommerfe 1040:
1.74      thorpej  1041: /*
1.113     yamt     1042:  * pool_grow: grow a pool by a page.
                   1043:  *
                   1044:  * => called with pool locked.
                   1045:  * => unlock and relock the pool.
                   1046:  * => return with pool locked.
                   1047:  */
                   1048:
                   1049: static int
                   1050: pool_grow(struct pool *pp, int flags)
                   1051: {
                   1052:        struct pool_item_header *ph = NULL;
                   1053:        char *cp;
1.209   ! riastrad 1054:        int error;
        !          1055:
        !          1056:        /*
        !          1057:         * If there's a pool_grow in progress, wait for it to complete
        !          1058:         * and try again from the top.
        !          1059:         */
        !          1060:        if (pp->pr_flags & PR_GROWING) {
        !          1061:                if (flags & PR_WAITOK) {
        !          1062:                        do {
        !          1063:                                cv_wait(&pp->pr_cv, &pp->pr_lock);
        !          1064:                        } while (pp->pr_flags & PR_GROWING);
        !          1065:                        return ERESTART;
        !          1066:                } else {
        !          1067:                        return EWOULDBLOCK;
        !          1068:                }
        !          1069:        }
        !          1070:        pp->pr_flags |= PR_GROWING;
1.113     yamt     1071:
1.134     ad       1072:        mutex_exit(&pp->pr_lock);
1.113     yamt     1073:        cp = pool_allocator_alloc(pp, flags);
                   1074:        if (__predict_true(cp != NULL)) {
                   1075:                ph = pool_alloc_item_header(pp, cp, flags);
                   1076:        }
                   1077:        if (__predict_false(cp == NULL || ph == NULL)) {
                   1078:                if (cp != NULL) {
                   1079:                        pool_allocator_free(pp, cp);
                   1080:                }
1.134     ad       1081:                mutex_enter(&pp->pr_lock);
1.209   ! riastrad 1082:                error = ENOMEM;
        !          1083:                goto out;
1.113     yamt     1084:        }
                   1085:
1.134     ad       1086:        mutex_enter(&pp->pr_lock);
1.113     yamt     1087:        pool_prime_page(pp, cp, ph);
                   1088:        pp->pr_npagealloc++;
1.209   ! riastrad 1089:        error = 0;
        !          1090:
        !          1091: out:
        !          1092:        /*
        !          1093:         * If anyone was waiting for pool_grow, notify them that we
        !          1094:         * may have just done it.
        !          1095:         */
        !          1096:        KASSERT(pp->pr_flags & PR_GROWING);
        !          1097:        pp->pr_flags &= ~PR_GROWING;
        !          1098:        cv_broadcast(&pp->pr_cv);
        !          1099:
        !          1100:        return error;
1.113     yamt     1101: }
                   1102:
                   1103: /*
1.74      thorpej  1104:  * Add N items to the pool.
                   1105:  */
                   1106: int
                   1107: pool_prime(struct pool *pp, int n)
                   1108: {
1.75      simonb   1109:        int newpages;
1.113     yamt     1110:        int error = 0;
1.74      thorpej  1111:
1.134     ad       1112:        mutex_enter(&pp->pr_lock);
1.74      thorpej  1113:
                   1114:        newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
                   1115:
                   1116:        while (newpages-- > 0) {
1.113     yamt     1117:                error = pool_grow(pp, PR_NOWAIT);
                   1118:                if (error) {
1.74      thorpej  1119:                        break;
                   1120:                }
                   1121:                pp->pr_minpages++;
                   1122:        }
                   1123:
                   1124:        if (pp->pr_minpages >= pp->pr_maxpages)
                   1125:                pp->pr_maxpages = pp->pr_minpages + 1;  /* XXX */
                   1126:
1.134     ad       1127:        mutex_exit(&pp->pr_lock);
1.113     yamt     1128:        return error;
1.74      thorpej  1129: }
1.55      thorpej  1130:
                   1131: /*
1.3       pk       1132:  * Add a page worth of items to the pool.
1.21      thorpej  1133:  *
                   1134:  * Note, we must be called with the pool descriptor LOCKED.
1.3       pk       1135:  */
1.55      thorpej  1136: static void
1.128     christos 1137: pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1.3       pk       1138: {
                   1139:        struct pool_item *pi;
1.128     christos 1140:        void *cp = storage;
1.125     ad       1141:        const unsigned int align = pp->pr_align;
                   1142:        const unsigned int ioff = pp->pr_itemoffset;
1.55      thorpej  1143:        int n;
1.36      pk       1144:
1.134     ad       1145:        KASSERT(mutex_owned(&pp->pr_lock));
1.207     riastrad 1146:        KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
                   1147:                (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
                   1148:            "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp);
1.3       pk       1149:
                   1150:        /*
                   1151:         * Insert page header.
                   1152:         */
1.88      chs      1153:        LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1.102     chs      1154:        LIST_INIT(&ph->ph_itemlist);
1.3       pk       1155:        ph->ph_page = storage;
                   1156:        ph->ph_nmissing = 0;
1.151     yamt     1157:        ph->ph_time = time_uptime;
1.88      chs      1158:        if ((pp->pr_roflags & PR_PHINPAGE) == 0)
                   1159:                SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1.3       pk       1160:
1.6       thorpej  1161:        pp->pr_nidle++;
                   1162:
1.3       pk       1163:        /*
                   1164:         * Color this page.
                   1165:         */
1.141     yamt     1166:        ph->ph_off = pp->pr_curcolor;
                   1167:        cp = (char *)cp + ph->ph_off;
1.3       pk       1168:        if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
                   1169:                pp->pr_curcolor = 0;
                   1170:
                   1171:        /*
                   1172:         * Adjust storage to apply aligment to `pr_itemoffset' in each item.
                   1173:         */
                   1174:        if (ioff != 0)
1.128     christos 1175:                cp = (char *)cp + align - ioff;
1.3       pk       1176:
1.125     ad       1177:        KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
                   1178:
1.3       pk       1179:        /*
                   1180:         * Insert remaining chunks on the bucket list.
                   1181:         */
                   1182:        n = pp->pr_itemsperpage;
1.20      thorpej  1183:        pp->pr_nitems += n;
1.3       pk       1184:
1.97      yamt     1185:        if (pp->pr_roflags & PR_NOTOUCH) {
1.141     yamt     1186:                pr_item_notouch_init(pp, ph);
1.97      yamt     1187:        } else {
                   1188:                while (n--) {
                   1189:                        pi = (struct pool_item *)cp;
1.78      thorpej  1190:
1.97      yamt     1191:                        KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1.3       pk       1192:
1.97      yamt     1193:                        /* Insert on page list */
1.102     chs      1194:                        LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1.3       pk       1195: #ifdef DIAGNOSTIC
1.97      yamt     1196:                        pi->pi_magic = PI_MAGIC;
1.3       pk       1197: #endif
1.128     christos 1198:                        cp = (char *)cp + pp->pr_size;
1.125     ad       1199:
                   1200:                        KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1.97      yamt     1201:                }
1.3       pk       1202:        }
                   1203:
                   1204:        /*
                   1205:         * If the pool was depleted, point at the new page.
                   1206:         */
                   1207:        if (pp->pr_curpage == NULL)
                   1208:                pp->pr_curpage = ph;
                   1209:
                   1210:        if (++pp->pr_npages > pp->pr_hiwat)
                   1211:                pp->pr_hiwat = pp->pr_npages;
                   1212: }
                   1213:
1.20      thorpej  1214: /*
1.52      thorpej  1215:  * Used by pool_get() when nitems drops below the low water mark.  This
1.88      chs      1216:  * is used to catch up pr_nitems with the low water mark.
1.20      thorpej  1217:  *
1.21      thorpej  1218:  * Note 1, we never wait for memory here, we let the caller decide what to do.
1.20      thorpej  1219:  *
1.73      thorpej  1220:  * Note 2, we must be called with the pool already locked, and we return
1.20      thorpej  1221:  * with it locked.
                   1222:  */
                   1223: static int
1.42      thorpej  1224: pool_catchup(struct pool *pp)
1.20      thorpej  1225: {
                   1226:        int error = 0;
                   1227:
1.54      thorpej  1228:        while (POOL_NEEDS_CATCHUP(pp)) {
1.113     yamt     1229:                error = pool_grow(pp, PR_NOWAIT);
                   1230:                if (error) {
1.20      thorpej  1231:                        break;
                   1232:                }
                   1233:        }
1.113     yamt     1234:        return error;
1.20      thorpej  1235: }
                   1236:
1.88      chs      1237: static void
                   1238: pool_update_curpage(struct pool *pp)
                   1239: {
                   1240:
                   1241:        pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
                   1242:        if (pp->pr_curpage == NULL) {
                   1243:                pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
                   1244:        }
1.168     yamt     1245:        KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
                   1246:            (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1.88      chs      1247: }
                   1248:
1.3       pk       1249: void
1.42      thorpej  1250: pool_setlowat(struct pool *pp, int n)
1.3       pk       1251: {
1.15      pk       1252:
1.134     ad       1253:        mutex_enter(&pp->pr_lock);
1.21      thorpej  1254:
1.3       pk       1255:        pp->pr_minitems = n;
1.15      pk       1256:        pp->pr_minpages = (n == 0)
                   1257:                ? 0
1.18      thorpej  1258:                : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1.20      thorpej  1259:
                   1260:        /* Make sure we're caught up with the newly-set low water mark. */
1.75      simonb   1261:        if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1.20      thorpej  1262:                /*
                   1263:                 * XXX: Should we log a warning?  Should we set up a timeout
                   1264:                 * to try again in a second or so?  The latter could break
                   1265:                 * a caller's assumptions about interrupt protection, etc.
                   1266:                 */
                   1267:        }
1.21      thorpej  1268:
1.134     ad       1269:        mutex_exit(&pp->pr_lock);
1.3       pk       1270: }
                   1271:
                   1272: void
1.42      thorpej  1273: pool_sethiwat(struct pool *pp, int n)
1.3       pk       1274: {
1.15      pk       1275:
1.134     ad       1276:        mutex_enter(&pp->pr_lock);
1.21      thorpej  1277:
1.15      pk       1278:        pp->pr_maxpages = (n == 0)
                   1279:                ? 0
1.18      thorpej  1280:                : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1.21      thorpej  1281:
1.134     ad       1282:        mutex_exit(&pp->pr_lock);
1.3       pk       1283: }
                   1284:
1.20      thorpej  1285: void
1.42      thorpej  1286: pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1.20      thorpej  1287: {
                   1288:
1.134     ad       1289:        mutex_enter(&pp->pr_lock);
1.20      thorpej  1290:
                   1291:        pp->pr_hardlimit = n;
                   1292:        pp->pr_hardlimit_warning = warnmess;
1.31      thorpej  1293:        pp->pr_hardlimit_ratecap.tv_sec = ratecap;
                   1294:        pp->pr_hardlimit_warning_last.tv_sec = 0;
                   1295:        pp->pr_hardlimit_warning_last.tv_usec = 0;
1.20      thorpej  1296:
                   1297:        /*
1.21      thorpej  1298:         * In-line version of pool_sethiwat(), because we don't want to
                   1299:         * release the lock.
