[BACK]Return to subr_autoconf.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / kern

File: [cvs.NetBSD.org] / src / sys / kern / subr_autoconf.c (download)

Revision 1.74, Mon Sep 30 17:36:33 2002 UTC (21 years, 6 months ago) by thorpej
Branch: MAIN
Changes since 1.73: +26 -4 lines

Add a config_init() function to initialize the config data structures.
Normally this is called by configure(), but some ports (amiga, atari,
x68k) need to do this early because of how they find the console.

/* $NetBSD: subr_autoconf.c,v 1.74 2002/09/30 17:36:33 thorpej Exp $ */

/*
 * Copyright (c) 1996, 2000 Christopher G. Demetriou
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *          This product includes software developed for the
 *          NetBSD Project.  See http://www.netbsd.org/ for
 *          information about NetBSD.
 * 4. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
 */

/*
 * Copyright (c) 1992, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This software was developed by the Computer Systems Engineering group
 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
 * contributed to Berkeley.
 *
 * All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Lawrence Berkeley Laboratories.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
 *
 *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.74 2002/09/30 17:36:33 thorpej Exp $");

#include "opt_ddb.h"

#include <sys/param.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <machine/limits.h>

#include "opt_userconf.h"
#ifdef USERCONF
#include <sys/userconf.h>
#include <sys/reboot.h>
#endif

/*
 * Autoconfiguration subroutines.
 */

/*
 * ioconf.c exports exactly two names: cfdata and cfroots.  All system
 * devices and drivers are found via these tables.
 */
extern struct cfdata cfdata[];
extern short cfroots[];

/*
 * List of all cfdriver structures.  We use this to detect duplicates
 * when other cfdrivers are loaded.
 */
struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
extern struct cfdriver * const cfdriver_list_initial[];

/*
 * List of cfdata tables.  We always have one such list -- the one
 * built statically when the kernel was configured.
 */
struct cftablelist allcftables;
static struct cftable initcftable;

#define	ROOT ((struct device *)NULL)

struct matchinfo {
	cfmatch_t fn;
	struct	device *parent;
	void	*aux;
	struct	cfdata *match;
	int	pri;
};

static char *number(char *, int);
static void mapply(struct matchinfo *, struct cfdata *);

struct deferred_config {
	TAILQ_ENTRY(deferred_config) dc_queue;
	struct device *dc_dev;
	void (*dc_func)(struct device *);
};

TAILQ_HEAD(deferred_config_head, deferred_config);

struct deferred_config_head deferred_config_queue;
struct deferred_config_head interrupt_config_queue;

static void config_process_deferred(struct deferred_config_head *,
	struct device *);

/* list of all devices */
struct devicelist alldevs;

/* list of all events */
struct evcntlist allevents = TAILQ_HEAD_INITIALIZER(allevents);

__volatile int config_pending;		/* semaphore for mountroot */

#define	STREQ(s1, s2)			\
	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)

static int config_initialized;		/* config_init() has been called. */

/*
 * Initialize the autoconfiguration data structures.  Normally this
 * is done by configure(), but some platforms need to do this very
 * early (to e.g. initialize the console).
 */
void
config_init(void)
{
	int i;

	if (config_initialized)
		return;

	/* allcfdrivers is statically initialized. */
	for (i = 0; cfdriver_list_initial[i] != NULL; i++)
		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
			panic("configure: duplicate `%s' drivers",
			    cfdriver_list_initial[i]->cd_name);

	TAILQ_INIT(&allcftables);
	initcftable.ct_cfdata = cfdata;
	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);

	TAILQ_INIT(&deferred_config_queue);
	TAILQ_INIT(&interrupt_config_queue);
	TAILQ_INIT(&alldevs); 

	config_initialized = 1;
}

/*
 * Configure the system's hardware.
 */
void
configure(void)
{

	/* Initialize data structures. */
	config_init();

#ifdef USERCONF
	if (boothowto & RB_USERCONF)
		user_config();
#endif

	/*
	 * Do the machine-dependent portion of autoconfiguration.  This
	 * sets the configuration machinery here in motion by "finding"
	 * the root bus.  When this function returns, we expect interrupts
	 * to be enabled.
	 */
	cpu_configure();

