[BACK]Return to kern_time.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / kern

Annotation of src/sys/kern/kern_time.c, Revision 1.189.8.2

1.189.8.2! martin      1: /*     $NetBSD: kern_time.c,v 1.189.8.1 2018/11/29 08:48:38 martin Exp $       */
1.42      cgd         2:
                      3: /*-
1.158     ad          4:  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
1.42      cgd         5:  * All rights reserved.
                      6:  *
                      7:  * This code is derived from software contributed to The NetBSD Foundation
1.158     ad          8:  * by Christopher G. Demetriou, and by Andrew Doran.
1.42      cgd         9:  *
                     10:  * Redistribution and use in source and binary forms, with or without
                     11:  * modification, are permitted provided that the following conditions
                     12:  * are met:
                     13:  * 1. Redistributions of source code must retain the above copyright
                     14:  *    notice, this list of conditions and the following disclaimer.
                     15:  * 2. Redistributions in binary form must reproduce the above copyright
                     16:  *    notice, this list of conditions and the following disclaimer in the
                     17:  *    documentation and/or other materials provided with the distribution.
                     18:  *
                     19:  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
                     20:  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
                     21:  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                     22:  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
                     23:  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
                     24:  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
                     25:  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
                     26:  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
                     27:  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
                     28:  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
                     29:  * POSSIBILITY OF SUCH DAMAGE.
                     30:  */
1.9       cgd        31:
1.1       cgd        32: /*
1.8       cgd        33:  * Copyright (c) 1982, 1986, 1989, 1993
                     34:  *     The Regents of the University of California.  All rights reserved.
1.1       cgd        35:  *
                     36:  * Redistribution and use in source and binary forms, with or without
                     37:  * modification, are permitted provided that the following conditions
                     38:  * are met:
                     39:  * 1. Redistributions of source code must retain the above copyright
                     40:  *    notice, this list of conditions and the following disclaimer.
                     41:  * 2. Redistributions in binary form must reproduce the above copyright
                     42:  *    notice, this list of conditions and the following disclaimer in the
                     43:  *    documentation and/or other materials provided with the distribution.
1.72      agc        44:  * 3. Neither the name of the University nor the names of its contributors
1.1       cgd        45:  *    may be used to endorse or promote products derived from this software
                     46:  *    without specific prior written permission.
                     47:  *
                     48:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
                     49:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     50:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     51:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
                     52:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     53:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     54:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     55:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     56:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     57:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     58:  * SUCH DAMAGE.
                     59:  *
1.33      fvdl       60:  *     @(#)kern_time.c 8.4 (Berkeley) 5/26/95
1.1       cgd        61:  */
1.58      lukem      62:
                     63: #include <sys/cdefs.h>
1.189.8.2! martin     64: __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.8.1 2018/11/29 08:48:38 martin Exp $");
1.1       cgd        65:
1.5       mycroft    66: #include <sys/param.h>
                     67: #include <sys/resourcevar.h>
                     68: #include <sys/kernel.h>
1.8       cgd        69: #include <sys/systm.h>
1.5       mycroft    70: #include <sys/proc.h>
1.8       cgd        71: #include <sys/vnode.h>
1.17      christos   72: #include <sys/signalvar.h>
1.25      perry      73: #include <sys/syslog.h>
1.101     kardel     74: #include <sys/timetc.h>
1.143     ad         75: #include <sys/timex.h>
1.99      elad       76: #include <sys/kauth.h>
1.11      cgd        77: #include <sys/mount.h>
                     78: #include <sys/syscallargs.h>
1.143     ad         79: #include <sys/cpu.h>
1.19      christos   80:
1.142     ad         81: static void    timer_intr(void *);
                     82: static void    itimerfire(struct ptimer *);
                     83: static void    itimerfree(struct ptimers *, int);
                     84:
                     85: kmutex_t       timer_lock;
                     86:
                     87: static void    *timer_sih;
                     88: static TAILQ_HEAD(, ptimer) timer_queue;
1.131     ad         89:
1.161     pooka      90: struct pool ptimer_pool, ptimers_pool;
1.97      simonb     91:
1.168     yamt       92: #define        CLOCK_VIRTUAL_P(clockid)        \
                     93:        ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
                     94:
                     95: CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
                     96: CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
                     97: CTASSERT(ITIMER_PROF == CLOCK_PROF);
1.170     christos   98: CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
1.168     yamt       99:
1.187     christos  100: #define        DELAYTIMER_MAX  32
1.186     christos  101:
1.131     ad        102: /*
                    103:  * Initialize timekeeping.
                    104:  */
                    105: void
                    106: time_init(void)
                    107: {
                    108:
1.161     pooka     109:        pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
                    110:            &pool_allocator_nointr, IPL_NONE);
                    111:        pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
                    112:            &pool_allocator_nointr, IPL_NONE);
1.131     ad        113: }
                    114:
1.142     ad        115: void
                    116: time_init2(void)
                    117: {
                    118:
                    119:        TAILQ_INIT(&timer_queue);
                    120:        mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
                    121:        timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
                    122:            timer_intr, NULL);
                    123: }
                    124:
1.63      thorpej   125: /* Time of day and interval timer support.
1.1       cgd       126:  *
                    127:  * These routines provide the kernel entry points to get and set
                    128:  * the time-of-day and per-process interval timers.  Subroutines
                    129:  * here provide support for adding and subtracting timeval structures
                    130:  * and decrementing interval timers, optionally reloading the interval
                    131:  * timers when they expire.
                    132:  */
                    133:
1.22      jtc       134: /* This function is used by clock_settime and settimeofday */
1.132     elad      135: static int
1.156     christos  136: settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
1.22      jtc       137: {
1.156     christos  138:        struct timespec delta, now;
1.129     ad        139:        int s;
1.22      jtc       140:
                    141:        /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
1.129     ad        142:        s = splclock();
1.156     christos  143:        nanotime(&now);
                    144:        timespecsub(ts, &now, &delta);
1.132     elad      145:
1.134     elad      146:        if (check_kauth && kauth_authorize_system(kauth_cred_get(),
1.156     christos  147:            KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
                    148:            &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
1.129     ad        149:                splx(s);
1.29      tls       150:                return (EPERM);
1.55      tron      151:        }
1.132     elad      152:
1.29      tls       153: #ifdef notyet
1.109     elad      154:        if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
1.129     ad        155:                splx(s);
1.29      tls       156:                return (EPERM);
1.55      tron      157:        }
1.29      tls       158: #endif
1.103     kardel    159:
1.156     christos  160:        tc_setclock(ts);
1.103     kardel    161:
1.156     christos  162:        timespecadd(&boottime, &delta, &boottime);
1.103     kardel    163:
1.22      jtc       164:        resettodr();
1.129     ad        165:        splx(s);
                    166:
1.29      tls       167:        return (0);
1.22      jtc       168: }
                    169:
1.132     elad      170: int
                    171: settime(struct proc *p, struct timespec *ts)
                    172: {
                    173:        return (settime1(p, ts, true));
                    174: }
                    175:
1.22      jtc       176: /* ARGSUSED */
                    177: int
1.156     christos  178: sys___clock_gettime50(struct lwp *l,
                    179:     const struct sys___clock_gettime50_args *uap, register_t *retval)
1.22      jtc       180: {
1.135     dsl       181:        /* {
1.22      jtc       182:                syscallarg(clockid_t) clock_id;
1.23      cgd       183:                syscallarg(struct timespec *) tp;
1.135     dsl       184:        } */
1.165     njoly     185:        int error;
1.22      jtc       186:        struct timespec ats;
                    187:
1.165     njoly     188:        error = clock_gettime1(SCARG(uap, clock_id), &ats);
                    189:        if (error != 0)
                    190:                return error;
                    191:
                    192:        return copyout(&ats, SCARG(uap, tp), sizeof(ats));
                    193: }
                    194:
1.22      jtc       195: /* ARGSUSED */
                    196: int
1.156     christos  197: sys___clock_settime50(struct lwp *l,
                    198:     const struct sys___clock_settime50_args *uap, register_t *retval)
1.22      jtc       199: {
1.135     dsl       200:        /* {
1.22      jtc       201:                syscallarg(clockid_t) clock_id;
1.23      cgd       202:                syscallarg(const struct timespec *) tp;
1.135     dsl       203:        } */
1.156     christos  204:        int error;
                    205:        struct timespec ats;
1.22      jtc       206:
1.156     christos  207:        if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
                    208:                return error;
                    209:
                    210:        return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
1.56      manu      211: }
                    212:
                    213:
                    214: int
1.132     elad      215: clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
                    216:     bool check_kauth)
1.56      manu      217: {
                    218:        int error;
                    219:
1.61      simonb    220:        switch (clock_id) {
                    221:        case CLOCK_REALTIME:
1.156     christos  222:                if ((error = settime1(p, tp, check_kauth)) != 0)
1.61      simonb    223:                        return (error);
                    224:                break;
                    225:        case CLOCK_MONOTONIC:
                    226:                return (EINVAL);        /* read-only clock */
                    227:        default:
1.56      manu      228:                return (EINVAL);
1.61      simonb    229:        }
1.22      jtc       230:
                    231:        return 0;
                    232: }
                    233:
                    234: int
1.156     christos  235: sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
1.140     yamt      236:     register_t *retval)
1.22      jtc       237: {
1.135     dsl       238:        /* {
1.22      jtc       239:                syscallarg(clockid_t) clock_id;
1.23      cgd       240:                syscallarg(struct timespec *) tp;
1.135     dsl       241:        } */
1.22      jtc       242:        struct timespec ts;
1.180     maxv      243:        int error;
1.22      jtc       244:
1.164     njoly     245:        if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
                    246:                return error;
                    247:
                    248:        if (SCARG(uap, tp))
                    249:                error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
                    250:
                    251:        return error;
                    252: }
                    253:
                    254: int
                    255: clock_getres1(clockid_t clock_id, struct timespec *ts)
                    256: {
                    257:
1.61      simonb    258:        switch (clock_id) {
                    259:        case CLOCK_REALTIME:
                    260:        case CLOCK_MONOTONIC:
1.164     njoly     261:                ts->tv_sec = 0;
1.102     kardel    262:                if (tc_getfrequency() > 1000000000)
1.164     njoly     263:                        ts->tv_nsec = 1;
1.102     kardel    264:                else
1.164     njoly     265:                        ts->tv_nsec = 1000000000 / tc_getfrequency();
1.61      simonb    266:                break;
                    267:        default:
1.164     njoly     268:                return EINVAL;
1.61      simonb    269:        }
1.22      jtc       270:
1.164     njoly     271:        return 0;
1.22      jtc       272: }
                    273:
1.27      jtc       274: /* ARGSUSED */
                    275: int
1.156     christos  276: sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
1.140     yamt      277:     register_t *retval)
1.27      jtc       278: {
1.135     dsl       279:        /* {
1.101     kardel    280:                syscallarg(struct timespec *) rqtp;
                    281:                syscallarg(struct timespec *) rmtp;
1.135     dsl       282:        } */
1.101     kardel    283:        struct timespec rmt, rqt;
1.120     dsl       284:        int error, error1;
1.101     kardel    285:
                    286:        error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
                    287:        if (error)
                    288:                return (error);
                    289:
1.175     christos  290:        error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
                    291:            SCARG(uap, rmtp) ? &rmt : NULL);
                    292:        if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
                    293:                return error;
                    294:
                    295:        error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
                    296:        return error1 ? error1 : error;
                    297: }
                    298:
                    299: /* ARGSUSED */
                    300: int
                    301: sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
                    302:     register_t *retval)
                    303: {
                    304:        /* {
                    305:                syscallarg(clockid_t) clock_id;
                    306:                syscallarg(int) flags;
                    307:                syscallarg(struct timespec *) rqtp;
                    308:                syscallarg(struct timespec *) rmtp;
                    309:        } */
                    310:        struct timespec rmt, rqt;
                    311:        int error, error1;
                    312:
                    313:        error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
                    314:        if (error)
1.181     christos  315:                goto out;
1.175     christos  316:
                    317:        error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
                    318:            SCARG(uap, rmtp) ? &rmt : NULL);
1.120     dsl       319:        if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
1.181     christos  320:                goto out;
1.120     dsl       321:
1.189     njoly     322:        if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
                    323:            (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
1.181     christos  324:                error = error1;
                    325: out:
                    326:        *retval = error;
                    327:        return 0;
1.120     dsl       328: }
                    329:
                    330: int
1.175     christos  331: nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
                    332:     struct timespec *rmt)
1.120     dsl       333: {
1.141     yamt      334:        struct timespec rmtstart;
1.120     dsl       335:        int error, timo;
                    336:
1.184     uwe       337:        if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
                    338:                if (error == ETIMEDOUT) {
                    339:                        error = 0;
                    340:                        if (rmt != NULL)
                    341:                                rmt->tv_sec = rmt->tv_nsec = 0;
                    342:                }
                    343:                return error;
                    344:        }
1.101     kardel    345:
                    346:        /*
1.175     christos  347:         * Avoid inadvertently sleeping forever
1.101     kardel    348:         */
                    349:        if (timo == 0)
                    350:                timo = 1;
1.141     yamt      351: again:
                    352:        error = kpause("nanoslp", true, timo, NULL);
                    353:        if (rmt != NULL || error == 0) {
                    354:                struct timespec rmtend;
                    355:                struct timespec t0;
                    356:                struct timespec *t;
1.101     kardel    357:
1.175     christos  358:                (void)clock_gettime1(clock_id, &rmtend);
1.141     yamt      359:                t = (rmt != NULL) ? rmt : &t0;
1.179     christos  360:                if (flags & TIMER_ABSTIME) {
                    361:                        timespecsub(rqt, &rmtend, t);
                    362:                } else {
                    363:                        timespecsub(&rmtend, &rmtstart, t);
                    364:                        timespecsub(rqt, t, t);
                    365:                }
1.141     yamt      366:                if (t->tv_sec < 0)
                    367:                        timespecclear(t);
                    368:                if (error == 0) {
                    369:                        timo = tstohz(t);
                    370:                        if (timo > 0)
                    371:                                goto again;
                    372:                }
                    373:        }
1.104     kardel    374:
1.101     kardel    375:        if (error == ERESTART)
                    376:                error = EINTR;
                    377:        if (error == EWOULDBLOCK)
                    378:                error = 0;
                    379:
                    380:        return error;
1.27      jtc       381: }
1.22      jtc       382:
1.186     christos  383: int
                    384: sys_clock_getcpuclockid2(struct lwp *l,
                    385:     const struct sys_clock_getcpuclockid2_args *uap,
                    386:     register_t *retval)
                    387: {
                    388:        /* {
                    389:                syscallarg(idtype_t idtype;
                    390:                syscallarg(id_t id);
                    391:                syscallarg(clockid_t *)clock_id;
                    392:        } */
                    393:        pid_t pid;
                    394:        lwpid_t lid;
                    395:        clockid_t clock_id;
                    396:        id_t id = SCARG(uap, id);
                    397:
                    398:        switch (SCARG(uap, idtype)) {
                    399:        case P_PID:
1.188     msaitoh   400:                pid = id == 0 ? l->l_proc->p_pid : id;
1.186     christos  401:                clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
                    402:                break;
                    403:        case P_LWPID:
                    404:                lid = id == 0 ? l->l_lid : id;
                    405:                clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
                    406:                break;
                    407:        default:
                    408:                return EINVAL;
                    409:        }
                    410:        return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
                    411: }
                    412:
1.1       cgd       413: /* ARGSUSED */
1.3       andrew    414: int
1.156     christos  415: sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
1.140     yamt      416:     register_t *retval)
1.15      thorpej   417: {
1.135     dsl       418:        /* {
1.11      cgd       419:                syscallarg(struct timeval *) tp;
1.135     dsl       420:                syscallarg(void *) tzp;         really "struct timezone *";
                    421:        } */
1.1       cgd       422:        struct timeval atv;
                    423:        int error = 0;
1.25      perry     424:        struct timezone tzfake;
1.1       cgd       425:
1.11      cgd       426:        if (SCARG(uap, tp)) {
1.1       cgd       427:                microtime(&atv);
1.35      perry     428:                error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
1.17      christos  429:                if (error)
1.1       cgd       430:                        return (error);
                    431:        }
1.25      perry     432:        if (SCARG(uap, tzp)) {
                    433:                /*
1.32      mycroft   434:                 * NetBSD has no kernel notion of time zone, so we just
1.25      perry     435:                 * fake up a timezone struct and return it if demanded.