1.20      thorpej  1300:         */
                   1301:        pp->pr_maxpages = (n == 0)
                   1302:                ? 0
                   1303:                : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1.21      thorpej  1304:
1.134     ad       1305:        mutex_exit(&pp->pr_lock);
1.20      thorpej  1306: }
1.3       pk       1307:
                   1308: /*
                   1309:  * Release all complete pages that have not been used recently.
1.184     rmind    1310:  *
1.197     jym      1311:  * Must not be called from interrupt context.
1.3       pk       1312:  */
1.66      thorpej  1313: int
1.56      sommerfe 1314: pool_reclaim(struct pool *pp)
1.3       pk       1315: {
                   1316:        struct pool_item_header *ph, *phnext;
1.61      chs      1317:        struct pool_pagelist pq;
1.151     yamt     1318:        uint32_t curtime;
1.134     ad       1319:        bool klock;
                   1320:        int rv;
1.3       pk       1321:
1.197     jym      1322:        KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1.184     rmind    1323:
1.68      thorpej  1324:        if (pp->pr_drain_hook != NULL) {
                   1325:                /*
                   1326:                 * The drain hook must be called with the pool unlocked.
                   1327:                 */
                   1328:                (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
                   1329:        }
                   1330:
1.134     ad       1331:        /*
1.157     ad       1332:         * XXXSMP Because we do not want to cause non-MPSAFE code
                   1333:         * to block.
1.134     ad       1334:         */
                   1335:        if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
                   1336:            pp->pr_ipl == IPL_SOFTSERIAL) {
                   1337:                KERNEL_LOCK(1, NULL);
                   1338:                klock = true;
                   1339:        } else
                   1340:                klock = false;
                   1341:
                   1342:        /* Reclaim items from the pool's cache (if any). */
                   1343:        if (pp->pr_cache != NULL)
                   1344:                pool_cache_invalidate(pp->pr_cache);
                   1345:
                   1346:        if (mutex_tryenter(&pp->pr_lock) == 0) {
                   1347:                if (klock) {
                   1348:                        KERNEL_UNLOCK_ONE(NULL);
                   1349:                }
1.66      thorpej  1350:                return (0);
1.134     ad       1351:        }
1.68      thorpej  1352:
1.88      chs      1353:        LIST_INIT(&pq);
1.43      thorpej  1354:
1.151     yamt     1355:        curtime = time_uptime;
1.21      thorpej  1356:
1.88      chs      1357:        for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
                   1358:                phnext = LIST_NEXT(ph, ph_pagelist);
1.3       pk       1359:
                   1360:                /* Check our minimum page claim */
                   1361:                if (pp->pr_npages <= pp->pr_minpages)
                   1362:                        break;
                   1363:
1.88      chs      1364:                KASSERT(ph->ph_nmissing == 0);
1.191     para     1365:                if (curtime - ph->ph_time < pool_inactive_time)
1.88      chs      1366:                        continue;
1.21      thorpej  1367:
1.88      chs      1368:                /*
                   1369:                 * If freeing this page would put us below
                   1370:                 * the low water mark, stop now.
                   1371:                 */
                   1372:                if ((pp->pr_nitems - pp->pr_itemsperpage) <
                   1373:                    pp->pr_minitems)
                   1374:                        break;
1.21      thorpej  1375:
1.88      chs      1376:                pr_rmpage(pp, ph, &pq);
1.3       pk       1377:        }
                   1378:
1.134     ad       1379:        mutex_exit(&pp->pr_lock);
                   1380:
                   1381:        if (LIST_EMPTY(&pq))
                   1382:                rv = 0;
                   1383:        else {
                   1384:                pr_pagelist_free(pp, &pq);
                   1385:                rv = 1;
                   1386:        }
                   1387:
                   1388:        if (klock) {
                   1389:                KERNEL_UNLOCK_ONE(NULL);
                   1390:        }
1.66      thorpej  1391:
1.134     ad       1392:        return (rv);
1.3       pk       1393: }
                   1394:
                   1395: /*
1.197     jym      1396:  * Drain pools, one at a time. The drained pool is returned within ppp.
1.131     ad       1397:  *
1.134     ad       1398:  * Note, must never be called from interrupt context.
1.3       pk       1399:  */
1.197     jym      1400: bool
                   1401: pool_drain(struct pool **ppp)
1.3       pk       1402: {
1.197     jym      1403:        bool reclaimed;
1.3       pk       1404:        struct pool *pp;
1.134     ad       1405:
1.145     ad       1406:        KASSERT(!TAILQ_EMPTY(&pool_head));
1.3       pk       1407:
1.61      chs      1408:        pp = NULL;
1.134     ad       1409:
                   1410:        /* Find next pool to drain, and add a reference. */
                   1411:        mutex_enter(&pool_head_lock);
                   1412:        do {
                   1413:                if (drainpp == NULL) {
1.145     ad       1414:                        drainpp = TAILQ_FIRST(&pool_head);
1.134     ad       1415:                }
                   1416:                if (drainpp != NULL) {
                   1417:                        pp = drainpp;
1.145     ad       1418:                        drainpp = TAILQ_NEXT(pp, pr_poollist);
1.134     ad       1419:                }
                   1420:                /*
                   1421:                 * Skip completely idle pools.  We depend on at least
                   1422:                 * one pool in the system being active.
                   1423:                 */
                   1424:        } while (pp == NULL || pp->pr_npages == 0);
                   1425:        pp->pr_refcnt++;
                   1426:        mutex_exit(&pool_head_lock);
                   1427:
                   1428:        /* Drain the cache (if any) and pool.. */
1.186     pooka    1429:        reclaimed = pool_reclaim(pp);
1.134     ad       1430:
                   1431:        /* Finally, unlock the pool. */
                   1432:        mutex_enter(&pool_head_lock);
                   1433:        pp->pr_refcnt--;
                   1434:        cv_broadcast(&pool_busy);
                   1435:        mutex_exit(&pool_head_lock);
1.186     pooka    1436:
1.197     jym      1437:        if (ppp != NULL)
                   1438:                *ppp = pp;
                   1439:
1.186     pooka    1440:        return reclaimed;
1.3       pk       1441: }
                   1442:
                   1443: /*
                   1444:  * Diagnostic helpers.
                   1445:  */
1.21      thorpej  1446:
1.25      thorpej  1447: void
1.108     yamt     1448: pool_printall(const char *modif, void (*pr)(const char *, ...))
                   1449: {
                   1450:        struct pool *pp;
                   1451:
1.145     ad       1452:        TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1.108     yamt     1453:                pool_printit(pp, modif, pr);
                   1454:        }
                   1455: }
                   1456:
                   1457: void
1.42      thorpej  1458: pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1.25      thorpej  1459: {
                   1460:
                   1461:        if (pp == NULL) {
                   1462:                (*pr)("Must specify a pool to print.\n");
                   1463:                return;
                   1464:        }
                   1465:
                   1466:        pool_print1(pp, modif, pr);
                   1467: }
                   1468:
1.21      thorpej  1469: static void
1.124     yamt     1470: pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1.97      yamt     1471:     void (*pr)(const char *, ...))
