[BACK]Return to kern_time.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / kern

Annotation of src/sys/kern/kern_time.c, Revision 1.179.12.3

1.179.12.3! martin      1: /*     $NetBSD: kern_time.c,v 1.179.12.2 2018/11/29 09:00:14 martin Exp $      */
1.42      cgd         2:
                      3: /*-
1.158     ad          4:  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
1.42      cgd         5:  * All rights reserved.
                      6:  *
                      7:  * This code is derived from software contributed to The NetBSD Foundation
1.158     ad          8:  * by Christopher G. Demetriou, and by Andrew Doran.
1.42      cgd         9:  *
                     10:  * Redistribution and use in source and binary forms, with or without
                     11:  * modification, are permitted provided that the following conditions
                     12:  * are met:
                     13:  * 1. Redistributions of source code must retain the above copyright
                     14:  *    notice, this list of conditions and the following disclaimer.
                     15:  * 2. Redistributions in binary form must reproduce the above copyright
                     16:  *    notice, this list of conditions and the following disclaimer in the
                     17:  *    documentation and/or other materials provided with the distribution.
                     18:  *
                     19:  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
                     20:  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
                     21:  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                     22:  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
                     23:  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
                     24:  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
                     25:  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
                     26:  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
                     27:  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
                     28:  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
                     29:  * POSSIBILITY OF SUCH DAMAGE.
                     30:  */
1.9       cgd        31:
1.1       cgd        32: /*
1.8       cgd        33:  * Copyright (c) 1982, 1986, 1989, 1993
                     34:  *     The Regents of the University of California.  All rights reserved.
1.1       cgd        35:  *
                     36:  * Redistribution and use in source and binary forms, with or without
                     37:  * modification, are permitted provided that the following conditions
                     38:  * are met:
                     39:  * 1. Redistributions of source code must retain the above copyright
                     40:  *    notice, this list of conditions and the following disclaimer.
                     41:  * 2. Redistributions in binary form must reproduce the above copyright
                     42:  *    notice, this list of conditions and the following disclaimer in the
                     43:  *    documentation and/or other materials provided with the distribution.
1.72      agc        44:  * 3. Neither the name of the University nor the names of its contributors
1.1       cgd        45:  *    may be used to endorse or promote products derived from this software
                     46:  *    without specific prior written permission.
                     47:  *
                     48:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
                     49:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     50:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     51:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
                     52:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     53:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     54:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     55:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     56:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     57:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     58:  * SUCH DAMAGE.
                     59:  *
1.33      fvdl       60:  *     @(#)kern_time.c 8.4 (Berkeley) 5/26/95
1.1       cgd        61:  */
1.58      lukem      62:
                     63: #include <sys/cdefs.h>
1.179.12.3! martin     64: __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179.12.2 2018/11/29 09:00:14 martin Exp $");
1.1       cgd        65:
1.5       mycroft    66: #include <sys/param.h>
                     67: #include <sys/resourcevar.h>
                     68: #include <sys/kernel.h>
1.8       cgd        69: #include <sys/systm.h>
1.5       mycroft    70: #include <sys/proc.h>
1.8       cgd        71: #include <sys/vnode.h>
1.17      christos   72: #include <sys/signalvar.h>
1.25      perry      73: #include <sys/syslog.h>
1.101     kardel     74: #include <sys/timetc.h>
1.143     ad         75: #include <sys/timex.h>
1.99      elad       76: #include <sys/kauth.h>
1.11      cgd        77: #include <sys/mount.h>
                     78: #include <sys/syscallargs.h>
1.143     ad         79: #include <sys/cpu.h>
1.19      christos   80:
1.142     ad         81: static void    timer_intr(void *);
                     82: static void    itimerfire(struct ptimer *);
                     83: static void    itimerfree(struct ptimers *, int);
                     84:
                     85: kmutex_t       timer_lock;
                     86:
                     87: static void    *timer_sih;
                     88: static TAILQ_HEAD(, ptimer) timer_queue;
1.131     ad         89:
1.161     pooka      90: struct pool ptimer_pool, ptimers_pool;
1.97      simonb     91:
1.168     yamt       92: #define        CLOCK_VIRTUAL_P(clockid)        \
                     93:        ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
                     94:
                     95: CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
                     96: CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
                     97: CTASSERT(ITIMER_PROF == CLOCK_PROF);
1.170     christos   98: CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
1.168     yamt       99:
1.131     ad        100: /*
                    101:  * Initialize timekeeping.