                    436:                 */
                    437:                tzfake.tz_minuteswest = 0;
                    438:                tzfake.tz_dsttime = 0;
1.35      perry     439:                error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
1.25      perry     440:        }
1.1       cgd       441:        return (error);
                    442: }
                    443:
                    444: /* ARGSUSED */
1.3       andrew    445: int
1.156     christos  446: sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
1.140     yamt      447:     register_t *retval)
1.15      thorpej   448: {
1.135     dsl       449:        /* {
1.24      cgd       450:                syscallarg(const struct timeval *) tv;
1.140     yamt      451:                syscallarg(const void *) tzp; really "const struct timezone *";
1.135     dsl       452:        } */
1.60      manu      453:
1.119     dsl       454:        return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
1.60      manu      455: }
                    456:
                    457: int
1.119     dsl       458: settimeofday1(const struct timeval *utv, bool userspace,
                    459:     const void *utzp, struct lwp *l, bool check_kauth)
1.60      manu      460: {
1.22      jtc       461:        struct timeval atv;
1.98      christos  462:        struct timespec ts;
1.22      jtc       463:        int error;
1.1       cgd       464:
1.8       cgd       465:        /* Verify all parameters before changing time. */
1.119     dsl       466:
1.25      perry     467:        /*
1.32      mycroft   468:         * NetBSD has no kernel notion of time zone, and only an
1.25      perry     469:         * obsolete program would try to set it, so we log a warning.
                    470:         */
1.98      christos  471:        if (utzp)
1.25      perry     472:                log(LOG_WARNING, "pid %d attempted to set the "
1.119     dsl       473:                    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
1.98      christos  474:
                    475:        if (utv == NULL)
                    476:                return 0;
                    477:
1.119     dsl       478:        if (userspace) {
                    479:                if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
                    480:                        return error;
                    481:                utv = &atv;
                    482:        }
                    483:
                    484:        TIMEVAL_TO_TIMESPEC(utv, &ts);
1.133     elad      485:        return settime1(l->l_proc, &ts, check_kauth);
1.1       cgd       486: }
                    487:
1.68      dsl       488: int    time_adjusted;                  /* set if an adjustment is made */
1.1       cgd       489:
                    490: /* ARGSUSED */
1.3       andrew    491: int
1.156     christos  492: sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
1.140     yamt      493:     register_t *retval)
1.15      thorpej   494: {
1.135     dsl       495:        /* {
1.24      cgd       496:                syscallarg(const struct timeval *) delta;
1.11      cgd       497:                syscallarg(struct timeval *) olddelta;
1.135     dsl       498:        } */
1.180     maxv      499:        int error;
1.156     christos  500:        struct timeval atv, oldatv;
1.1       cgd       501:
1.106     elad      502:        if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
                    503:            KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
1.156     christos  504:                return error;
1.17      christos  505:
1.156     christos  506:        if (SCARG(uap, delta)) {
                    507:                error = copyin(SCARG(uap, delta), &atv,
                    508:                    sizeof(*SCARG(uap, delta)));
                    509:                if (error)
                    510:                        return (error);
                    511:        }
                    512:        adjtime1(SCARG(uap, delta) ? &atv : NULL,
                    513:            SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
                    514:        if (SCARG(uap, olddelta))
                    515:                error = copyout(&oldatv, SCARG(uap, olddelta),
                    516:                    sizeof(*SCARG(uap, olddelta)));
                    517:        return error;
1.56      manu      518: }
                    519:
1.156     christos  520: void
1.110     yamt      521: adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
1.56      manu      522: {
1.101     kardel    523:        extern int64_t time_adjtime;  /* in kern_ntptime.c */
                    524:
                    525:        if (olddelta) {
1.143     ad        526:                mutex_spin_enter(&timecounter_lock);
1.156     christos  527:                olddelta->tv_sec = time_adjtime / 1000000;
                    528:                olddelta->tv_usec = time_adjtime % 1000000;
                    529:                if (olddelta->tv_usec < 0) {
                    530:                        olddelta->tv_usec += 1000000;
                    531:                        olddelta->tv_sec--;
1.101     kardel    532:                }
1.157     christos  533:                mutex_spin_exit(&timecounter_lock);
1.101     kardel    534:        }
                    535:
                    536:        if (delta) {
1.156     christos  537:                mutex_spin_enter(&timecounter_lock);
1.157     christos  538:                time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
1.101     kardel    539:
1.143     ad        540:                if (time_adjtime) {
1.101     kardel    541:                        /* We need to save the system time during shutdown */
                    542:                        time_adjusted |= 1;
1.143     ad        543:                }
                    544:                mutex_spin_exit(&timecounter_lock);
1.101     kardel    545:        }
1.1       cgd       546: }
                    547:
                    548: /*
1.63      thorpej   549:  * Interval timer support. Both the BSD getitimer() family and the POSIX
                    550:  * timer_*() family of routines are supported.
1.1       cgd       551:  *
1.63      thorpej   552:  * All timers are kept in an array pointed to by p_timers, which is
                    553:  * allocated on demand - many processes don't use timers at all. The
1.183     christos  554:  * first four elements in this array are reserved for the BSD timers:
1.170     christos  555:  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
                    556:  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
                    557:  * allocated by the timer_create() syscall.
1.1       cgd       558:  *
1.63      thorpej   559:  * Realtime timers are kept in the ptimer structure as an absolute
                    560:  * time; virtual time timers are kept as a linked list of deltas.
1.1       cgd       561:  * Virtual time timers are processed in the hardclock() routine of
1.63      thorpej   562:  * kern_clock.c.  The real time timer is processed by a callout
                    563:  * routine, called from the softclock() routine.  Since a callout may
                    564:  * be delayed in real time due to interrupt processing in the system,
                    565:  * it is possible for the real time timeout routine (realtimeexpire,
                    566:  * given below), to be delayed in real time past when it is supposed
                    567:  * to occur.  It does not suffice, therefore, to reload the real timer
                    568:  * .it_value from the real time timers .it_interval.  Rather, we
                    569:  * compute the next time in absolute time the timer should go off.  */
                    570:
                    571: /* Allocate a POSIX realtime timer. */
                    572: int
1.140     yamt      573: sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
                    574:     register_t *retval)
1.63      thorpej   575: {
1.135     dsl       576:        /* {
1.63      thorpej   577:                syscallarg(clockid_t) clock_id;
                    578:                syscallarg(struct sigevent *) evp;
                    579:                syscallarg(timer_t *) timerid;
1.135     dsl       580:        } */
1.92      cube      581:
                    582:        return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1.105     ad        583:            SCARG(uap, evp), copyin, l);
1.92      cube      584: }
                    585:
                    586: int
                    587: timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1.105     ad        588:     copyin_t fetch_event, struct lwp *l)
1.92      cube      589: {
                    590:        int error;
                    591:        timer_t timerid;
1.142     ad        592:        struct ptimers *pts;
1.63      thorpej   593:        struct ptimer *pt;
1.105     ad        594:        struct proc *p;
                    595:
                    596:        p = l->l_proc;
1.63      thorpej   597:
1.170     christos  598:        if ((u_int)id > CLOCK_MONOTONIC)
1.63      thorpej   599:                return (EINVAL);
                    600:
1.142     ad        601:        if ((pts = p->p_timers) == NULL)
                    602:                pts = timers_alloc(p);
1.63      thorpej   603:
                    604:        pt = pool_get(&ptimer_pool, PR_WAITOK);
1.189.8.1  martin    605:        memset(pt, 0, sizeof(*pt));
1.142     ad        606:        if (evp != NULL) {
1.63      thorpej   607:                if (((error =
1.92      cube      608:                    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1.63      thorpej   609:                    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1.163     drochner  610:                        (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
                    611:                        (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
                    612:                         (pt->pt_ev.sigev_signo <= 0 ||
                    613:                          pt->pt_ev.sigev_signo >= NSIG))) {
1.63      thorpej   614:                        pool_put(&ptimer_pool, pt);
                    615:                        return (error ? error : EINVAL);
                    616:                }
1.142     ad        617:        }