1.88      chs      1472: {
                   1473:        struct pool_item_header *ph;
1.207     riastrad 1474:        struct pool_item *pi __diagused;
1.88      chs      1475:
                   1476:        LIST_FOREACH(ph, pl, ph_pagelist) {
1.151     yamt     1477:                (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
                   1478:                    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1.88      chs      1479: #ifdef DIAGNOSTIC
1.97      yamt     1480:                if (!(pp->pr_roflags & PR_NOTOUCH)) {
1.102     chs      1481:                        LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1.97      yamt     1482:                                if (pi->pi_magic != PI_MAGIC) {
                   1483:                                        (*pr)("\t\t\titem %p, magic 0x%x\n",
                   1484:                                            pi, pi->pi_magic);
                   1485:                                }
1.88      chs      1486:                        }
                   1487:                }
                   1488: #endif
                   1489:        }
                   1490: }
                   1491:
                   1492: static void
1.42      thorpej  1493: pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1.3       pk       1494: {
1.25      thorpej  1495:        struct pool_item_header *ph;
1.134     ad       1496:        pool_cache_t pc;
                   1497:        pcg_t *pcg;
                   1498:        pool_cache_cpu_t *cc;
                   1499:        uint64_t cpuhit, cpumiss;
1.44      thorpej  1500:        int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1.25      thorpej  1501:        char c;
                   1502:
                   1503:        while ((c = *modif++) != '\0') {
                   1504:                if (c == 'l')
                   1505:                        print_log = 1;
                   1506:                if (c == 'p')
                   1507:                        print_pagelist = 1;
1.44      thorpej  1508:                if (c == 'c')
                   1509:                        print_cache = 1;
1.25      thorpej  1510:        }
                   1511:
1.134     ad       1512:        if ((pc = pp->pr_cache) != NULL) {
                   1513:                (*pr)("POOL CACHE");
                   1514:        } else {
                   1515:                (*pr)("POOL");
                   1516:        }
                   1517:
                   1518:        (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1.25      thorpej  1519:            pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
                   1520:            pp->pr_roflags);
1.66      thorpej  1521:        (*pr)("\talloc %p\n", pp->pr_alloc);
1.25      thorpej  1522:        (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
                   1523:            pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
                   1524:        (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
                   1525:            pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
                   1526:
1.134     ad       1527:        (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1.25      thorpej  1528:            pp->pr_nget, pp->pr_nfail, pp->pr_nput);
                   1529:        (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
                   1530:            pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
                   1531:
                   1532:        if (print_pagelist == 0)
                   1533:                goto skip_pagelist;
                   1534:
1.88      chs      1535:        if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
                   1536:                (*pr)("\n\tempty page list:\n");
1.97      yamt     1537:        pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1.88      chs      1538:        if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
                   1539:                (*pr)("\n\tfull page list:\n");
1.97      yamt     1540:        pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1.88      chs      1541:        if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
                   1542:                (*pr)("\n\tpartial-page list:\n");
1.97      yamt     1543:        pool_print_pagelist(pp, &pp->pr_partpages, pr);
1.88      chs      1544:
1.25      thorpej  1545:        if (pp->pr_curpage == NULL)
                   1546:                (*pr)("\tno current page\n");
                   1547:        else
                   1548:                (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
                   1549:
                   1550:  skip_pagelist:
                   1551:        if (print_log == 0)
                   1552:                goto skip_log;
                   1553:
                   1554:        (*pr)("\n");
1.3       pk       1555:
1.25      thorpej  1556:  skip_log:
1.44      thorpej  1557:
1.102     chs      1558: #define PR_GROUPLIST(pcg)                                              \
                   1559:        (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);         \
1.142     ad       1560:        for (i = 0; i < pcg->pcg_size; i++) {                           \
1.102     chs      1561:                if (pcg->pcg_objects[i].pcgo_pa !=                      \
                   1562:                    POOL_PADDR_INVALID) {                               \
                   1563:                        (*pr)("\t\t\t%p, 0x%llx\n",                     \
                   1564:                            pcg->pcg_objects[i].pcgo_va,                \
                   1565:                            (unsigned long long)                        \
                   1566:                            pcg->pcg_objects[i].pcgo_pa);               \
                   1567:                } else {                                                \
                   1568:                        (*pr)("\t\t\t%p\n",                             \
                   1569:                            pcg->pcg_objects[i].pcgo_va);               \
                   1570:                }                                                       \
                   1571:        }
                   1572:
1.134     ad       1573:        if (pc != NULL) {
                   1574:                cpuhit = 0;
                   1575:                cpumiss = 0;
1.183     ad       1576:                for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1.134     ad       1577:                        if ((cc = pc->pc_cpus[i]) == NULL)
                   1578:                                continue;
                   1579:                        cpuhit += cc->cc_hits;
                   1580:                        cpumiss += cc->cc_misses;
                   1581:                }
                   1582:                (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
                   1583:                (*pr)("\tcache layer hits %llu misses %llu\n",
                   1584:                    pc->pc_hits, pc->pc_misses);
                   1585:                (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
                   1586:                    pc->pc_hits + pc->pc_misses - pc->pc_contended,
                   1587:                    pc->pc_contended);
                   1588:                (*pr)("\tcache layer empty groups %u full groups %u\n",
                   1589:                    pc->pc_nempty, pc->pc_nfull);
                   1590:                if (print_cache) {
                   1591:                        (*pr)("\tfull cache groups:\n");
                   1592:                        for (pcg = pc->pc_fullgroups; pcg != NULL;
                   1593:                            pcg = pcg->pcg_next) {
                   1594:                                PR_GROUPLIST(pcg);
                   1595:                        }
                   1596:                        (*pr)("\tempty cache groups:\n");
                   1597:                        for (pcg = pc->pc_emptygroups; pcg != NULL;
                   1598:                            pcg = pcg->pcg_next) {
                   1599:                                PR_GROUPLIST(pcg);
                   1600:                        }
1.103     chs      1601:                }
1.44      thorpej  1602:        }
1.102     chs      1603: #undef PR_GROUPLIST
1.88      chs      1604: }
                   1605:
                   1606: static int
                   1607: pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
                   1608: {
                   1609:        struct pool_item *pi;
1.128     christos 1610:        void *page;
1.88      chs      1611:        int n;
                   1612:
1.121     yamt     1613:        if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1.128     christos 1614:                page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1.121     yamt     1615:                if (page != ph->ph_page &&
                   1616:                    (pp->pr_roflags & PR_PHINPAGE) != 0) {
                   1617:                        if (label != NULL)
                   1618:                                printf("%s: ", label);
                   1619:                        printf("pool(%p:%s): page inconsistency: page %p;"
                   1620:                               " at page head addr %p (p %p)\n", pp,
                   1621:                                pp->pr_wchan, ph->ph_page,
                   1622:                                ph, page);
                   1623:                        return 1;
                   1624:                }
1.88      chs      1625:        }
1.3       pk       1626:
1.97      yamt     1627:        if ((pp->pr_roflags & PR_NOTOUCH) != 0)
                   1628:                return 0;
                   1629:
1.102     chs      1630:        for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1.88      chs      1631:             pi != NULL;
1.102     chs      1632:             pi = LIST_NEXT(pi,pi_list), n++) {
1.88      chs      1633:
                   1634: #ifdef DIAGNOSTIC
                   1635:                if (pi->pi_magic != PI_MAGIC) {
                   1636:                        if (label != NULL)
                   1637:                                printf("%s: ", label);
                   1638:                        printf("pool(%s): free list modified: magic=%x;"
1.121     yamt     1639:                               " page %p; item ordinal %d; addr %p\n",
1.88      chs      1640:                                pp->pr_wchan, pi->pi_magic, ph->ph_page,
1.121     yamt     1641:                                n, pi);
1.88      chs      1642:                        panic("pool");
                   1643:                }
                   1644: #endif
1.121     yamt     1645:                if ((pp->pr_roflags & PR_NOALIGN) != 0) {
                   1646:                        continue;
                   1647:                }
1.128     christos 1648:                page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1.88      chs      1649:                if (page == ph->ph_page)
                   1650:                        continue;
                   1651:
                   1652:                if (label != NULL)
                   1653:                        printf("%s: ", label);
                   1654:                printf("pool(%p:%s): page inconsistency: page %p;"
                   1655:                       " item ordinal %d; addr %p (p %p)\n", pp,
                   1656:                        pp->pr_wchan, ph->ph_page,
                   1657:                        n, pi, page);
                   1658:                return 1;
                   1659:        }
                   1660:        return 0;
1.3       pk       1661: }
                   1662:
1.88      chs      1663:
1.3       pk       1664: int
1.42      thorpej  1665: pool_chk(struct pool *pp, const char *label)
1.3       pk       1666: {
                   1667:        struct pool_item_header *ph;
                   1668:        int r = 0;
                   1669:
1.134     ad       1670:        mutex_enter(&pp->pr_lock);
1.88      chs      1671:        LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
                   1672:                r = pool_chk_page(pp, label, ph);
                   1673:                if (r) {
                   1674:                        goto out;
                   1675:                }
                   1676:        }
                   1677:        LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
                   1678:                r = pool_chk_page(pp, label, ph);
                   1679:                if (r) {
1.3       pk       1680:                        goto out;
                   1681:                }
1.88      chs      1682:        }
                   1683:        LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
                   1684:                r = pool_chk_page(pp, label, ph);
                   1685:                if (r) {
1.3       pk       1686:                        goto out;
                   1687:                }
                   1688:        }
1.88      chs      1689:
1.3       pk       1690: out:
1.134     ad       1691:        mutex_exit(&pp->pr_lock);
1.3       pk       1692:        return (r);
1.43      thorpej  1693: }
                   1694:
                   1695: /*
                   1696:  * pool_cache_init:
                   1697:  *
                   1698:  *     Initialize a pool cache.
1.134     ad       1699:  */
                   1700: pool_cache_t
                   1701: pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
                   1702:     const char *wchan, struct pool_allocator *palloc, int ipl,
                   1703:     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
                   1704: {
                   1705:        pool_cache_t pc;
                   1706:
                   1707:        pc = pool_get(&cache_pool, PR_WAITOK);
                   1708:        if (pc == NULL)
                   1709:                return NULL;
                   1710:
                   1711:        pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
                   1712:           palloc, ipl, ctor, dtor, arg);
                   1713:
                   1714:        return pc;
                   1715: }
                   1716:
                   1717: /*
                   1718:  * pool_cache_bootstrap:
1.43      thorpej  1719:  *
1.134     ad       1720:  *     Kernel-private version of pool_cache_init().  The caller
                   1721:  *     provides initial storage.
1.43      thorpej  1722:  */
                   1723: void
1.134     ad       1724: pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
                   1725:     u_int align_offset, u_int flags, const char *wchan,
                   1726:     struct pool_allocator *palloc, int ipl,
                   1727:     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1.43      thorpej  1728:     void *arg)
                   1729: {
1.134     ad       1730:        CPU_INFO_ITERATOR cii;
1.145     ad       1731:        pool_cache_t pc1;
1.134     ad       1732:        struct cpu_info *ci;
                   1733:        struct pool *pp;
                   1734:
                   1735:        pp = &pc->pc_pool;
1.208     chs      1736:        if (palloc == NULL && ipl == IPL_NONE) {
                   1737:                if (size > PAGE_SIZE) {
                   1738:                        int bigidx = pool_bigidx(size);
                   1739:
                   1740:                        palloc = &pool_allocator_big[bigidx];
                   1741:                } else
                   1742:                        palloc = &pool_allocator_nointr;
                   1743:        }
1.134     ad       1744:        pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1.157     ad       1745:        mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1.43      thorpej  1746:
1.134     ad       1747:        if (ctor == NULL) {
                   1748:                ctor = (int (*)(void *, void *, int))nullop;
                   1749:        }
                   1750:        if (dtor == NULL) {
                   1751:                dtor = (void (*)(void *, void *))nullop;
                   1752:        }
1.43      thorpej  1753:
1.134     ad       1754:        pc->pc_emptygroups = NULL;
                   1755:        pc->pc_fullgroups = NULL;
                   1756:        pc->pc_partgroups = NULL;
1.43      thorpej  1757:        pc->pc_ctor = ctor;
                   1758:        pc->pc_dtor = dtor;
                   1759:        pc->pc_arg  = arg;
1.134     ad       1760:        pc->pc_hits  = 0;
1.48      thorpej  1761:        pc->pc_misses = 0;
1.134     ad       1762:        pc->pc_nempty = 0;
                   1763:        pc->pc_npart = 0;
                   1764:        pc->pc_nfull = 0;
                   1765:        pc->pc_contended = 0;
                   1766:        pc->pc_refcnt = 0;
1.136     yamt     1767:        pc->pc_freecheck = NULL;
1.134     ad       1768:
1.142     ad       1769:        if ((flags & PR_LARGECACHE) != 0) {
                   1770:                pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1.163     ad       1771:                pc->pc_pcgpool = &pcg_large_pool;
1.142     ad       1772:        } else {
                   1773:                pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1.163     ad       1774:                pc->pc_pcgpool = &pcg_normal_pool;
1.142     ad       1775:        }
                   1776:
1.134     ad       1777:        /* Allocate per-CPU caches. */
                   1778:        memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
                   1779:        pc->pc_ncpu = 0;
1.139     ad       1780:        if (ncpu < 2) {
1.137     ad       1781:                /* XXX For sparc: boot CPU is not attached yet. */
                   1782:                pool_cache_cpu_init1(curcpu(), pc);
                   1783:        } else {
                   1784:                for (CPU_INFO_FOREACH(cii, ci)) {
                   1785:                        pool_cache_cpu_init1(ci, pc);
                   1786:                }
1.134     ad       1787:        }
1.145     ad       1788:
                   1789:        /* Add to list of all pools. */
                   1790:        if (__predict_true(!cold))
1.134     ad       1791:                mutex_enter(&pool_head_lock);
1.145     ad       1792:        TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
                   1793:                if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
                   1794:                        break;
                   1795:        }
                   1796:        if (pc1 == NULL)
                   1797:                TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
                   1798:        else
                   1799:                TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
                   1800:        if (__predict_true(!cold))
1.134     ad       1801:                mutex_exit(&pool_head_lock);
1.145     ad       1802:
                   1803:        membar_sync();
                   1804:        pp->pr_cache = pc;
1.43      thorpej  1805: }
                   1806:
                   1807: /*
                   1808:  * pool_cache_destroy:
                   1809:  *
                   1810:  *     Destroy a pool cache.