	/*
	 * Now that we've found all the hardware, start the real time
	 * and statistics clocks.
	 */
	initclocks();

	cold = 0;	/* clocks are running, we're warm now! */

	/*
	 * Now callback to finish configuration for devices which want
	 * to do this once interrupts are enabled.
	 */
	config_process_deferred(&interrupt_config_queue, NULL);
}

/*
 * Add a cfdriver to the system.
 */
int
config_cfdriver_attach(struct cfdriver *cd)
{
	struct cfdriver *lcd;

	/* Make sure this driver isn't already in the system. */
	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
		if (STREQ(lcd->cd_name, cd->cd_name))
			return (EEXIST);
	}

	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);

	return (0);
}

/*
 * Remove a cfdriver from the system.
 */
int
config_cfdriver_detach(struct cfdriver *cd)
{
	int i;

	/* Make sure there are no active instances. */
	for (i = 0; i < cd->cd_ndevs; i++) {
		if (cd->cd_devs[i] != NULL)
			return (EBUSY);
	}

	LIST_REMOVE(cd, cd_list);

	KASSERT(cd->cd_devs == NULL);

	return (0);
}

/*
 * Look up a cfdriver by name.
 */
static struct cfdriver *
config_cfdriver_lookup(const char *name)
{
	struct cfdriver *cd;

	/*
	 * It is sometimes necessary to use the autoconfiguration
	 * framework quite early (e.g. to initialize the console).
	 * We support this by noticing an empty cfdriver list and
	 * searching the initial static list instead.
	 */
	if (LIST_EMPTY(&allcfdrivers)) {
		int i;

		for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
			if (STREQ(cfdriver_list_initial[i]->cd_name, name))
				return (cfdriver_list_initial[i]);
		}
	}

	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
		if (STREQ(cd->cd_name, name))
			return (cd);
	}

	return (NULL);
}

/*
 * Apply the matching function and choose the best.  This is used
 * a few times and we want to keep the code small.
 */
static void
mapply(struct matchinfo *m, struct cfdata *cf)
{
	int pri;

	if (m->fn != NULL)
		pri = (*m->fn)(m->parent, cf, m->aux);
	else {
	        if (cf->cf_attach->ca_match == NULL) {
			panic("mapply: no match function for '%s' device",
			    cf->cf_name);
		}
		pri = (*cf->cf_attach->ca_match)(m->parent, cf, m->aux);
	}
	if (pri > m->pri) {
		m->match = cf;
		m->pri = pri;
	}
}

/*
 * Determine if `parent' is a potential parent for a device spec based
 * on `cfp'.
 */
static int
cfparent_match(struct device *parent, const struct cfparent *cfp)
{
	struct cfdriver *pcd;
	const char * const *cpp;
	const char *cp;

	/* We don't match root nodes here. */
	if (cfp == NULL)
		return (0);

	pcd = config_cfdriver_lookup(parent->dv_cfdata->cf_name);
	KASSERT(pcd != NULL);

	/*
	 * First, ensure this parent has the correct interface
	 * attribute.
	 */
	if (pcd->cd_attrs == NULL)
		return (0);	/* no interface attributes -> no children */
	for (cpp = pcd->cd_attrs; (cp = *cpp) != NULL; cpp++) {
		if (STREQ(cp, cfp->cfp_iattr)) {
			/* Match. */
			break;
		}
	}
	if (cp == NULL)
		return (0);	/* doesn't carry the req'd attribute */

	/*
	 * If no specific parent device instance was specified (i.e.
	 * we're attaching to the attribute only), we're done!
	 */
	if (cfp->cfp_parent == NULL)
		return (1);

	/*
	 * Check the parent device's name.
	 */
	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
		return (0);	/* not the same parent */

	/*
	 * Make sure the unit number matches.
	 */
	if (cfp->cfp_unit == -1 ||	/* wildcard */
	    cfp->cfp_unit == parent->dv_unit)
		return (1);

	/* Unit numbers don't match. */
	return (0);
}

/*
 * Invoke the "match" routine for a cfdata entry on behalf of
 * an external caller, usually a "submatch" routine.
 */
int
config_match(struct device *parent, struct cfdata *cf, void *aux)
{

	return ((*cf->cf_attach->ca_match)(parent, cf, aux));
}

/*
 * Iterate over all potential children of some device, calling the given
 * function (default being the child's match function) for each one.
 * Nonzero returns are matches; the highest value returned is considered
 * the best match.  Return the `found child' if we got a match, or NULL
 * otherwise.  The `aux' pointer is simply passed on through.
 *
 * Note that this function is designed so that it can be used to apply
 * an arbitrary function to all potential children (its return value
 * can be ignored).
 */
struct cfdata *
config_search(cfmatch_t fn, struct device *parent, void *aux)
{
	struct cftable *ct;
	struct cfdata *cf;
	struct matchinfo m;