                    618:
                    619:        /* Find a free timer slot, skipping those reserved for setitimer(). */
                    620:        mutex_spin_enter(&timer_lock);
1.183     christos  621:        for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1.142     ad        622:                if (pts->pts_timers[timerid] == NULL)
                    623:                        break;
                    624:        if (timerid == TIMER_MAX) {
                    625:                mutex_spin_exit(&timer_lock);
                    626:                pool_put(&ptimer_pool, pt);
                    627:                return EAGAIN;
                    628:        }
                    629:        if (evp == NULL) {
1.63      thorpej   630:                pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
                    631:                switch (id) {
                    632:                case CLOCK_REALTIME:
1.168     yamt      633:                case CLOCK_MONOTONIC:
1.63      thorpej   634:                        pt->pt_ev.sigev_signo = SIGALRM;
                    635:                        break;
                    636:                case CLOCK_VIRTUAL:
                    637:                        pt->pt_ev.sigev_signo = SIGVTALRM;
                    638:                        break;
                    639:                case CLOCK_PROF:
                    640:                        pt->pt_ev.sigev_signo = SIGPROF;
                    641:                        break;
                    642:                }
                    643:                pt->pt_ev.sigev_value.sival_int = timerid;
                    644:        }
1.73      christos  645:        pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
                    646:        pt->pt_info.ksi_errno = 0;
                    647:        pt->pt_info.ksi_code = 0;
                    648:        pt->pt_info.ksi_pid = p->p_pid;
1.105     ad        649:        pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
1.124     christos  650:        pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
1.63      thorpej   651:        pt->pt_type = id;
                    652:        pt->pt_proc = p;
                    653:        pt->pt_overruns = 0;
                    654:        pt->pt_poverruns = 0;
1.64      nathanw   655:        pt->pt_entry = timerid;
1.142     ad        656:        pt->pt_queued = false;
1.150     christos  657:        timespecclear(&pt->pt_time.it_value);
1.168     yamt      658:        if (!CLOCK_VIRTUAL_P(id))
                    659:                callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1.149     christos  660:        else
                    661:                pt->pt_active = 0;
                    662:
1.142     ad        663:        pts->pts_timers[timerid] = pt;
                    664:        mutex_spin_exit(&timer_lock);
1.63      thorpej   665:
1.92      cube      666:        return copyout(&timerid, tid, sizeof(timerid));
1.63      thorpej   667: }
                    668:
                    669: /* Delete a POSIX realtime timer */
1.3       andrew    670: int
1.140     yamt      671: sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
                    672:     register_t *retval)
1.15      thorpej   673: {
1.135     dsl       674:        /* {
1.63      thorpej   675:                syscallarg(timer_t) timerid;
1.135     dsl       676:        } */
1.63      thorpej   677:        struct proc *p = l->l_proc;
1.65      jdolecek  678:        timer_t timerid;
1.142     ad        679:        struct ptimers *pts;
1.63      thorpej   680:        struct ptimer *pt, *ptn;
1.1       cgd       681:
1.63      thorpej   682:        timerid = SCARG(uap, timerid);
1.142     ad        683:        pts = p->p_timers;
                    684:
                    685:        if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
                    686:                return (EINVAL);
1.63      thorpej   687:
1.142     ad        688:        mutex_spin_enter(&timer_lock);
                    689:        if ((pt = pts->pts_timers[timerid]) == NULL) {
                    690:                mutex_spin_exit(&timer_lock);
1.1       cgd       691:                return (EINVAL);
1.142     ad        692:        }
1.168     yamt      693:        if (CLOCK_VIRTUAL_P(pt->pt_type)) {
1.149     christos  694:                if (pt->pt_active) {
                    695:                        ptn = LIST_NEXT(pt, pt_list);
                    696:                        LIST_REMOVE(pt, pt_list);
                    697:                        for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  698:                                timespecadd(&pt->pt_time.it_value,
1.149     christos  699:                                    &ptn->pt_time.it_value,
                    700:                                    &ptn->pt_time.it_value);
                    701:                        pt->pt_active = 0;
                    702:                }
1.63      thorpej   703:        }
1.142     ad        704:        itimerfree(pts, timerid);
1.63      thorpej   705:
                    706:        return (0);
                    707: }
                    708:
                    709: /*
1.67      nathanw   710:  * Set up the given timer. The value in pt->pt_time.it_value is taken
1.168     yamt      711:  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
                    712:  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
1.63      thorpej   713:  */
                    714: void
                    715: timer_settime(struct ptimer *pt)
                    716: {
                    717:        struct ptimer *ptn, *pptn;
                    718:        struct ptlist *ptl;
                    719:
1.142     ad        720:        KASSERT(mutex_owned(&timer_lock));
                    721:
1.168     yamt      722:        if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
                    723:                callout_halt(&pt->pt_ch, &timer_lock);
1.150     christos  724:                if (timespecisset(&pt->pt_time.it_value)) {
1.63      thorpej   725:                        /*
1.150     christos  726:                         * Don't need to check tshzto() return value, here.
1.63      thorpej   727:                         * callout_reset() does it for us.
                    728:                         */
1.171     christos  729:                        callout_reset(&pt->pt_ch,
                    730:                            pt->pt_type == CLOCK_MONOTONIC ?
                    731:                            tshztoup(&pt->pt_time.it_value) :
                    732:                            tshzto(&pt->pt_time.it_value),
1.63      thorpej   733:                            realtimerexpire, pt);
                    734:                }
                    735:        } else {
                    736:                if (pt->pt_active) {
                    737:                        ptn = LIST_NEXT(pt, pt_list);
                    738:                        LIST_REMOVE(pt, pt_list);
                    739:                        for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  740:                                timespecadd(&pt->pt_time.it_value,
1.63      thorpej   741:                                    &ptn->pt_time.it_value,
                    742:                                    &ptn->pt_time.it_value);
                    743:                }
1.150     christos  744:                if (timespecisset(&pt->pt_time.it_value)) {
1.63      thorpej   745:                        if (pt->pt_type == CLOCK_VIRTUAL)
                    746:                                ptl = &pt->pt_proc->p_timers->pts_virtual;
                    747:                        else
                    748:                                ptl = &pt->pt_proc->p_timers->pts_prof;
                    749:
                    750:                        for (ptn = LIST_FIRST(ptl), pptn = NULL;
1.150     christos  751:                             ptn && timespeccmp(&pt->pt_time.it_value,
1.63      thorpej   752:                                 &ptn->pt_time.it_value, >);
                    753:                             pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  754:                                timespecsub(&pt->pt_time.it_value,
1.63      thorpej   755:                                    &ptn->pt_time.it_value,
                    756:                                    &pt->pt_time.it_value);
                    757:
                    758:                        if (pptn)
                    759:                                LIST_INSERT_AFTER(pptn, pt, pt_list);
                    760:                        else
                    761:                                LIST_INSERT_HEAD(ptl, pt, pt_list);
                    762:
                    763:                        for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  764:                                timespecsub(&ptn->pt_time.it_value,
1.63      thorpej   765:                                    &pt->pt_time.it_value,
                    766:                                    &ptn->pt_time.it_value);
                    767:
                    768:                        pt->pt_active = 1;
                    769:                } else
                    770:                        pt->pt_active = 0;
                    771:        }
                    772: }
                    773:
                    774: void
1.150     christos  775: timer_gettime(struct ptimer *pt, struct itimerspec *aits)
1.63      thorpej   776: {
1.150     christos  777:        struct timespec now;
1.63      thorpej   778:        struct ptimer *ptn;
                    779:
1.142     ad        780:        KASSERT(mutex_owned(&timer_lock));
                    781:
1.150     christos  782:        *aits = pt->pt_time;
1.168     yamt      783:        if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
1.1       cgd       784:                /*
1.12      mycroft   785:                 * Convert from absolute to relative time in .it_value
1.63      thorpej   786:                 * part of real time timer.  If time for real time
                    787:                 * timer has passed return 0, else return difference
                    788:                 * between current time and time for the timer to go
                    789:                 * off.