                   1811:  */
                   1812: void
1.134     ad       1813: pool_cache_destroy(pool_cache_t pc)
1.43      thorpej  1814: {
1.191     para     1815:
                   1816:        pool_cache_bootstrap_destroy(pc);
                   1817:        pool_put(&cache_pool, pc);
                   1818: }
                   1819:
                   1820: /*
                   1821:  * pool_cache_bootstrap_destroy:
                   1822:  *
                   1823:  *     Destroy a pool cache.
                   1824:  */
                   1825: void
                   1826: pool_cache_bootstrap_destroy(pool_cache_t pc)
                   1827: {
1.134     ad       1828:        struct pool *pp = &pc->pc_pool;
1.175     jym      1829:        u_int i;
1.134     ad       1830:
                   1831:        /* Remove it from the global list. */
                   1832:        mutex_enter(&pool_head_lock);
                   1833:        while (pc->pc_refcnt != 0)
                   1834:                cv_wait(&pool_busy, &pool_head_lock);
1.145     ad       1835:        TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1.134     ad       1836:        mutex_exit(&pool_head_lock);
1.43      thorpej  1837:
                   1838:        /* First, invalidate the entire cache. */
                   1839:        pool_cache_invalidate(pc);
                   1840:
1.134     ad       1841:        /* Disassociate it from the pool. */
                   1842:        mutex_enter(&pp->pr_lock);
                   1843:        pp->pr_cache = NULL;
                   1844:        mutex_exit(&pp->pr_lock);
                   1845:
                   1846:        /* Destroy per-CPU data */
1.183     ad       1847:        for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1.175     jym      1848:                pool_cache_invalidate_cpu(pc, i);
1.134     ad       1849:
                   1850:        /* Finally, destroy it. */
                   1851:        mutex_destroy(&pc->pc_lock);
                   1852:        pool_destroy(pp);
                   1853: }
                   1854:
                   1855: /*
                   1856:  * pool_cache_cpu_init1:
                   1857:  *
                   1858:  *     Called for each pool_cache whenever a new CPU is attached.
                   1859:  */
                   1860: static void
                   1861: pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
                   1862: {
                   1863:        pool_cache_cpu_t *cc;
1.137     ad       1864:        int index;
1.134     ad       1865:
1.137     ad       1866:        index = ci->ci_index;
                   1867:
1.183     ad       1868:        KASSERT(index < __arraycount(pc->pc_cpus));
1.134     ad       1869:
1.137     ad       1870:        if ((cc = pc->pc_cpus[index]) != NULL) {
                   1871:                KASSERT(cc->cc_cpuindex == index);
1.134     ad       1872:                return;
                   1873:        }
                   1874:
                   1875:        /*
                   1876:         * The first CPU is 'free'.  This needs to be the case for
                   1877:         * bootstrap - we may not be able to allocate yet.
                   1878:         */
                   1879:        if (pc->pc_ncpu == 0) {
                   1880:                cc = &pc->pc_cpu0;
                   1881:                pc->pc_ncpu = 1;
                   1882:        } else {
                   1883:                mutex_enter(&pc->pc_lock);
                   1884:                pc->pc_ncpu++;
                   1885:                mutex_exit(&pc->pc_lock);
                   1886:                cc = pool_get(&cache_cpu_pool, PR_WAITOK);
                   1887:        }
                   1888:
                   1889:        cc->cc_ipl = pc->pc_pool.pr_ipl;
                   1890:        cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
                   1891:        cc->cc_cache = pc;
1.137     ad       1892:        cc->cc_cpuindex = index;
1.134     ad       1893:        cc->cc_hits = 0;
                   1894:        cc->cc_misses = 0;
1.169     yamt     1895:        cc->cc_current = __UNCONST(&pcg_dummy);
                   1896:        cc->cc_previous = __UNCONST(&pcg_dummy);
1.134     ad       1897:
1.137     ad       1898:        pc->pc_cpus[index] = cc;
1.43      thorpej  1899: }
                   1900:
1.134     ad       1901: /*
                   1902:  * pool_cache_cpu_init:
                   1903:  *
                   1904:  *     Called whenever a new CPU is attached.
                   1905:  */
                   1906: void
                   1907: pool_cache_cpu_init(struct cpu_info *ci)
1.43      thorpej  1908: {
1.134     ad       1909:        pool_cache_t pc;
                   1910:
                   1911:        mutex_enter(&pool_head_lock);
1.145     ad       1912:        TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1.134     ad       1913:                pc->pc_refcnt++;
                   1914:                mutex_exit(&pool_head_lock);
1.43      thorpej  1915:
1.134     ad       1916:                pool_cache_cpu_init1(ci, pc);
1.43      thorpej  1917:
1.134     ad       1918:                mutex_enter(&pool_head_lock);
                   1919:                pc->pc_refcnt--;
                   1920:                cv_broadcast(&pool_busy);
                   1921:        }
                   1922:        mutex_exit(&pool_head_lock);
1.43      thorpej  1923: }
                   1924:
1.134     ad       1925: /*
                   1926:  * pool_cache_reclaim:
                   1927:  *
                   1928:  *     Reclaim memory from a pool cache.
                   1929:  */
                   1930: bool
                   1931: pool_cache_reclaim(pool_cache_t pc)
1.43      thorpej  1932: {
                   1933:
1.134     ad       1934:        return pool_reclaim(&pc->pc_pool);
                   1935: }
1.43      thorpej  1936:
1.136     yamt     1937: static void
                   1938: pool_cache_destruct_object1(pool_cache_t pc, void *object)
                   1939: {
                   1940:
                   1941:        (*pc->pc_dtor)(pc->pc_arg, object);
                   1942:        pool_put(&pc->pc_pool, object);
                   1943: }
                   1944:
1.134     ad       1945: /*
                   1946:  * pool_cache_destruct_object:
                   1947:  *
                   1948:  *     Force destruction of an object and its release back into
                   1949:  *     the pool.
                   1950:  */
                   1951: void
                   1952: pool_cache_destruct_object(pool_cache_t pc, void *object)
                   1953: {
                   1954:
1.136     yamt     1955:        FREECHECK_IN(&pc->pc_freecheck, object);
                   1956:
                   1957:        pool_cache_destruct_object1(pc, object);
1.43      thorpej  1958: }
                   1959:
1.134     ad       1960: /*
                   1961:  * pool_cache_invalidate_groups:
                   1962:  *
                   1963:  *     Invalidate a chain of groups and destruct all objects.
                   1964:  */
1.102     chs      1965: static void
1.134     ad       1966: pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
1.102     chs      1967: {
1.134     ad       1968:        void *object;
                   1969:        pcg_t *next;
                   1970:        int i;
                   1971:
                   1972:        for (; pcg != NULL; pcg = next) {
                   1973:                next = pcg->pcg_next;
                   1974:
                   1975:                for (i = 0; i < pcg->pcg_avail; i++) {
                   1976:                        object = pcg->pcg_objects[i].pcgo_va;
1.136     yamt     1977:                        pool_cache_destruct_object1(pc, object);
1.134     ad       1978:                }
1.102     chs      1979:
1.142     ad       1980:                if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
                   1981:                        pool_put(&pcg_large_pool, pcg);
                   1982:                } else {
                   1983:                        KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
                   1984:                        pool_put(&pcg_normal_pool, pcg);
                   1985:                }
1.102     chs      1986:        }
                   1987: }
                   1988:
1.43      thorpej  1989: /*
1.134     ad       1990:  * pool_cache_invalidate:
1.43      thorpej  1991:  *
1.134     ad       1992:  *     Invalidate a pool cache (destruct and release all of the
                   1993:  *     cached objects).  Does not reclaim objects from the pool.
1.176     thorpej  1994:  *
                   1995:  *     Note: For pool caches that provide constructed objects, there
                   1996:  *     is an assumption that another level of synchronization is occurring
                   1997:  *     between the input to the constructor and the cache invalidation.
1.196     jym      1998:  *
                   1999:  *     Invalidation is a costly process and should not be called from
                   2000:  *     interrupt context.
1.43      thorpej  2001:  */
1.134     ad       2002: void
                   2003: pool_cache_invalidate(pool_cache_t pc)
                   2004: {
1.196     jym      2005:        uint64_t where;
1.134     ad       2006:        pcg_t *full, *empty, *part;
1.196     jym      2007:
                   2008:        KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1.176     thorpej  2009:
1.177     jym      2010:        if (ncpu < 2 || !mp_online) {
1.176     thorpej  2011:                /*
                   2012:                 * We might be called early enough in the boot process
                   2013:                 * for the CPU data structures to not be fully initialized.
1.196     jym      2014:                 * In this case, transfer the content of the local CPU's
                   2015:                 * cache back into global cache as only this CPU is currently
                   2016:                 * running.
1.176     thorpej  2017:                 */
1.196     jym      2018:                pool_cache_transfer(pc);
1.176     thorpej  2019:        } else {
                   2020:                /*
1.196     jym      2021:                 * Signal all CPUs that they must transfer their local
                   2022:                 * cache back to the global pool then wait for the xcall to
                   2023:                 * complete.
1.176     thorpej  2024:                 */
1.196     jym      2025:                where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
                   2026:                    pc, NULL);
1.176     thorpej  2027:                xc_wait(where);
                   2028:        }
1.196     jym      2029:
                   2030:        /* Empty pool caches, then invalidate objects */
1.134     ad       2031:        mutex_enter(&pc->pc_lock);
                   2032:        full = pc->pc_fullgroups;
                   2033:        empty = pc->pc_emptygroups;
                   2034:        part = pc->pc_partgroups;
                   2035:        pc->pc_fullgroups = NULL;
                   2036:        pc->pc_emptygroups = NULL;
                   2037:        pc->pc_partgroups = NULL;
                   2038:        pc->pc_nfull = 0;
                   2039:        pc->pc_nempty = 0;
                   2040:        pc->pc_npart = 0;
                   2041:        mutex_exit(&pc->pc_lock);
                   2042:
                   2043:        pool_cache_invalidate_groups(pc, full);
                   2044:        pool_cache_invalidate_groups(pc, empty);
                   2045:        pool_cache_invalidate_groups(pc, part);
                   2046: }
                   2047:
1.175     jym      2048: /*
                   2049:  * pool_cache_invalidate_cpu:
                   2050:  *
                   2051:  *     Invalidate all CPU-bound cached objects in pool cache, the CPU being
                   2052:  *     identified by its associated index.