	KASSERT(config_initialized);

	m.fn = fn;
	m.parent = parent;
	m.aux = aux;
	m.match = NULL;
	m.pri = 0;

	TAILQ_FOREACH(ct, &allcftables, ct_list) {
		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
			/*
			 * Skip cf if no longer eligible, otherwise scan
			 * through parents for one matching `parent', and
			 * try match function.
			 */
			if (cf->cf_fstate == FSTATE_FOUND)
				continue;
			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
			    cf->cf_fstate == FSTATE_DSTAR)
				continue;
			if (cfparent_match(parent, cf->cf_pspec))
				mapply(&m, cf);
		}
	}
	return (m.match);
}

/*
 * Find the given root device.
 * This is much like config_search, but there is no parent.
 * Don't bother with multiple cfdata tables; the root node
 * must always be in the initial table.
 */
struct cfdata *
config_rootsearch(cfmatch_t fn, const char *rootname, void *aux)
{
	struct cfdata *cf;
	short *p;
	struct matchinfo m;

	m.fn = fn;
	m.parent = ROOT;
	m.aux = aux;
	m.match = NULL;
	m.pri = 0;
	/*
	 * Look at root entries for matching name.  We do not bother
	 * with found-state here since only one root should ever be
	 * searched (and it must be done first).
	 */
	for (p = cfroots; *p >= 0; p++) {
		cf = &cfdata[*p];
		if (strcmp(cf->cf_name, rootname) == 0)
			mapply(&m, cf);
	}
	return (m.match);
}

static const char *msgs[3] = { "", " not configured\n", " unsupported\n" };

/*
 * The given `aux' argument describes a device that has been found
 * on the given parent, but not necessarily configured.  Locate the
 * configuration data for that device (using the submatch function
 * provided, or using candidates' cd_match configuration driver
 * functions) and attach it, and return true.  If the device was
 * not configured, call the given `print' function and return 0.
 */
struct device *
config_found_sm(struct device *parent, void *aux, cfprint_t print,
    cfmatch_t submatch)
{
	struct cfdata *cf;

	if ((cf = config_search(submatch, parent, aux)) != NULL)
		return (config_attach(parent, cf, aux, print));
	if (print)
		printf("%s", msgs[(*print)(aux, parent->dv_xname)]);
	return (NULL);
}

/*
 * As above, but for root devices.
 */
struct device *
config_rootfound(const char *rootname, void *aux)
{
	struct cfdata *cf;

	if ((cf = config_rootsearch((cfmatch_t)NULL, rootname, aux)) != NULL)
		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
	printf("root device %s not configured\n", rootname);
	return (NULL);
}

/* just like sprintf(buf, "%d") except that it works from the end */
static char *
number(char *ep, int n)
{

	*--ep = 0;
	while (n >= 10) {
		*--ep = (n % 10) + '0';
		n /= 10;
	}
	*--ep = n + '0';
	return (ep);
}

/*
 * Expand the size of the cd_devs array if necessary.
 */
void
config_makeroom(int n, struct cfdriver *cd)
{
	int old, new;
	void **nsp;

	if (n < cd->cd_ndevs)
		return;

	/*
	 * Need to expand the array.
	 */
	old = cd->cd_ndevs;
	if (old == 0)
		new = MINALLOCSIZE / sizeof(void *);
	else
		new = old * 2;
	while (new <= n)
		new *= 2;
	cd->cd_ndevs = new;
	nsp = malloc(new * sizeof(void *), M_DEVBUF,
	    cold ? M_NOWAIT : M_WAITOK);	
	if (nsp == NULL)
		panic("config_attach: %sing dev array",
		    old != 0 ? "expand" : "creat");
	memset(nsp + old, 0, (new - old) * sizeof(void *));
	if (old != 0) {
		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
		free(cd->cd_devs, M_DEVBUF);
	}
	cd->cd_devs = nsp;
}