1.1       cgd       790:                 */
1.150     christos  791:                if (timespecisset(&aits->it_value)) {
1.168     yamt      792:                        if (pt->pt_type == CLOCK_REALTIME) {
                    793:                                getnanotime(&now);
                    794:                        } else { /* CLOCK_MONOTONIC */
                    795:                                getnanouptime(&now);
                    796:                        }
1.150     christos  797:                        if (timespeccmp(&aits->it_value, &now, <))
                    798:                                timespecclear(&aits->it_value);
1.101     kardel    799:                        else
1.150     christos  800:                                timespecsub(&aits->it_value, &now,
                    801:                                    &aits->it_value);
1.36      thorpej   802:                }
1.63      thorpej   803:        } else if (pt->pt_active) {
                    804:                if (pt->pt_type == CLOCK_VIRTUAL)
                    805:                        ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
                    806:                else
                    807:                        ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
                    808:                for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  809:                        timespecadd(&aits->it_value,
                    810:                            &ptn->pt_time.it_value, &aits->it_value);
1.63      thorpej   811:                KASSERT(ptn != NULL); /* pt should be findable on the list */
1.1       cgd       812:        } else
1.150     christos  813:                timespecclear(&aits->it_value);
1.63      thorpej   814: }
                    815:
                    816:
                    817:
                    818: /* Set and arm a POSIX realtime timer */
                    819: int
1.156     christos  820: sys___timer_settime50(struct lwp *l,
                    821:     const struct sys___timer_settime50_args *uap,
1.140     yamt      822:     register_t *retval)
1.63      thorpej   823: {
1.135     dsl       824:        /* {
1.63      thorpej   825:                syscallarg(timer_t) timerid;
                    826:                syscallarg(int) flags;
                    827:                syscallarg(const struct itimerspec *) value;
                    828:                syscallarg(struct itimerspec *) ovalue;
1.135     dsl       829:        } */
1.92      cube      830:        int error;
                    831:        struct itimerspec value, ovalue, *ovp = NULL;
                    832:
                    833:        if ((error = copyin(SCARG(uap, value), &value,
                    834:            sizeof(struct itimerspec))) != 0)
                    835:                return (error);
                    836:
                    837:        if (SCARG(uap, ovalue))
                    838:                ovp = &ovalue;
                    839:
                    840:        if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
                    841:            SCARG(uap, flags), l->l_proc)) != 0)
                    842:                return error;
                    843:
                    844:        if (ovp)
                    845:                return copyout(&ovalue, SCARG(uap, ovalue),
                    846:                    sizeof(struct itimerspec));
                    847:        return 0;
                    848: }
                    849:
                    850: int
                    851: dotimer_settime(int timerid, struct itimerspec *value,
                    852:     struct itimerspec *ovalue, int flags, struct proc *p)
                    853: {
1.150     christos  854:        struct timespec now;
                    855:        struct itimerspec val, oval;
1.142     ad        856:        struct ptimers *pts;
1.63      thorpej   857:        struct ptimer *pt;
1.160     christos  858:        int error;
1.63      thorpej   859:
1.142     ad        860:        pts = p->p_timers;
1.63      thorpej   861:
1.142     ad        862:        if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
                    863:                return EINVAL;
1.150     christos  864:        val = *value;
1.160     christos  865:        if ((error = itimespecfix(&val.it_value)) != 0 ||
                    866:            (error = itimespecfix(&val.it_interval)) != 0)
                    867:                return error;
1.63      thorpej   868:
1.142     ad        869:        mutex_spin_enter(&timer_lock);
                    870:        if ((pt = pts->pts_timers[timerid]) == NULL) {
                    871:                mutex_spin_exit(&timer_lock);
1.150     christos  872:                return EINVAL;
1.142     ad        873:        }
                    874:
1.63      thorpej   875:        oval = pt->pt_time;
                    876:        pt->pt_time = val;
                    877:
1.67      nathanw   878:        /*
                    879:         * If we've been passed a relative time for a realtime timer,
                    880:         * convert it to absolute; if an absolute time for a virtual
                    881:         * timer, convert it to relative and make sure we don't set it
                    882:         * to zero, which would cancel the timer, or let it go
                    883:         * negative, which would confuse the comparison tests.
                    884:         */
1.150     christos  885:        if (timespecisset(&pt->pt_time.it_value)) {
1.168     yamt      886:                if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
1.101     kardel    887:                        if ((flags & TIMER_ABSTIME) == 0) {
1.168     yamt      888:                                if (pt->pt_type == CLOCK_REALTIME) {
                    889:                                        getnanotime(&now);
                    890:                                } else { /* CLOCK_MONOTONIC */
                    891:                                        getnanouptime(&now);
                    892:                                }
1.150     christos  893:                                timespecadd(&pt->pt_time.it_value, &now,
1.101     kardel    894:                                    &pt->pt_time.it_value);
                    895:                        }
1.67      nathanw   896:                } else {
1.92      cube      897:                        if ((flags & TIMER_ABSTIME) != 0) {
1.150     christos  898:                                getnanotime(&now);
                    899:                                timespecsub(&pt->pt_time.it_value, &now,
1.101     kardel    900:                                    &pt->pt_time.it_value);
1.150     christos  901:                                if (!timespecisset(&pt->pt_time.it_value) ||
1.67      nathanw   902:                                    pt->pt_time.it_value.tv_sec < 0) {
                    903:                                        pt->pt_time.it_value.tv_sec = 0;
1.150     christos  904:                                        pt->pt_time.it_value.tv_nsec = 1;
1.67      nathanw   905:                                }
                    906:                        }
                    907:                }
                    908:        }
                    909:
1.63      thorpej   910:        timer_settime(pt);
1.142     ad        911:        mutex_spin_exit(&timer_lock);
1.63      thorpej   912:
1.150     christos  913:        if (ovalue)
                    914:                *ovalue = oval;
1.63      thorpej   915:
                    916:        return (0);
                    917: }
                    918:
                    919: /* Return the time remaining until a POSIX timer fires. */
                    920: int
1.156     christos  921: sys___timer_gettime50(struct lwp *l,
                    922:     const struct sys___timer_gettime50_args *uap, register_t *retval)
1.63      thorpej   923: {
1.135     dsl       924:        /* {
1.63      thorpej   925:                syscallarg(timer_t) timerid;
                    926:                syscallarg(struct itimerspec *) value;
1.135     dsl       927:        } */
1.63      thorpej   928:        struct itimerspec its;
1.92      cube      929:        int error;
                    930:
                    931:        if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
                    932:            &its)) != 0)
                    933:                return error;
                    934:
                    935:        return copyout(&its, SCARG(uap, value), sizeof(its));
                    936: }
                    937:
                    938: int
                    939: dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
                    940: {
1.63      thorpej   941:        struct ptimer *pt;
1.142     ad        942:        struct ptimers *pts;
1.63      thorpej   943:
1.142     ad        944:        pts = p->p_timers;
                    945:        if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1.63      thorpej   946:                return (EINVAL);
1.142     ad        947:        mutex_spin_enter(&timer_lock);
                    948:        if ((pt = pts->pts_timers[timerid]) == NULL) {
                    949:                mutex_spin_exit(&timer_lock);
                    950:                return (EINVAL);
                    951:        }
1.150     christos  952:        timer_gettime(pt, its);
1.142     ad        953:        mutex_spin_exit(&timer_lock);
1.63      thorpej   954:
1.92      cube      955:        return 0;
1.63      thorpej   956: }
                    957:
                    958: /*
                    959:  * Return the count of the number of times a periodic timer expired
                    960:  * while a notification was already pending. The counter is reset when
                    961:  * a timer expires and a notification can be posted.