                   2053:  *     It is caller's responsibility to ensure that no operation is
                   2054:  *     taking place on this pool cache while doing this invalidation.
                   2055:  *     WARNING: as no inter-CPU locking is enforced, trying to invalidate
                   2056:  *     pool cached objects from a CPU different from the one currently running
                   2057:  *     may result in an undefined behaviour.
                   2058:  */
                   2059: static void
                   2060: pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
                   2061: {
                   2062:        pool_cache_cpu_t *cc;
                   2063:        pcg_t *pcg;
                   2064:
                   2065:        if ((cc = pc->pc_cpus[index]) == NULL)
                   2066:                return;
                   2067:
                   2068:        if ((pcg = cc->cc_current) != &pcg_dummy) {
                   2069:                pcg->pcg_next = NULL;
                   2070:                pool_cache_invalidate_groups(pc, pcg);
                   2071:        }
                   2072:        if ((pcg = cc->cc_previous) != &pcg_dummy) {
                   2073:                pcg->pcg_next = NULL;
                   2074:                pool_cache_invalidate_groups(pc, pcg);
                   2075:        }
                   2076:        if (cc != &pc->pc_cpu0)
                   2077:                pool_put(&cache_cpu_pool, cc);
                   2078:
                   2079: }
                   2080:
1.134     ad       2081: void
                   2082: pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
                   2083: {
                   2084:
                   2085:        pool_set_drain_hook(&pc->pc_pool, fn, arg);
                   2086: }
                   2087:
                   2088: void
                   2089: pool_cache_setlowat(pool_cache_t pc, int n)
                   2090: {
                   2091:
                   2092:        pool_setlowat(&pc->pc_pool, n);
                   2093: }
                   2094:
                   2095: void
                   2096: pool_cache_sethiwat(pool_cache_t pc, int n)
                   2097: {
                   2098:
                   2099:        pool_sethiwat(&pc->pc_pool, n);
                   2100: }
                   2101:
                   2102: void
                   2103: pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
                   2104: {
                   2105:
                   2106:        pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
                   2107: }
                   2108:
1.162     ad       2109: static bool __noinline
                   2110: pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
1.134     ad       2111:                    paddr_t *pap, int flags)
1.43      thorpej  2112: {
1.134     ad       2113:        pcg_t *pcg, *cur;
                   2114:        uint64_t ncsw;
                   2115:        pool_cache_t pc;
1.43      thorpej  2116:        void *object;
1.58      thorpej  2117:
1.168     yamt     2118:        KASSERT(cc->cc_current->pcg_avail == 0);
                   2119:        KASSERT(cc->cc_previous->pcg_avail == 0);
                   2120:
1.134     ad       2121:        pc = cc->cc_cache;
                   2122:        cc->cc_misses++;
1.43      thorpej  2123:
1.134     ad       2124:        /*
                   2125:         * Nothing was available locally.  Try and grab a group
                   2126:         * from the cache.
                   2127:         */
1.162     ad       2128:        if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
1.134     ad       2129:                ncsw = curlwp->l_ncsw;
                   2130:                mutex_enter(&pc->pc_lock);
                   2131:                pc->pc_contended++;
1.43      thorpej  2132:
1.134     ad       2133:                /*
                   2134:                 * If we context switched while locking, then
                   2135:                 * our view of the per-CPU data is invalid:
                   2136:                 * retry.
                   2137:                 */
                   2138:                if (curlwp->l_ncsw != ncsw) {
                   2139:                        mutex_exit(&pc->pc_lock);
1.162     ad       2140:                        return true;
1.43      thorpej  2141:                }
1.102     chs      2142:        }
1.43      thorpej  2143:
1.162     ad       2144:        if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
1.43      thorpej  2145:                /*
1.134     ad       2146:                 * If there's a full group, release our empty
                   2147:                 * group back to the cache.  Install the full
                   2148:                 * group as cc_current and return.
1.43      thorpej  2149:                 */
1.162     ad       2150:                if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
1.134     ad       2151:                        KASSERT(cur->pcg_avail == 0);
                   2152:                        cur->pcg_next = pc->pc_emptygroups;
                   2153:                        pc->pc_emptygroups = cur;
                   2154:                        pc->pc_nempty++;
1.87      thorpej  2155:                }
1.142     ad       2156:                KASSERT(pcg->pcg_avail == pcg->pcg_size);
1.134     ad       2157:                cc->cc_current = pcg;
                   2158:                pc->pc_fullgroups = pcg->pcg_next;
                   2159:                pc->pc_hits++;
                   2160:                pc->pc_nfull--;
                   2161:                mutex_exit(&pc->pc_lock);
1.162     ad       2162:                return true;
1.134     ad       2163:        }
                   2164:
                   2165:        /*
                   2166:         * Nothing available locally or in cache.  Take the slow
                   2167:         * path: fetch a new object from the pool and construct
                   2168:         * it.
                   2169:         */
                   2170:        pc->pc_misses++;
                   2171:        mutex_exit(&pc->pc_lock);
1.162     ad       2172:        splx(s);
1.134     ad       2173:
                   2174:        object = pool_get(&pc->pc_pool, flags);
                   2175:        *objectp = object;
1.162     ad       2176:        if (__predict_false(object == NULL))
                   2177:                return false;
1.125     ad       2178:
1.162     ad       2179:        if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
1.134     ad       2180:                pool_put(&pc->pc_pool, object);
                   2181:                *objectp = NULL;
1.162     ad       2182:                return false;
1.43      thorpej  2183:        }
                   2184:
1.134     ad       2185:        KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
                   2186:            (pc->pc_pool.pr_align - 1)) == 0);
1.43      thorpej  2187:
1.134     ad       2188:        if (pap != NULL) {
                   2189: #ifdef POOL_VTOPHYS
                   2190:                *pap = POOL_VTOPHYS(object);
                   2191: #else
                   2192:                *pap = POOL_PADDR_INVALID;
                   2193: #endif
1.102     chs      2194:        }
1.43      thorpej  2195:
1.125     ad       2196:        FREECHECK_OUT(&pc->pc_freecheck, object);
1.204     maxv     2197:        pool_redzone_fill(&pc->pc_pool, object);
1.162     ad       2198:        return false;
1.43      thorpej  2199: }
                   2200:
                   2201: /*
1.134     ad       2202:  * pool_cache_get{,_paddr}:
1.43      thorpej  2203:  *
1.134     ad       2204:  *     Get an object from a pool cache (optionally returning
                   2205:  *     the physical address of the object).
1.43      thorpej  2206:  */
1.134     ad       2207: void *
                   2208: pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
1.43      thorpej  2209: {
1.134     ad       2210:        pool_cache_cpu_t *cc;
                   2211:        pcg_t *pcg;
                   2212:        void *object;
1.60      thorpej  2213:        int s;
1.43      thorpej  2214:
1.184     rmind    2215:        KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
1.185     rmind    2216:            (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
1.190     jym      2217:            "pool '%s' is IPL_NONE, but called from interrupt context\n",
                   2218:            pc->pc_pool.pr_wchan);
1.184     rmind    2219:
1.155     ad       2220:        if (flags & PR_WAITOK) {
1.154     yamt     2221:                ASSERT_SLEEPABLE();
1.155     ad       2222:        }
1.125     ad       2223:
1.162     ad       2224:        /* Lock out interrupts and disable preemption. */
                   2225:        s = splvm();
1.165     yamt     2226:        while (/* CONSTCOND */ true) {
1.134     ad       2227:                /* Try and allocate an object from the current group. */
1.162     ad       2228:                cc = pc->pc_cpus[curcpu()->ci_index];
                   2229:                KASSERT(cc->cc_cache == pc);
1.134     ad       2230:                pcg = cc->cc_current;
1.162     ad       2231:                if (__predict_true(pcg->pcg_avail > 0)) {
1.134     ad       2232:                        object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
1.162     ad       2233:                        if (__predict_false(pap != NULL))
1.134     ad       2234:                                *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
1.148     yamt     2235: #if defined(DIAGNOSTIC)
1.134     ad       2236:                        pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
1.163     ad       2237:                        KASSERT(pcg->pcg_avail < pcg->pcg_size);
1.134     ad       2238:                        KASSERT(object != NULL);
1.163     ad       2239: #endif
1.134     ad       2240:                        cc->cc_hits++;
1.162     ad       2241:                        splx(s);
1.134     ad       2242:                        FREECHECK_OUT(&pc->pc_freecheck, object);
1.204     maxv     2243:                        pool_redzone_fill(&pc->pc_pool, object);
1.134     ad       2244:                        return object;
1.43      thorpej  2245:                }
                   2246:
                   2247:                /*
1.134     ad       2248:                 * That failed.  If the previous group isn't empty, swap
                   2249:                 * it with the current group and allocate from there.
1.43      thorpej  2250:                 */
1.134     ad       2251:                pcg = cc->cc_previous;
1.162     ad       2252:                if (__predict_true(pcg->pcg_avail > 0)) {
1.134     ad       2253:                        cc->cc_previous = cc->cc_current;
                   2254:                        cc->cc_current = pcg;
                   2255:                        continue;
1.43      thorpej  2256:                }
                   2257:
1.134     ad       2258:                /*
                   2259:                 * Can't allocate from either group: try the slow path.
                   2260:                 * If get_slow() allocated an object for us, or if
1.162     ad       2261:                 * no more objects are available, it will return false.
1.134     ad       2262:                 * Otherwise, we need to retry.
                   2263:                 */
1.165     yamt     2264:                if (!pool_cache_get_slow(cc, s, &object, pap, flags))
                   2265:                        break;
                   2266:        }
1.43      thorpej  2267:
1.134     ad       2268:        return object;
1.51      thorpej  2269: }
                   2270:
1.162     ad       2271: static bool __noinline
                   2272: pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
1.51      thorpej  2273: {
1.200     pooka    2274:        struct lwp *l = curlwp;
1.163     ad       2275:        pcg_t *pcg, *cur;
1.134     ad       2276:        uint64_t ncsw;
                   2277:        pool_cache_t pc;
1.51      thorpej  2278:
1.168     yamt     2279:        KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
                   2280:        KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
                   2281:
1.134     ad       2282:        pc = cc->cc_cache;
1.171     ad       2283:        pcg = NULL;
1.134     ad       2284:        cc->cc_misses++;
1.200     pooka    2285:        ncsw = l->l_ncsw;
1.43      thorpej  2286:
1.171     ad       2287:        /*
                   2288:         * If there are no empty groups in the cache then allocate one
                   2289:         * while still unlocked.