/*
 * Attach a found device.  Allocates memory for device variables.
 */
struct device *
config_attach(struct device *parent, struct cfdata *cf, void *aux,
	cfprint_t print)
{
	struct device *dev;
	struct cftable *ct;
	struct cfdriver *cd;
	const struct cfattach *ca;
	size_t lname, lunit;
	const char *xunit;
	int myunit;
	char num[10];

	cd = config_cfdriver_lookup(cf->cf_name);
	KASSERT(cd != NULL);
	ca = cf->cf_attach;
	if (ca->ca_devsize < sizeof(struct device))
		panic("config_attach");

#ifndef __BROKEN_CONFIG_UNIT_USAGE
	if (cf->cf_fstate == FSTATE_STAR) {
		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
			if (cd->cd_devs[myunit] == NULL)
				break;
		/*
		 * myunit is now the unit of the first NULL device pointer,
		 * or max(cd->cd_ndevs,cf->cf_unit).
		 */
	} else {
		myunit = cf->cf_unit;
		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
		cf->cf_fstate = FSTATE_FOUND;
	}
#else
	myunit = cf->cf_unit;
	if (cf->cf_fstate == FSTATE_STAR)
		cf->cf_unit++;
	else {
		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
		cf->cf_fstate = FSTATE_FOUND;
	}
#endif /* ! __BROKEN_CONFIG_UNIT_USAGE */

	/* compute length of name and decimal expansion of unit number */
	lname = strlen(cd->cd_name);
	xunit = number(&num[sizeof(num)], myunit);
	lunit = &num[sizeof(num)] - xunit;
	if (lname + lunit > sizeof(dev->dv_xname))
		panic("config_attach: device name too long");

	/* get memory for all device vars */
	dev = (struct device *)malloc(ca->ca_devsize, M_DEVBUF,
	    cold ? M_NOWAIT : M_WAITOK);
	if (!dev)
	    panic("config_attach: memory allocation for device softc failed");
	memset(dev, 0, ca->ca_devsize);
	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
	dev->dv_class = cd->cd_class;
	dev->dv_cfdata = cf;
	dev->dv_unit = myunit;
	memcpy(dev->dv_xname, cd->cd_name, lname);
	memcpy(dev->dv_xname + lname, xunit, lunit);
	dev->dv_parent = parent;
	dev->dv_flags = DVF_ACTIVE;	/* always initially active */

	if (parent == ROOT)
		printf("%s (root)", dev->dv_xname);
	else {
		printf("%s at %s", dev->dv_xname, parent->dv_xname);
		if (print)
			(void) (*print)(aux, NULL);
	}

	/* put this device in the devices array */
	config_makeroom(dev->dv_unit, cd);
	if (cd->cd_devs[dev->dv_unit])
		panic("config_attach: duplicate %s", dev->dv_xname);
	cd->cd_devs[dev->dv_unit] = dev;

	/*
	 * Before attaching, clobber any unfound devices that are
	 * otherwise identical.
	 */
	TAILQ_FOREACH(ct, &allcftables, ct_list) {
		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
			if (STREQ(cf->cf_name, cd->cd_name) &&
			    cf->cf_unit == dev->dv_unit) {
				if (cf->cf_fstate == FSTATE_NOTFOUND)
					cf->cf_fstate = FSTATE_FOUND;
#ifdef __BROKEN_CONFIG_UNIT_USAGE
				/*
				 * Bump the unit number on all starred cfdata
				 * entries for this device.
				 */
				if (cf->cf_fstate == FSTATE_STAR)
					cf->cf_unit++;
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
			}
		}
	}
#ifdef __HAVE_DEVICE_REGISTER
	device_register(dev, aux);
#endif
	(*ca->ca_attach)(parent, dev, aux);
	config_process_deferred(&deferred_config_queue, dev);
	return (dev);
}