                    962:  */
                    963: int
1.140     yamt      964: sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
                    965:     register_t *retval)
1.63      thorpej   966: {
1.135     dsl       967:        /* {
1.63      thorpej   968:                syscallarg(timer_t) timerid;
1.135     dsl       969:        } */
1.63      thorpej   970:        struct proc *p = l->l_proc;
1.142     ad        971:        struct ptimers *pts;
1.63      thorpej   972:        int timerid;
                    973:        struct ptimer *pt;
                    974:
                    975:        timerid = SCARG(uap, timerid);
                    976:
1.142     ad        977:        pts = p->p_timers;
                    978:        if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
                    979:                return (EINVAL);
                    980:        mutex_spin_enter(&timer_lock);
                    981:        if ((pt = pts->pts_timers[timerid]) == NULL) {
                    982:                mutex_spin_exit(&timer_lock);
1.63      thorpej   983:                return (EINVAL);
1.142     ad        984:        }
1.63      thorpej   985:        *retval = pt->pt_poverruns;
1.187     christos  986:        if (*retval >= DELAYTIMER_MAX)
                    987:                *retval = DELAYTIMER_MAX;
1.142     ad        988:        mutex_spin_exit(&timer_lock);
1.63      thorpej   989:
                    990:        return (0);
                    991: }
                    992:
                    993: /*
                    994:  * Real interval timer expired:
                    995:  * send process whose timer expired an alarm signal.
                    996:  * If time is not set up to reload, then just return.
                    997:  * Else compute next time timer should go off which is > current time.
                    998:  * This is where delay in processing this timeout causes multiple
                    999:  * SIGALRM calls to be compressed into one.
                   1000:  */
                   1001: void
                   1002: realtimerexpire(void *arg)
                   1003: {
1.166     yamt     1004:        uint64_t last_val, next_val, interval, now_ns;
1.150     christos 1005:        struct timespec now, next;
1.63      thorpej  1006:        struct ptimer *pt;
1.148     joerg    1007:        int backwards;
1.63      thorpej  1008:
1.142     ad       1009:        pt = arg;
1.63      thorpej  1010:
1.142     ad       1011:        mutex_spin_enter(&timer_lock);
1.63      thorpej  1012:        itimerfire(pt);
                   1013:
1.150     christos 1014:        if (!timespecisset(&pt->pt_time.it_interval)) {
                   1015:                timespecclear(&pt->pt_time.it_value);
1.142     ad       1016:                mutex_spin_exit(&timer_lock);
1.63      thorpej  1017:                return;
                   1018:        }
1.148     joerg    1019:
1.171     christos 1020:        if (pt->pt_type == CLOCK_MONOTONIC) {
                   1021:                getnanouptime(&now);
                   1022:        } else {
                   1023:                getnanotime(&now);
                   1024:        }
1.150     christos 1025:        backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
                   1026:        timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1.148     joerg    1027:        /* Handle the easy case of non-overflown timers first. */
1.150     christos 1028:        if (!backwards && timespeccmp(&next, &now, >)) {
1.148     joerg    1029:                pt->pt_time.it_value = next;
                   1030:        } else {
1.166     yamt     1031:                now_ns = timespec2ns(&now);
1.150     christos 1032:                last_val = timespec2ns(&pt->pt_time.it_value);
                   1033:                interval = timespec2ns(&pt->pt_time.it_interval);
1.148     joerg    1034:
1.166     yamt     1035:                next_val = now_ns +
                   1036:                    (now_ns - last_val + interval - 1) % interval;
1.148     joerg    1037:
                   1038:                if (backwards)
                   1039:                        next_val += interval;
                   1040:                else
1.166     yamt     1041:                        pt->pt_overruns += (now_ns - last_val) / interval;
1.148     joerg    1042:
1.150     christos 1043:                pt->pt_time.it_value.tv_sec = next_val / 1000000000;
                   1044:                pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1.101     kardel   1045:        }
1.148     joerg    1046:
                   1047:        /*
1.150     christos 1048:         * Don't need to check tshzto() return value, here.
1.148     joerg    1049:         * callout_reset() does it for us.
                   1050:         */
1.171     christos 1051:        callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
                   1052:            tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1.148     joerg    1053:            realtimerexpire, pt);
                   1054:        mutex_spin_exit(&timer_lock);
1.63      thorpej  1055: }
                   1056:
                   1057: /* BSD routine to get the value of an interval timer. */
                   1058: /* ARGSUSED */
                   1059: int
1.156     christos 1060: sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1.140     yamt     1061:     register_t *retval)
1.63      thorpej  1062: {
1.135     dsl      1063:        /* {
1.63      thorpej  1064:                syscallarg(int) which;
                   1065:                syscallarg(struct itimerval *) itv;
1.135     dsl      1066:        } */
1.63      thorpej  1067:        struct proc *p = l->l_proc;
                   1068:        struct itimerval aitv;
1.91      cube     1069:        int error;
                   1070:
                   1071:        error = dogetitimer(p, SCARG(uap, which), &aitv);
                   1072:        if (error)
                   1073:                return error;
                   1074:        return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
                   1075: }
1.63      thorpej  1076:
1.91      cube     1077: int
                   1078: dogetitimer(struct proc *p, int which, struct itimerval *itvp)
                   1079: {
1.142     ad       1080:        struct ptimers *pts;
                   1081:        struct ptimer *pt;
1.150     christos 1082:        struct itimerspec its;
1.63      thorpej  1083:
1.170     christos 1084:        if ((u_int)which > ITIMER_MONOTONIC)
1.63      thorpej  1085:                return (EINVAL);
                   1086:
1.142     ad       1087:        mutex_spin_enter(&timer_lock);
                   1088:        pts = p->p_timers;
                   1089:        if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1.91      cube     1090:                timerclear(&itvp->it_value);
                   1091:                timerclear(&itvp->it_interval);
1.150     christos 1092:        } else {
                   1093:                timer_gettime(pt, &its);
1.151     christos 1094:                TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
                   1095:                TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1.150     christos 1096:        }
1.188     msaitoh  1097:        mutex_spin_exit(&timer_lock);
1.63      thorpej  1098:
1.91      cube     1099:        return 0;
1.1       cgd      1100: }
                   1101:
1.63      thorpej  1102: /* BSD routine to set/arm an interval timer. */
1.1       cgd      1103: /* ARGSUSED */
1.3       andrew   1104: int
1.156     christos 1105: sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1.140     yamt     1106:     register_t *retval)
1.15      thorpej  1107: {
1.135     dsl      1108:        /* {
1.30      mycroft  1109:                syscallarg(int) which;
1.24      cgd      1110:                syscallarg(const struct itimerval *) itv;
1.11      cgd      1111:                syscallarg(struct itimerval *) oitv;
1.135     dsl      1112:        } */
1.63      thorpej  1113:        struct proc *p = l->l_proc;
1.30      mycroft  1114:        int which = SCARG(uap, which);
1.156     christos 1115:        struct sys___getitimer50_args getargs;
1.91      cube     1116:        const struct itimerval *itvp;
1.1       cgd      1117:        struct itimerval aitv;
1.91      cube     1118:        int error;
1.1       cgd      1119:
1.170     christos 1120:        if ((u_int)which > ITIMER_MONOTONIC)
1.1       cgd      1121:                return (EINVAL);
1.11      cgd      1122:        itvp = SCARG(uap, itv);
1.63      thorpej  1123:        if (itvp &&
1.174     dholland 1124:            (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1.1       cgd      1125:                return (error);
1.21      cgd      1126:        if (SCARG(uap, oitv) != NULL) {
1.30      mycroft  1127:                SCARG(&getargs, which) = which;
1.21      cgd      1128:                SCARG(&getargs, itv) = SCARG(uap, oitv);
1.156     christos 1129:                if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1.21      cgd      1130:                        return (error);
                   1131:        }
1.1       cgd      1132:        if (itvp == 0)
                   1133:                return (0);
1.91      cube     1134:
                   1135:        return dosetitimer(p, which, &aitv);
                   1136: }
                   1137:
                   1138: int
                   1139: dosetitimer(struct proc *p, int which, struct itimerval *itvp)
                   1140: {
1.150     christos 1141:        struct timespec now;
1.142     ad       1142:        struct ptimers *pts;
                   1143:        struct ptimer *pt, *spare;
1.91      cube     1144:
1.170     christos 1145:        KASSERT((u_int)which <= CLOCK_MONOTONIC);
1.91      cube     1146:        if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1.1       cgd      1147:                return (EINVAL);
1.63      thorpej  1148:
                   1149:        /*
                   1150:         * Don't bother allocating data structures if the process just
                   1151:         * wants to clear the timer.