                   2290:         */
                   2291:        if (__predict_false(pc->pc_emptygroups == NULL)) {
                   2292:                if (__predict_true(!pool_cache_disable)) {
                   2293:                        pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
                   2294:                }
1.200     pooka    2295:                /*
                   2296:                 * If pool_get() blocked, then our view of
                   2297:                 * the per-CPU data is invalid: retry.
                   2298:                 */
                   2299:                if (__predict_false(l->l_ncsw != ncsw)) {
                   2300:                        if (pcg != NULL) {
                   2301:                                pool_put(pc->pc_pcgpool, pcg);
                   2302:                        }
                   2303:                        return true;
                   2304:                }
1.171     ad       2305:                if (__predict_true(pcg != NULL)) {
                   2306:                        pcg->pcg_avail = 0;
                   2307:                        pcg->pcg_size = pc->pc_pcgsize;
                   2308:                }
                   2309:        }
                   2310:
1.162     ad       2311:        /* Lock the cache. */
                   2312:        if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
1.134     ad       2313:                mutex_enter(&pc->pc_lock);
                   2314:                pc->pc_contended++;
1.162     ad       2315:
1.163     ad       2316:                /*
                   2317:                 * If we context switched while locking, then our view of
                   2318:                 * the per-CPU data is invalid: retry.
                   2319:                 */
1.200     pooka    2320:                if (__predict_false(l->l_ncsw != ncsw)) {
1.163     ad       2321:                        mutex_exit(&pc->pc_lock);
1.171     ad       2322:                        if (pcg != NULL) {
                   2323:                                pool_put(pc->pc_pcgpool, pcg);
                   2324:                        }
1.163     ad       2325:                        return true;
                   2326:                }
1.162     ad       2327:        }
1.102     chs      2328:
1.163     ad       2329:        /* If there are no empty groups in the cache then allocate one. */
1.171     ad       2330:        if (pcg == NULL && pc->pc_emptygroups != NULL) {
                   2331:                pcg = pc->pc_emptygroups;
1.163     ad       2332:                pc->pc_emptygroups = pcg->pcg_next;
                   2333:                pc->pc_nempty--;
1.134     ad       2334:        }
1.130     ad       2335:
1.162     ad       2336:        /*
                   2337:         * If there's a empty group, release our full group back
                   2338:         * to the cache.  Install the empty group to the local CPU
                   2339:         * and return.
                   2340:         */
1.163     ad       2341:        if (pcg != NULL) {
1.134     ad       2342:                KASSERT(pcg->pcg_avail == 0);
1.162     ad       2343:                if (__predict_false(cc->cc_previous == &pcg_dummy)) {
1.146     ad       2344:                        cc->cc_previous = pcg;
                   2345:                } else {
1.162     ad       2346:                        cur = cc->cc_current;
                   2347:                        if (__predict_true(cur != &pcg_dummy)) {
1.163     ad       2348:                                KASSERT(cur->pcg_avail == cur->pcg_size);
1.146     ad       2349:                                cur->pcg_next = pc->pc_fullgroups;
                   2350:                                pc->pc_fullgroups = cur;
                   2351:                                pc->pc_nfull++;
                   2352:                        }
                   2353:                        cc->cc_current = pcg;
                   2354:                }
1.163     ad       2355:                pc->pc_hits++;
1.134     ad       2356:                mutex_exit(&pc->pc_lock);
1.162     ad       2357:                return true;
1.102     chs      2358:        }
1.105     christos 2359:
1.134     ad       2360:        /*
1.162     ad       2361:         * Nothing available locally or in cache, and we didn't
                   2362:         * allocate an empty group.  Take the slow path and destroy
                   2363:         * the object here and now.
1.134     ad       2364:         */
                   2365:        pc->pc_misses++;
                   2366:        mutex_exit(&pc->pc_lock);
1.162     ad       2367:        splx(s);
                   2368:        pool_cache_destruct_object(pc, object);
1.105     christos 2369:
1.162     ad       2370:        return false;
1.134     ad       2371: }
1.102     chs      2372:
1.43      thorpej  2373: /*
1.134     ad       2374:  * pool_cache_put{,_paddr}:
1.43      thorpej  2375:  *
1.134     ad       2376:  *     Put an object back to the pool cache (optionally caching the
                   2377:  *     physical address of the object).
1.43      thorpej  2378:  */
1.101     thorpej  2379: void
1.134     ad       2380: pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
1.43      thorpej  2381: {
1.134     ad       2382:        pool_cache_cpu_t *cc;
                   2383:        pcg_t *pcg;
                   2384:        int s;
1.101     thorpej  2385:
1.172     yamt     2386:        KASSERT(object != NULL);
1.204     maxv     2387:        pool_redzone_check(&pc->pc_pool, object);
1.134     ad       2388:        FREECHECK_IN(&pc->pc_freecheck, object);
1.101     thorpej  2389:
1.162     ad       2390:        /* Lock out interrupts and disable preemption. */
                   2391:        s = splvm();
1.165     yamt     2392:        while (/* CONSTCOND */ true) {
1.134     ad       2393:                /* If the current group isn't full, release it there. */
1.162     ad       2394:                cc = pc->pc_cpus[curcpu()->ci_index];
                   2395:                KASSERT(cc->cc_cache == pc);
1.134     ad       2396:                pcg = cc->cc_current;
1.162     ad       2397:                if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
1.134     ad       2398:                        pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
                   2399:                        pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
                   2400:                        pcg->pcg_avail++;
                   2401:                        cc->cc_hits++;
1.162     ad       2402:                        splx(s);
1.134     ad       2403:                        return;
                   2404:                }
1.43      thorpej  2405:
1.134     ad       2406:                /*
1.162     ad       2407:                 * That failed.  If the previous group isn't full, swap
1.134     ad       2408:                 * it with the current group and try again.
                   2409:                 */
                   2410:                pcg = cc->cc_previous;
1.162     ad       2411:                if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
1.134     ad       2412:                        cc->cc_previous = cc->cc_current;
                   2413:                        cc->cc_current = pcg;
                   2414:                        continue;
                   2415:                }
1.43      thorpej  2416:
1.134     ad       2417:                /*
                   2418:                 * Can't free to either group: try the slow path.
                   2419:                 * If put_slow() releases the object for us, it
1.162     ad       2420:                 * will return false.  Otherwise we need to retry.
1.134     ad       2421:                 */
1.165     yamt     2422:                if (!pool_cache_put_slow(cc, s, object))
                   2423:                        break;
                   2424:        }
1.43      thorpej  2425: }
                   2426:
                   2427: /*
1.196     jym      2428:  * pool_cache_transfer:
1.43      thorpej  2429:  *
1.134     ad       2430:  *     Transfer objects from the per-CPU cache to the global cache.
                   2431:  *     Run within a cross-call thread.
1.43      thorpej  2432:  */
                   2433: static void
1.196     jym      2434: pool_cache_transfer(pool_cache_t pc)
1.43      thorpej  2435: {
1.134     ad       2436:        pool_cache_cpu_t *cc;
                   2437:        pcg_t *prev, *cur, **list;
1.162     ad       2438:        int s;
1.134     ad       2439:
1.162     ad       2440:        s = splvm();
                   2441:        mutex_enter(&pc->pc_lock);
                   2442:        cc = pc->pc_cpus[curcpu()->ci_index];
1.134     ad       2443:        cur = cc->cc_current;
1.169     yamt     2444:        cc->cc_current = __UNCONST(&pcg_dummy);
1.134     ad       2445:        prev = cc->cc_previous;
1.169     yamt     2446:        cc->cc_previous = __UNCONST(&pcg_dummy);
1.162     ad       2447:        if (cur != &pcg_dummy) {
1.142     ad       2448:                if (cur->pcg_avail == cur->pcg_size) {
1.134     ad       2449:                        list = &pc->pc_fullgroups;
                   2450:                        pc->pc_nfull++;
                   2451:                } else if (cur->pcg_avail == 0) {
                   2452:                        list = &pc->pc_emptygroups;
                   2453:                        pc->pc_nempty++;
                   2454:                } else {
                   2455:                        list = &pc->pc_partgroups;
                   2456:                        pc->pc_npart++;
                   2457:                }
                   2458:                cur->pcg_next = *list;
                   2459:                *list = cur;
                   2460:        }
1.162     ad       2461:        if (prev != &pcg_dummy) {
1.142     ad       2462:                if (prev->pcg_avail == prev->pcg_size) {
1.134     ad       2463:                        list = &pc->pc_fullgroups;
                   2464:                        pc->pc_nfull++;
                   2465:                } else if (prev->pcg_avail == 0) {
                   2466:                        list = &pc->pc_emptygroups;
                   2467:                        pc->pc_nempty++;
                   2468:                } else {
                   2469:                        list = &pc->pc_partgroups;
                   2470:                        pc->pc_npart++;
                   2471:                }
                   2472:                prev->pcg_next = *list;
                   2473:                *list = prev;
                   2474:        }
                   2475:        mutex_exit(&pc->pc_lock);
                   2476:        splx(s);
1.3       pk       2477: }
1.66      thorpej  2478:
                   2479: /*
                   2480:  * Pool backend allocators.
                   2481:  *
                   2482:  * Each pool has a backend allocator that handles allocation, deallocation,
                   2483:  * and any additional draining that might be needed.
                   2484:  *
                   2485:  * We provide two standard allocators:
                   2486:  *
                   2487:  *     pool_allocator_kmem - the default when no allocator is specified
                   2488:  *
                   2489:  *     pool_allocator_nointr - used for pools that will not be accessed
                   2490:  *     in interrupt context.