/*
 * Detach a device.  Optionally forced (e.g. because of hardware
 * removal) and quiet.  Returns zero if successful, non-zero
 * (an error code) otherwise.
 *
 * Note that this code wants to be run from a process context, so
 * that the detach can sleep to allow processes which have a device
 * open to run and unwind their stacks.
 */
int
config_detach(struct device *dev, int flags)
{
	struct cftable *ct;
	struct cfdata *cf;
	const struct cfattach *ca;
	struct cfdriver *cd;
#ifdef DIAGNOSTIC
	struct device *d;
#endif
	int rv = 0, i;

	cf = dev->dv_cfdata;
#ifdef DIAGNOSTIC
	if (cf->cf_fstate != FSTATE_FOUND && cf->cf_fstate != FSTATE_STAR)
		panic("config_detach: bad device fstate");
#endif
	cd = config_cfdriver_lookup(cf->cf_name);
	KASSERT(cd != NULL);
	ca = cf->cf_attach;

	/*
	 * Ensure the device is deactivated.  If the device doesn't
	 * have an activation entry point, we allow DVF_ACTIVE to
	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
	 * device is busy, and the detach fails.
	 */
	if (ca->ca_activate != NULL)
		rv = config_deactivate(dev);

	/*
	 * Try to detach the device.  If that's not possible, then
	 * we either panic() (for the forced but failed case), or
	 * return an error.
	 */
	if (rv == 0) {
		if (ca->ca_detach != NULL)
			rv = (*ca->ca_detach)(dev, flags);
		else
			rv = EOPNOTSUPP;
	}
	if (rv != 0) {
		if ((flags & DETACH_FORCE) == 0)
			return (rv);
		else
			panic("config_detach: forced detach of %s failed (%d)",
			    dev->dv_xname, rv);
	}

	/*
	 * The device has now been successfully detached.
	 */

#ifdef DIAGNOSTIC
	/*
	 * Sanity: If you're successfully detached, you should have no
	 * children.  (Note that because children must be attached
	 * after parents, we only need to search the latter part of
	 * the list.)
	 */
	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
	    d = TAILQ_NEXT(d, dv_list)) {
		if (d->dv_parent == dev) {
			printf("config_detach: detached device %s"
			    " has children %s\n", dev->dv_xname, d->dv_xname);
			panic("config_detach");
		}
	}
#endif

	/*
	 * Mark cfdata to show that the unit can be reused, if possible.
	 */
	TAILQ_FOREACH(ct, &allcftables, ct_list) {
		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
			if (STREQ(cf->cf_name, cd->cd_name)) {
				if (cf->cf_fstate == FSTATE_FOUND &&
				    cf->cf_unit == dev->dv_unit)
					cf->cf_fstate = FSTATE_NOTFOUND;
#ifdef __BROKEN_CONFIG_UNIT_USAGE
				/*
				 * Note that we can only re-use a starred
				 * unit number if the unit being detached
				 * had the last assigned unit number.
				 */
				if (cf->cf_fstate == FSTATE_STAR &&
				    cf->cf_unit == dev->dv_unit + 1)
					cf->cf_unit--;
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
			}
		}
	}

	/*
	 * Unlink from device list.
	 */
	TAILQ_REMOVE(&alldevs, dev, dv_list);

	/*
	 * Remove from cfdriver's array, tell the world, and free softc.
	 */
	cd->cd_devs[dev->dv_unit] = NULL;
	if ((flags & DETACH_QUIET) == 0)
		printf("%s detached\n", dev->dv_xname);
	free(dev, M_DEVBUF);

	/*
	 * If the device now has no units in use, deallocate its softc array.
	 */
	for (i = 0; i < cd->cd_ndevs; i++)
		if (cd->cd_devs[i] != NULL)
			break;
	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
		free(cd->cd_devs, M_DEVBUF);
		cd->cd_devs = NULL;
		cd->cd_ndevs = 0;
	}

	/*
	 * Return success.
	 */
	return (0);
}

int
config_activate(struct device *dev)
{
	const struct cfattach *ca = dev->dv_cfdata->cf_attach;
	int rv = 0, oflags = dev->dv_flags;

	if (ca->ca_activate == NULL)
		return (EOPNOTSUPP);

	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
		dev->dv_flags |= DVF_ACTIVE;
		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
		if (rv)
			dev->dv_flags = oflags;
	}
	return (rv);
}

int
config_deactivate(struct device *dev)
{
	const struct cfattach *ca = dev->dv_cfdata->cf_attach;
	int rv = 0, oflags = dev->dv_flags;

	if (ca->ca_activate == NULL)
		return (EOPNOTSUPP);

	if (dev->dv_flags & DVF_ACTIVE) {
		dev->dv_flags &= ~DVF_ACTIVE;
		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
		if (rv)
			dev->dv_flags = oflags;
	}
	return (rv);
}