                   1152:         */
1.142     ad       1153:        spare = NULL;
                   1154:        pts = p->p_timers;
                   1155:  retry:
                   1156:        if (!timerisset(&itvp->it_value) && (pts == NULL ||
                   1157:            pts->pts_timers[which] == NULL))
1.63      thorpej  1158:                return (0);
1.142     ad       1159:        if (pts == NULL)
                   1160:                pts = timers_alloc(p);
                   1161:        mutex_spin_enter(&timer_lock);
                   1162:        pt = pts->pts_timers[which];
                   1163:        if (pt == NULL) {
                   1164:                if (spare == NULL) {
                   1165:                        mutex_spin_exit(&timer_lock);
                   1166:                        spare = pool_get(&ptimer_pool, PR_WAITOK);
1.189.8.2! martin   1167:                        memset(spare, 0, sizeof(*spare));
1.142     ad       1168:                        goto retry;
                   1169:                }
                   1170:                pt = spare;
                   1171:                spare = NULL;
1.63      thorpej  1172:                pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1.76      christos 1173:                pt->pt_ev.sigev_value.sival_int = which;
1.63      thorpej  1174:                pt->pt_overruns = 0;
                   1175:                pt->pt_proc = p;
                   1176:                pt->pt_type = which;
1.64      nathanw  1177:                pt->pt_entry = which;
1.142     ad       1178:                pt->pt_queued = false;
1.149     christos 1179:                if (pt->pt_type == CLOCK_REALTIME)
                   1180:                        callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
                   1181:                else
                   1182:                        pt->pt_active = 0;
                   1183:
1.63      thorpej  1184:                switch (which) {
                   1185:                case ITIMER_REAL:
1.170     christos 1186:                case ITIMER_MONOTONIC:
1.63      thorpej  1187:                        pt->pt_ev.sigev_signo = SIGALRM;
                   1188:                        break;
                   1189:                case ITIMER_VIRTUAL:
                   1190:                        pt->pt_ev.sigev_signo = SIGVTALRM;
                   1191:                        break;
                   1192:                case ITIMER_PROF:
                   1193:                        pt->pt_ev.sigev_signo = SIGPROF;
                   1194:                        break;
1.1       cgd      1195:                }
1.142     ad       1196:                pts->pts_timers[which] = pt;
                   1197:        }
1.63      thorpej  1198:
1.150     christos 1199:        TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
                   1200:        TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
                   1201:
1.170     christos 1202:        if (timespecisset(&pt->pt_time.it_value)) {
1.67      nathanw  1203:                /* Convert to absolute time */
1.101     kardel   1204:                /* XXX need to wrap in splclock for timecounters case? */
1.170     christos 1205:                switch (which) {
                   1206:                case ITIMER_REAL:
                   1207:                        getnanotime(&now);
                   1208:                        timespecadd(&pt->pt_time.it_value, &now,
                   1209:                            &pt->pt_time.it_value);
                   1210:                        break;
                   1211:                case ITIMER_MONOTONIC:
                   1212:                        getnanouptime(&now);
                   1213:                        timespecadd(&pt->pt_time.it_value, &now,
                   1214:                            &pt->pt_time.it_value);
                   1215:                        break;
                   1216:                default:
                   1217:                        break;
                   1218:                }
1.67      nathanw  1219:        }
1.63      thorpej  1220:        timer_settime(pt);
1.142     ad       1221:        mutex_spin_exit(&timer_lock);
                   1222:        if (spare != NULL)
                   1223:                pool_put(&ptimer_pool, spare);
1.63      thorpej  1224:
1.1       cgd      1225:        return (0);
                   1226: }
                   1227:
1.63      thorpej  1228: /* Utility routines to manage the array of pointers to timers. */
1.142     ad       1229: struct ptimers *
1.63      thorpej  1230: timers_alloc(struct proc *p)
                   1231: {
1.142     ad       1232:        struct ptimers *pts;
1.63      thorpej  1233:        int i;
                   1234:
1.100     yamt     1235:        pts = pool_get(&ptimers_pool, PR_WAITOK);
1.63      thorpej  1236:        LIST_INIT(&pts->pts_virtual);
                   1237:        LIST_INIT(&pts->pts_prof);
                   1238:        for (i = 0; i < TIMER_MAX; i++)
                   1239:                pts->pts_timers[i] = NULL;
1.142     ad       1240:        mutex_spin_enter(&timer_lock);
                   1241:        if (p->p_timers == NULL) {
                   1242:                p->p_timers = pts;
                   1243:                mutex_spin_exit(&timer_lock);
                   1244:                return pts;
                   1245:        }
                   1246:        mutex_spin_exit(&timer_lock);
                   1247:        pool_put(&ptimers_pool, pts);
                   1248:        return p->p_timers;
1.63      thorpej  1249: }
                   1250:
1.1       cgd      1251: /*
1.63      thorpej  1252:  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
                   1253:  * then clean up all timers and free all the data structures. If
                   1254:  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
                   1255:  * by timer_create(), not the BSD setitimer() timers, and only free the
                   1256:  * structure if none of those remain.
1.1       cgd      1257:  */
1.3       andrew   1258: void
1.63      thorpej  1259: timers_free(struct proc *p, int which)
1.6       cgd      1260: {
1.63      thorpej  1261:        struct ptimers *pts;
1.142     ad       1262:        struct ptimer *ptn;
1.150     christos 1263:        struct timespec ts;
1.142     ad       1264:        int i;
1.63      thorpej  1265:
1.142     ad       1266:        if (p->p_timers == NULL)
                   1267:                return;
1.63      thorpej  1268:
1.142     ad       1269:        pts = p->p_timers;
                   1270:        mutex_spin_enter(&timer_lock);
                   1271:        if (which == TIMERS_ALL) {
                   1272:                p->p_timers = NULL;
                   1273:                i = 0;
                   1274:        } else {
1.150     christos 1275:                timespecclear(&ts);
1.142     ad       1276:                for (ptn = LIST_FIRST(&pts->pts_virtual);
                   1277:                     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1.149     christos 1278:                     ptn = LIST_NEXT(ptn, pt_list)) {
1.168     yamt     1279:                        KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1.150     christos 1280:                        timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1.149     christos 1281:                }
1.142     ad       1282:                LIST_FIRST(&pts->pts_virtual) = NULL;
                   1283:                if (ptn) {
1.168     yamt     1284:                        KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1.150     christos 1285:                        timespecadd(&ts, &ptn->pt_time.it_value,
1.142     ad       1286:                            &ptn->pt_time.it_value);
                   1287:                        LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
                   1288:                }
1.150     christos 1289:                timespecclear(&ts);
1.142     ad       1290:                for (ptn = LIST_FIRST(&pts->pts_prof);
                   1291:                     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1.149     christos 1292:                     ptn = LIST_NEXT(ptn, pt_list)) {
1.168     yamt     1293:                        KASSERT(ptn->pt_type == CLOCK_PROF);
1.150     christos 1294:                        timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1.149     christos 1295:                }
1.142     ad       1296:                LIST_FIRST(&pts->pts_prof) = NULL;
                   1297:                if (ptn) {
1.168     yamt     1298:                        KASSERT(ptn->pt_type == CLOCK_PROF);
1.150     christos 1299:                        timespecadd(&ts, &ptn->pt_time.it_value,
1.142     ad       1300:                            &ptn->pt_time.it_value);
                   1301:                        LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1.63      thorpej  1302:                }
1.183     christos 1303:                i = TIMER_MIN;
1.142     ad       1304:        }
                   1305:        for ( ; i < TIMER_MAX; i++) {
                   1306:                if (pts->pts_timers[i] != NULL) {
                   1307:                        itimerfree(pts, i);
                   1308:                        mutex_spin_enter(&timer_lock);
1.1       cgd      1309:                }
                   1310:        }
1.142     ad       1311:        if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1.183     christos 1312:            pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1.142     ad       1313:                p->p_timers = NULL;
                   1314:                mutex_spin_exit(&timer_lock);
                   1315:                pool_put(&ptimers_pool, pts);
                   1316:        } else
                   1317:                mutex_spin_exit(&timer_lock);
                   1318: }
                   1319:
                   1320: static void
                   1321: itimerfree(struct ptimers *pts, int index)
                   1322: {
                   1323:        struct ptimer *pt;
                   1324:
                   1325:        KASSERT(mutex_owned(&timer_lock));
                   1326:
                   1327:        pt = pts->pts_timers[index];
                   1328:        pts->pts_timers[index] = NULL;
1.168     yamt     1329:        if (!CLOCK_VIRTUAL_P(pt->pt_type))
1.144     ad       1330:                callout_halt(&pt->pt_ch, &timer_lock);
1.167     yamt     1331:        if (pt->pt_queued)
1.142     ad       1332:                TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1.144     ad       1333:        mutex_spin_exit(&timer_lock);
1.168     yamt     1334:        if (!CLOCK_VIRTUAL_P(pt->pt_type))
1.149     christos 1335:                callout_destroy(&pt->pt_ch);
1.142     ad       1336:        pool_put(&ptimer_pool, pt);
1.1       cgd      1337: }
                   1338:
                   1339: /*
                   1340:  * Decrement an interval timer by a specified number
1.152     christos 1341:  * of nanoseconds, which must be less than a second,
                   1342:  * i.e. < 1000000000.  If the timer expires, then reload
                   1343:  * it.  In this case, carry over (nsec - old value) to
1.8       cgd      1344:  * reduce the value reloaded into the timer so that
1.1       cgd      1345:  * the timer does not drift.  This routine assumes
                   1346:  * that it is called in a context where the timers
                   1347:  * on which it is operating cannot change in value.