                   2491:  */
                   2492: void   *pool_page_alloc(struct pool *, int);
                   2493: void   pool_page_free(struct pool *, void *);
                   2494:
1.112     bjh21    2495: #ifdef POOL_SUBPAGE
                   2496: struct pool_allocator pool_allocator_kmem_fullpage = {
1.192     rmind    2497:        .pa_alloc = pool_page_alloc,
                   2498:        .pa_free = pool_page_free,
                   2499:        .pa_pagesz = 0
1.112     bjh21    2500: };
                   2501: #else
1.66      thorpej  2502: struct pool_allocator pool_allocator_kmem = {
1.191     para     2503:        .pa_alloc = pool_page_alloc,
                   2504:        .pa_free = pool_page_free,
                   2505:        .pa_pagesz = 0
1.66      thorpej  2506: };
1.112     bjh21    2507: #endif
1.66      thorpej  2508:
1.112     bjh21    2509: #ifdef POOL_SUBPAGE
                   2510: struct pool_allocator pool_allocator_nointr_fullpage = {
1.194     para     2511:        .pa_alloc = pool_page_alloc,
                   2512:        .pa_free = pool_page_free,
1.192     rmind    2513:        .pa_pagesz = 0
1.112     bjh21    2514: };
                   2515: #else
1.66      thorpej  2516: struct pool_allocator pool_allocator_nointr = {
1.191     para     2517:        .pa_alloc = pool_page_alloc,
                   2518:        .pa_free = pool_page_free,
                   2519:        .pa_pagesz = 0
1.66      thorpej  2520: };
1.112     bjh21    2521: #endif
1.66      thorpej  2522:
                   2523: #ifdef POOL_SUBPAGE
                   2524: void   *pool_subpage_alloc(struct pool *, int);
                   2525: void   pool_subpage_free(struct pool *, void *);
                   2526:
1.112     bjh21    2527: struct pool_allocator pool_allocator_kmem = {
1.193     he       2528:        .pa_alloc = pool_subpage_alloc,
                   2529:        .pa_free = pool_subpage_free,
                   2530:        .pa_pagesz = POOL_SUBPAGE
1.112     bjh21    2531: };
                   2532:
                   2533: struct pool_allocator pool_allocator_nointr = {
1.192     rmind    2534:        .pa_alloc = pool_subpage_alloc,
                   2535:        .pa_free = pool_subpage_free,
                   2536:        .pa_pagesz = POOL_SUBPAGE
1.66      thorpej  2537: };
                   2538: #endif /* POOL_SUBPAGE */
                   2539:
1.208     chs      2540: struct pool_allocator pool_allocator_big[] = {
                   2541:        {
                   2542:                .pa_alloc = pool_page_alloc,
                   2543:                .pa_free = pool_page_free,
                   2544:                .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
                   2545:        },
                   2546:        {
                   2547:                .pa_alloc = pool_page_alloc,
                   2548:                .pa_free = pool_page_free,
                   2549:                .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
                   2550:        },
                   2551:        {
                   2552:                .pa_alloc = pool_page_alloc,
                   2553:                .pa_free = pool_page_free,
                   2554:                .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
                   2555:        },
                   2556:        {
                   2557:                .pa_alloc = pool_page_alloc,
                   2558:                .pa_free = pool_page_free,
                   2559:                .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
                   2560:        },
                   2561:        {
                   2562:                .pa_alloc = pool_page_alloc,
                   2563:                .pa_free = pool_page_free,
                   2564:                .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
                   2565:        },
                   2566:        {
                   2567:                .pa_alloc = pool_page_alloc,
                   2568:                .pa_free = pool_page_free,
                   2569:                .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
                   2570:        },
                   2571:        {
                   2572:                .pa_alloc = pool_page_alloc,
                   2573:                .pa_free = pool_page_free,
                   2574:                .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
                   2575:        },
                   2576:        {
                   2577:                .pa_alloc = pool_page_alloc,
                   2578:                .pa_free = pool_page_free,
                   2579:                .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
                   2580:        }
                   2581: };
                   2582:
                   2583: static int
                   2584: pool_bigidx(size_t size)
                   2585: {
                   2586:        int i;
                   2587:
                   2588:        for (i = 0; i < __arraycount(pool_allocator_big); i++) {
                   2589:                if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
                   2590:                        return i;
                   2591:        }
                   2592:        panic("pool item size %zu too large, use a custom allocator", size);
                   2593: }
                   2594:
1.117     yamt     2595: static void *
                   2596: pool_allocator_alloc(struct pool *pp, int flags)
1.66      thorpej  2597: {
1.117     yamt     2598:        struct pool_allocator *pa = pp->pr_alloc;
1.66      thorpej  2599:        void *res;
                   2600:
1.117     yamt     2601:        res = (*pa->pa_alloc)(pp, flags);
                   2602:        if (res == NULL && (flags & PR_WAITOK) == 0) {
1.66      thorpej  2603:                /*
1.117     yamt     2604:                 * We only run the drain hook here if PR_NOWAIT.
                   2605:                 * In other cases, the hook will be run in
                   2606:                 * pool_reclaim().
1.66      thorpej  2607:                 */
1.117     yamt     2608:                if (pp->pr_drain_hook != NULL) {
                   2609:                        (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
                   2610:                        res = (*pa->pa_alloc)(pp, flags);
1.66      thorpej  2611:                }
1.117     yamt     2612:        }
                   2613:        return res;
1.66      thorpej  2614: }
                   2615:
1.117     yamt     2616: static void
1.66      thorpej  2617: pool_allocator_free(struct pool *pp, void *v)
                   2618: {
                   2619:        struct pool_allocator *pa = pp->pr_alloc;
                   2620:
                   2621:        (*pa->pa_free)(pp, v);
                   2622: }
                   2623:
                   2624: void *
1.124     yamt     2625: pool_page_alloc(struct pool *pp, int flags)
1.66      thorpej  2626: {
1.192     rmind    2627:        const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
1.191     para     2628:        vmem_addr_t va;
1.192     rmind    2629:        int ret;
1.191     para     2630:
1.192     rmind    2631:        ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
                   2632:            vflags | VM_INSTANTFIT, &va);
1.66      thorpej  2633:
1.192     rmind    2634:        return ret ? NULL : (void *)va;
1.66      thorpej  2635: }
                   2636:
                   2637: void
1.124     yamt     2638: pool_page_free(struct pool *pp, void *v)
1.66      thorpej  2639: {
                   2640:
1.191     para     2641:        uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
1.98      yamt     2642: }
                   2643:
                   2644: static void *
1.124     yamt     2645: pool_page_alloc_meta(struct pool *pp, int flags)
1.98      yamt     2646: {
1.192     rmind    2647:        const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
                   2648:        vmem_addr_t va;
                   2649:        int ret;
1.191     para     2650:
1.192     rmind    2651:        ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
                   2652:            vflags | VM_INSTANTFIT, &va);
1.98      yamt     2653:
1.192     rmind    2654:        return ret ? NULL : (void *)va;
1.98      yamt     2655: }
                   2656:
                   2657: static void
1.124     yamt     2658: pool_page_free_meta(struct pool *pp, void *v)
1.98      yamt     2659: {
                   2660:
1.192     rmind    2661:        vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
1.66      thorpej  2662: }
                   2663:
1.204     maxv     2664: #ifdef POOL_REDZONE
                   2665: #if defined(_LP64)
                   2666: # define PRIME 0x9e37fffffffc0000UL
                   2667: #else /* defined(_LP64) */
                   2668: # define PRIME 0x9e3779b1
                   2669: #endif /* defined(_LP64) */
                   2670: #define STATIC_BYTE    0xFE
                   2671: CTASSERT(POOL_REDZONE_SIZE > 1);
                   2672:
                   2673: static inline uint8_t
                   2674: pool_pattern_generate(const void *p)
                   2675: {
                   2676:        return (uint8_t)(((uintptr_t)p) * PRIME
                   2677:           >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
                   2678: }
                   2679:
                   2680: static void
                   2681: pool_redzone_init(struct pool *pp, size_t requested_size)
                   2682: {
                   2683:        size_t nsz;
                   2684:
                   2685:        if (pp->pr_roflags & PR_NOTOUCH) {
                   2686:                pp->pr_reqsize = 0;
                   2687:                pp->pr_redzone = false;
                   2688:                return;
                   2689:        }
                   2690:
                   2691:        /*
                   2692:         * We may have extended the requested size earlier; check if
                   2693:         * there's naturally space in the padding for a red zone.
                   2694:         */
                   2695:        if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
                   2696:                pp->pr_reqsize = requested_size;
                   2697:                pp->pr_redzone = true;
                   2698:                return;
                   2699:        }
                   2700:
                   2701:        /*
                   2702:         * No space in the natural padding; check if we can extend a
                   2703:         * bit the size of the pool.
                   2704:         */
                   2705:        nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
                   2706:        if (nsz <= pp->pr_alloc->pa_pagesz) {
                   2707:                /* Ok, we can */
                   2708:                pp->pr_size = nsz;
                   2709:                pp->pr_reqsize = requested_size;
                   2710:                pp->pr_redzone = true;
                   2711:        } else {
                   2712:                /* No space for a red zone... snif :'( */
                   2713:                pp->pr_reqsize = 0;
                   2714:                pp->pr_redzone = false;
                   2715:                printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
                   2716:        }
                   2717: }
                   2718:
                   2719: static void
                   2720: pool_redzone_fill(struct pool *pp, void *p)
                   2721: {
                   2722:        uint8_t *cp, pat;
                   2723:        const uint8_t *ep;
                   2724:
                   2725:        if (!pp->pr_redzone)
                   2726:                return;
                   2727:
                   2728:        cp = (uint8_t *)p + pp->pr_reqsize;
                   2729:        ep = cp + POOL_REDZONE_SIZE;
                   2730:
                   2731:        /*
                   2732:         * We really don't want the first byte of the red zone to be '\0';
                   2733:         * an off-by-one in a string may not be properly detected.