/*
 * Defer the configuration of the specified device until all
 * of its parent's devices have been attached.
 */
void
config_defer(struct device *dev, void (*func)(struct device *))
{
	struct deferred_config *dc;

	if (dev->dv_parent == NULL)
		panic("config_defer: can't defer config of a root device");

#ifdef DIAGNOSTIC
	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
	     dc = TAILQ_NEXT(dc, dc_queue)) {
		if (dc->dc_dev == dev)
			panic("config_defer: deferred twice");
	}
#endif

	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
	if (dc == NULL)
		panic("config_defer: unable to allocate callback");

	dc->dc_dev = dev;
	dc->dc_func = func;
	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
	config_pending_incr();
}

/*
 * Defer some autoconfiguration for a device until after interrupts
 * are enabled.
 */
void
config_interrupts(struct device *dev, void (*func)(struct device *))
{
	struct deferred_config *dc;

	/*
	 * If interrupts are enabled, callback now.
	 */
	if (cold == 0) {
		(*func)(dev);
		return;
	}

#ifdef DIAGNOSTIC
	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
	     dc = TAILQ_NEXT(dc, dc_queue)) {
		if (dc->dc_dev == dev)
			panic("config_interrupts: deferred twice");
	}
#endif

	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
	if (dc == NULL)
		panic("config_interrupts: unable to allocate callback");

	dc->dc_dev = dev;
	dc->dc_func = func;
	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
	config_pending_incr();
}

/*
 * Process a deferred configuration queue.
 */
static void
config_process_deferred(struct deferred_config_head *queue,
    struct device *parent)
{
	struct deferred_config *dc, *ndc;

	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
		ndc = TAILQ_NEXT(dc, dc_queue);
		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
			TAILQ_REMOVE(queue, dc, dc_queue);
			(*dc->dc_func)(dc->dc_dev);
			free(dc, M_DEVBUF);
			config_pending_decr();
		}
	}
}

/*
 * Manipulate the config_pending semaphore.
 */
void
config_pending_incr(void)
{

	config_pending++;
}

void
config_pending_decr(void)
{

#ifdef DIAGNOSTIC
	if (config_pending == 0)
		panic("config_pending_decr: config_pending == 0");
#endif
	config_pending--;
	if (config_pending == 0)
		wakeup((void *)&config_pending);
}

/*
 * Attach a statically-initialized event.  The type and string pointers
 * are already set up.
 */
void
evcnt_attach_static(struct evcnt *ev)
{
	int len;

	len = strlen(ev->ev_group);
#ifdef DIAGNOSTIC
	if (len >= EVCNT_STRING_MAX)		/* ..._MAX includes NUL */
		panic("evcnt_attach_static: group length (%s)", ev->ev_group);
#endif
	ev->ev_grouplen = len;

	len = strlen(ev->ev_name);
#ifdef DIAGNOSTIC
	if (len >= EVCNT_STRING_MAX)		/* ..._MAX includes NUL */
		panic("evcnt_attach_static: name length (%s)", ev->ev_name);
#endif
	ev->ev_namelen = len;

	TAILQ_INSERT_TAIL(&allevents, ev, ev_list);
}

/*
 * Attach a dynamically-initialized event.  Zero it, set up the type
 * and string pointers and then act like it was statically initialized.
 */
void
evcnt_attach_dynamic(struct evcnt *ev, int type, const struct evcnt *parent,
    const char *group, const char *name)
{

	memset(ev, 0, sizeof *ev);
	ev->ev_type = type;
	ev->ev_parent = parent;
	ev->ev_group = group;
	ev->ev_name = name;
	evcnt_attach_static(ev);
}

/*
 * Detach an event.
 */
void
evcnt_detach(struct evcnt *ev)
{

	TAILQ_REMOVE(&allevents, ev, ev_list);
}

#ifdef DDB
void
event_print(int full, void (*pr)(const char *, ...))
{
	struct evcnt *evp;

	TAILQ_FOREACH(evp, &allevents, ev_list) {
		if (evp->ev_count == 0 && !full)
			continue;

		(*pr)("evcnt type %d: %s %s = %lld\n", evp->ev_type,
		    evp->ev_group, evp->ev_name, evp->ev_count);
	}
}
#endif /* DDB */