                   1348:  */
1.142     ad       1349: static int
1.152     christos 1350: itimerdecr(struct ptimer *pt, int nsec)
1.63      thorpej  1351: {
1.150     christos 1352:        struct itimerspec *itp;
1.1       cgd      1353:
1.142     ad       1354:        KASSERT(mutex_owned(&timer_lock));
1.168     yamt     1355:        KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1.142     ad       1356:
1.63      thorpej  1357:        itp = &pt->pt_time;
1.150     christos 1358:        if (itp->it_value.tv_nsec < nsec) {
1.1       cgd      1359:                if (itp->it_value.tv_sec == 0) {
                   1360:                        /* expired, and already in next interval */
1.150     christos 1361:                        nsec -= itp->it_value.tv_nsec;
1.1       cgd      1362:                        goto expire;
                   1363:                }
1.150     christos 1364:                itp->it_value.tv_nsec += 1000000000;
1.1       cgd      1365:                itp->it_value.tv_sec--;
                   1366:        }
1.152     christos 1367:        itp->it_value.tv_nsec -= nsec;
                   1368:        nsec = 0;
1.150     christos 1369:        if (timespecisset(&itp->it_value))
1.1       cgd      1370:                return (1);
                   1371:        /* expired, exactly at end of interval */
                   1372: expire:
1.150     christos 1373:        if (timespecisset(&itp->it_interval)) {
1.1       cgd      1374:                itp->it_value = itp->it_interval;
1.150     christos 1375:                itp->it_value.tv_nsec -= nsec;
                   1376:                if (itp->it_value.tv_nsec < 0) {
                   1377:                        itp->it_value.tv_nsec += 1000000000;
1.1       cgd      1378:                        itp->it_value.tv_sec--;
                   1379:                }
1.63      thorpej  1380:                timer_settime(pt);
1.1       cgd      1381:        } else
1.150     christos 1382:                itp->it_value.tv_nsec = 0;              /* sec is already 0 */
1.1       cgd      1383:        return (0);
1.42      cgd      1384: }
                   1385:
1.142     ad       1386: static void
1.63      thorpej  1387: itimerfire(struct ptimer *pt)
                   1388: {
1.78      cl       1389:
1.142     ad       1390:        KASSERT(mutex_owned(&timer_lock));
                   1391:
                   1392:        /*
                   1393:         * XXX Can overrun, but we don't do signal queueing yet, anyway.
                   1394:         * XXX Relying on the clock interrupt is stupid.
                   1395:         */
1.173     rmind    1396:        if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1.142     ad       1397:                return;
1.172     rmind    1398:        }
1.142     ad       1399:        TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
                   1400:        pt->pt_queued = true;
                   1401:        softint_schedule(timer_sih);
                   1402: }
                   1403:
                   1404: void
                   1405: timer_tick(lwp_t *l, bool user)
                   1406: {
                   1407:        struct ptimers *pts;
                   1408:        struct ptimer *pt;
                   1409:        proc_t *p;
                   1410:
                   1411:        p = l->l_proc;
                   1412:        if (p->p_timers == NULL)
                   1413:                return;
                   1414:
                   1415:        mutex_spin_enter(&timer_lock);
                   1416:        if ((pts = l->l_proc->p_timers) != NULL) {
1.63      thorpej  1417:                /*
1.142     ad       1418:                 * Run current process's virtual and profile time, as needed.
1.63      thorpej  1419:                 */
1.142     ad       1420:                if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1.152     christos 1421:                        if (itimerdecr(pt, tick * 1000) == 0)
1.142     ad       1422:                                itimerfire(pt);
                   1423:                if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1.152     christos 1424:                        if (itimerdecr(pt, tick * 1000) == 0)
1.142     ad       1425:                                itimerfire(pt);
                   1426:        }
                   1427:        mutex_spin_exit(&timer_lock);
                   1428: }
                   1429:
                   1430: static void
                   1431: timer_intr(void *cookie)
                   1432: {
                   1433:        ksiginfo_t ksi;
                   1434:        struct ptimer *pt;
                   1435:        proc_t *p;
                   1436:
1.158     ad       1437:        mutex_enter(proc_lock);
1.142     ad       1438:        mutex_spin_enter(&timer_lock);
                   1439:        while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
                   1440:                TAILQ_REMOVE(&timer_queue, pt, pt_chain);
                   1441:                KASSERT(pt->pt_queued);
                   1442:                pt->pt_queued = false;
                   1443:
1.154     wrstuden 1444:                if (pt->pt_proc->p_timers == NULL) {
                   1445:                        /* Process is dying. */
1.142     ad       1446:                        continue;
1.154     wrstuden 1447:                }
1.142     ad       1448:                p = pt->pt_proc;
1.172     rmind    1449:                if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1.142     ad       1450:                        continue;
                   1451:                }
                   1452:                if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1.63      thorpej  1453:                        pt->pt_overruns++;
1.142     ad       1454:                        continue;
1.64      nathanw  1455:                }
1.142     ad       1456:
                   1457:                KSI_INIT(&ksi);
                   1458:                ksi.ksi_signo = pt->pt_ev.sigev_signo;
                   1459:                ksi.ksi_code = SI_TIMER;
                   1460:                ksi.ksi_value = pt->pt_ev.sigev_value;
                   1461:                pt->pt_poverruns = pt->pt_overruns;
                   1462:                pt->pt_overruns = 0;
                   1463:                mutex_spin_exit(&timer_lock);
                   1464:                kpsignal(p, &ksi, NULL);
                   1465:                mutex_spin_enter(&timer_lock);
1.63      thorpej  1466:        }
1.142     ad       1467:        mutex_spin_exit(&timer_lock);
1.158     ad       1468:        mutex_exit(proc_lock);
1.63      thorpej  1469: }
1.162     elad     1470:
                   1471: /*
                   1472:  * Check if the time will wrap if set to ts.
                   1473:  *
                   1474:  * ts - timespec describing the new time
                   1475:  * delta - the delta between the current time and ts
                   1476:  */
                   1477: bool
                   1478: time_wraps(struct timespec *ts, struct timespec *delta)
                   1479: {
                   1480:
                   1481:        /*
                   1482:         * Don't allow the time to be set forward so far it
                   1483:         * will wrap and become negative, thus allowing an
                   1484:         * attacker to bypass the next check below.  The
                   1485:         * cutoff is 1 year before rollover occurs, so even
                   1486:         * if the attacker uses adjtime(2) to move the time
                   1487:         * past the cutoff, it will take a very long time
                   1488:         * to get to the wrap point.
                   1489:         */
                   1490:        if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
                   1491:            (delta->tv_sec < 0 || delta->tv_nsec < 0))
                   1492:                return true;
                   1493:
                   1494:        return false;
                   1495: }

CVSweb <webmaster@jp.NetBSD.org>