                   2734:         */
                   2735:        pat = pool_pattern_generate(cp);
                   2736:        *cp = (pat == '\0') ? STATIC_BYTE: pat;
                   2737:        cp++;
                   2738:
                   2739:        while (cp < ep) {
                   2740:                *cp = pool_pattern_generate(cp);
                   2741:                cp++;
                   2742:        }
                   2743: }
                   2744:
                   2745: static void
                   2746: pool_redzone_check(struct pool *pp, void *p)
                   2747: {
                   2748:        uint8_t *cp, pat, expected;
                   2749:        const uint8_t *ep;
                   2750:
                   2751:        if (!pp->pr_redzone)
                   2752:                return;
                   2753:
                   2754:        cp = (uint8_t *)p + pp->pr_reqsize;
                   2755:        ep = cp + POOL_REDZONE_SIZE;
                   2756:
                   2757:        pat = pool_pattern_generate(cp);
                   2758:        expected = (pat == '\0') ? STATIC_BYTE: pat;
                   2759:        if (expected != *cp) {
                   2760:                panic("%s: %p: 0x%02x != 0x%02x\n",
                   2761:                   __func__, cp, *cp, expected);
                   2762:        }
                   2763:        cp++;
                   2764:
                   2765:        while (cp < ep) {
                   2766:                expected = pool_pattern_generate(cp);
                   2767:                if (*cp != expected) {
                   2768:                        panic("%s: %p: 0x%02x != 0x%02x\n",
                   2769:                           __func__, cp, *cp, expected);
                   2770:                }
                   2771:                cp++;
                   2772:        }
                   2773: }
                   2774:
                   2775: #endif /* POOL_REDZONE */
                   2776:
                   2777:
1.66      thorpej  2778: #ifdef POOL_SUBPAGE
                   2779: /* Sub-page allocator, for machines with large hardware pages. */
                   2780: void *
                   2781: pool_subpage_alloc(struct pool *pp, int flags)
                   2782: {
1.134     ad       2783:        return pool_get(&psppool, flags);
1.66      thorpej  2784: }
                   2785:
                   2786: void
                   2787: pool_subpage_free(struct pool *pp, void *v)
                   2788: {
                   2789:        pool_put(&psppool, v);
                   2790: }
                   2791:
1.112     bjh21    2792: #endif /* POOL_SUBPAGE */
1.141     yamt     2793:
                   2794: #if defined(DDB)
                   2795: static bool
                   2796: pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
                   2797: {
                   2798:
                   2799:        return (uintptr_t)ph->ph_page <= addr &&
                   2800:            addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
                   2801: }
                   2802:
1.143     yamt     2803: static bool
                   2804: pool_in_item(struct pool *pp, void *item, uintptr_t addr)
                   2805: {
                   2806:
                   2807:        return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
                   2808: }
                   2809:
                   2810: static bool
                   2811: pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
                   2812: {
                   2813:        int i;
                   2814:
                   2815:        if (pcg == NULL) {
                   2816:                return false;
                   2817:        }
1.144     yamt     2818:        for (i = 0; i < pcg->pcg_avail; i++) {
1.143     yamt     2819:                if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
                   2820:                        return true;
                   2821:                }
                   2822:        }
                   2823:        return false;
                   2824: }
                   2825:
                   2826: static bool
                   2827: pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
                   2828: {
                   2829:
                   2830:        if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
                   2831:                unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
                   2832:                pool_item_bitmap_t *bitmap =
                   2833:                    ph->ph_bitmap + (idx / BITMAP_SIZE);
                   2834:                pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
                   2835:
                   2836:                return (*bitmap & mask) == 0;
                   2837:        } else {
                   2838:                struct pool_item *pi;
                   2839:
                   2840:                LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
                   2841:                        if (pool_in_item(pp, pi, addr)) {
                   2842:                                return false;
                   2843:                        }
                   2844:                }
                   2845:                return true;
                   2846:        }
                   2847: }
                   2848:
1.141     yamt     2849: void
                   2850: pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
                   2851: {
                   2852:        struct pool *pp;
                   2853:
1.145     ad       2854:        TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1.141     yamt     2855:                struct pool_item_header *ph;
                   2856:                uintptr_t item;
1.143     yamt     2857:                bool allocated = true;
                   2858:                bool incache = false;
                   2859:                bool incpucache = false;
                   2860:                char cpucachestr[32];
1.141     yamt     2861:
                   2862:                if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
                   2863:                        LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
                   2864:                                if (pool_in_page(pp, ph, addr)) {
                   2865:                                        goto found;
                   2866:                                }
                   2867:                        }
                   2868:                        LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
                   2869:                                if (pool_in_page(pp, ph, addr)) {
1.143     yamt     2870:                                        allocated =
                   2871:                                            pool_allocated(pp, ph, addr);
                   2872:                                        goto found;
                   2873:                                }
                   2874:                        }
                   2875:                        LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
                   2876:                                if (pool_in_page(pp, ph, addr)) {
                   2877:                                        allocated = false;
1.141     yamt     2878:                                        goto found;
                   2879:                                }
                   2880:                        }
                   2881:                        continue;
                   2882:                } else {
                   2883:                        ph = pr_find_pagehead_noalign(pp, (void *)addr);
                   2884:                        if (ph == NULL || !pool_in_page(pp, ph, addr)) {
                   2885:                                continue;
                   2886:                        }
1.143     yamt     2887:                        allocated = pool_allocated(pp, ph, addr);
1.141     yamt     2888:                }
                   2889: found:
1.143     yamt     2890:                if (allocated && pp->pr_cache) {
                   2891:                        pool_cache_t pc = pp->pr_cache;
                   2892:                        struct pool_cache_group *pcg;
                   2893:                        int i;
                   2894:
                   2895:                        for (pcg = pc->pc_fullgroups; pcg != NULL;
                   2896:                            pcg = pcg->pcg_next) {
                   2897:                                if (pool_in_cg(pp, pcg, addr)) {
                   2898:                                        incache = true;
                   2899:                                        goto print;
                   2900:                                }
                   2901:                        }
1.183     ad       2902:                        for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1.143     yamt     2903:                                pool_cache_cpu_t *cc;
                   2904:
                   2905:                                if ((cc = pc->pc_cpus[i]) == NULL) {
                   2906:                                        continue;
                   2907:                                }
                   2908:                                if (pool_in_cg(pp, cc->cc_current, addr) ||
                   2909:                                    pool_in_cg(pp, cc->cc_previous, addr)) {
                   2910:                                        struct cpu_info *ci =
1.170     ad       2911:                                            cpu_lookup(i);
1.143     yamt     2912:
                   2913:                                        incpucache = true;
                   2914:                                        snprintf(cpucachestr,
                   2915:                                            sizeof(cpucachestr),
                   2916:                                            "cached by CPU %u",
1.153     martin   2917:                                            ci->ci_index);
1.143     yamt     2918:                                        goto print;
                   2919:                                }
                   2920:                        }
                   2921:                }
                   2922: print:
1.141     yamt     2923:                item = (uintptr_t)ph->ph_page + ph->ph_off;
                   2924:                item = item + rounddown(addr - item, pp->pr_size);
1.143     yamt     2925:                (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
1.141     yamt     2926:                    (void *)addr, item, (size_t)(addr - item),
1.143     yamt     2927:                    pp->pr_wchan,
                   2928:                    incpucache ? cpucachestr :
                   2929:                    incache ? "cached" : allocated ? "allocated" : "free");
1.141     yamt     2930:        }
                   2931: }
                   2932: #endif /* defined(DDB) */
1.203     joerg    2933:
                   2934: static int
                   2935: pool_sysctl(SYSCTLFN_ARGS)
                   2936: {
                   2937:        struct pool_sysctl data;
                   2938:        struct pool *pp;
                   2939:        struct pool_cache *pc;
                   2940:        pool_cache_cpu_t *cc;
                   2941:        int error;
                   2942:        size_t i, written;
                   2943:
                   2944:        if (oldp == NULL) {
                   2945:                *oldlenp = 0;
                   2946:                TAILQ_FOREACH(pp, &pool_head, pr_poollist)
                   2947:                        *oldlenp += sizeof(data);
                   2948:                return 0;
                   2949:        }
                   2950:
                   2951:        memset(&data, 0, sizeof(data));
                   2952:        error = 0;
                   2953:        written = 0;
                   2954:        TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
                   2955:                if (written + sizeof(data) > *oldlenp)
                   2956:                        break;
                   2957:                strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
                   2958:                data.pr_pagesize = pp->pr_alloc->pa_pagesz;
                   2959:                data.pr_flags = pp->pr_roflags | pp->pr_flags;
                   2960: #define COPY(field) data.field = pp->field
                   2961:                COPY(pr_size);
                   2962:
                   2963:                COPY(pr_itemsperpage);
                   2964:                COPY(pr_nitems);
                   2965:                COPY(pr_nout);
                   2966:                COPY(pr_hardlimit);
                   2967:                COPY(pr_npages);
                   2968:                COPY(pr_minpages);
                   2969:                COPY(pr_maxpages);
                   2970:
                   2971:                COPY(pr_nget);
                   2972:                COPY(pr_nfail);
                   2973:                COPY(pr_nput);
                   2974:                COPY(pr_npagealloc);
                   2975:                COPY(pr_npagefree);
                   2976:                COPY(pr_hiwat);
                   2977:                COPY(pr_nidle);
                   2978: #undef COPY
                   2979:
                   2980:                data.pr_cache_nmiss_pcpu = 0;
                   2981:                data.pr_cache_nhit_pcpu = 0;
                   2982:                if (pp->pr_cache) {
                   2983:                        pc = pp->pr_cache;
                   2984:                        data.pr_cache_meta_size = pc->pc_pcgsize;
                   2985:                        data.pr_cache_nfull = pc->pc_nfull;
                   2986:                        data.pr_cache_npartial = pc->pc_npart;
                   2987:                        data.pr_cache_nempty = pc->pc_nempty;
                   2988:                        data.pr_cache_ncontended = pc->pc_contended;
                   2989:                        data.pr_cache_nmiss_global = pc->pc_misses;
                   2990:                        data.pr_cache_nhit_global = pc->pc_hits;
                   2991:                        for (i = 0; i < pc->pc_ncpu; ++i) {
                   2992:                                cc = pc->pc_cpus[i];
                   2993:                                if (cc == NULL)
                   2994:                                        continue;
1.206     knakahar 2995:                                data.pr_cache_nmiss_pcpu += cc->cc_misses;
                   2996:                                data.pr_cache_nhit_pcpu += cc->cc_hits;
1.203     joerg    2997:                        }
                   2998:                } else {
                   2999:                        data.pr_cache_meta_size = 0;
                   3000:                        data.pr_cache_nfull = 0;
                   3001:                        data.pr_cache_npartial = 0;
                   3002:                        data.pr_cache_nempty = 0;
                   3003:                        data.pr_cache_ncontended = 0;
                   3004:                        data.pr_cache_nmiss_global = 0;
                   3005:                        data.pr_cache_nhit_global = 0;
                   3006:                }
                   3007:
                   3008:                error = sysctl_copyout(l, &data, oldp, sizeof(data));
                   3009:                if (error)
                   3010:                        break;
                   3011:                written += sizeof(data);
                   3012:                oldp = (char *)oldp + sizeof(data);
                   3013:        }
                   3014:
                   3015:        *oldlenp = written;
                   3016:        return error;
                   3017: }
                   3018:
                   3019: SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
                   3020: {
                   3021:        const struct sysctlnode *rnode = NULL;
                   3022:
                   3023:        sysctl_createv(clog, 0, NULL, &rnode,
                   3024:                       CTLFLAG_PERMANENT,
                   3025:                       CTLTYPE_STRUCT, "pool",
                   3026:                       SYSCTL_DESCR("Get pool statistics"),
                   3027:                       pool_sysctl, 0, NULL, 0,
                   3028:                       CTL_KERN, CTL_CREATE, CTL_EOL);
                   3029: }

CVSweb <webmaster@jp.NetBSD.org>