                    102:  */
                    103: void
                    104: time_init(void)
                    105: {
                    106:
1.161     pooka     107:        pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
                    108:            &pool_allocator_nointr, IPL_NONE);
                    109:        pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
                    110:            &pool_allocator_nointr, IPL_NONE);
1.131     ad        111: }
                    112:
1.142     ad        113: void
                    114: time_init2(void)
                    115: {
                    116:
                    117:        TAILQ_INIT(&timer_queue);
                    118:        mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
                    119:        timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
                    120:            timer_intr, NULL);
                    121: }
                    122:
1.63      thorpej   123: /* Time of day and interval timer support.
1.1       cgd       124:  *
                    125:  * These routines provide the kernel entry points to get and set
                    126:  * the time-of-day and per-process interval timers.  Subroutines
                    127:  * here provide support for adding and subtracting timeval structures
                    128:  * and decrementing interval timers, optionally reloading the interval
                    129:  * timers when they expire.
                    130:  */
                    131:
1.22      jtc       132: /* This function is used by clock_settime and settimeofday */
1.132     elad      133: static int
1.156     christos  134: settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
1.22      jtc       135: {
1.156     christos  136:        struct timespec delta, now;
1.129     ad        137:        int s;
1.22      jtc       138:
                    139:        /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
1.129     ad        140:        s = splclock();
1.156     christos  141:        nanotime(&now);
                    142:        timespecsub(ts, &now, &delta);
1.132     elad      143:
1.134     elad      144:        if (check_kauth && kauth_authorize_system(kauth_cred_get(),
1.156     christos  145:            KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
                    146:            &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
1.129     ad        147:                splx(s);
1.29      tls       148:                return (EPERM);
1.55      tron      149:        }
1.132     elad      150:
1.29      tls       151: #ifdef notyet
1.109     elad      152:        if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
1.129     ad        153:                splx(s);
1.29      tls       154:                return (EPERM);
1.55      tron      155:        }
1.29      tls       156: #endif
1.103     kardel    157:
1.156     christos  158:        tc_setclock(ts);
1.103     kardel    159:
1.156     christos  160:        timespecadd(&boottime, &delta, &boottime);
1.103     kardel    161:
1.22      jtc       162:        resettodr();
1.129     ad        163:        splx(s);
                    164:
1.29      tls       165:        return (0);
1.22      jtc       166: }
                    167:
1.132     elad      168: int
                    169: settime(struct proc *p, struct timespec *ts)
                    170: {
                    171:        return (settime1(p, ts, true));
                    172: }
                    173:
1.22      jtc       174: /* ARGSUSED */
                    175: int
1.156     christos  176: sys___clock_gettime50(struct lwp *l,
                    177:     const struct sys___clock_gettime50_args *uap, register_t *retval)
1.22      jtc       178: {
1.135     dsl       179:        /* {
1.22      jtc       180:                syscallarg(clockid_t) clock_id;
1.23      cgd       181:                syscallarg(struct timespec *) tp;
1.135     dsl       182:        } */
1.165     njoly     183:        int error;
1.22      jtc       184:        struct timespec ats;
                    185:
1.165     njoly     186:        error = clock_gettime1(SCARG(uap, clock_id), &ats);
                    187:        if (error != 0)
                    188:                return error;
                    189:
                    190:        return copyout(&ats, SCARG(uap, tp), sizeof(ats));
                    191: }
                    192:
1.22      jtc       193: /* ARGSUSED */
                    194: int
1.156     christos  195: sys___clock_settime50(struct lwp *l,
                    196:     const struct sys___clock_settime50_args *uap, register_t *retval)
1.22      jtc       197: {
1.135     dsl       198:        /* {
1.22      jtc       199:                syscallarg(clockid_t) clock_id;
1.23      cgd       200:                syscallarg(const struct timespec *) tp;
1.135     dsl       201:        } */
1.156     christos  202:        int error;
                    203:        struct timespec ats;
1.22      jtc       204:
1.156     christos  205:        if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
                    206:                return error;
                    207:
                    208:        return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
1.56      manu      209: }
                    210:
                    211:
                    212: int
1.132     elad      213: clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
                    214:     bool check_kauth)
1.56      manu      215: {
                    216:        int error;
                    217:
1.61      simonb    218:        switch (clock_id) {
                    219:        case CLOCK_REALTIME:
1.156     christos  220:                if ((error = settime1(p, tp, check_kauth)) != 0)
1.61      simonb    221:                        return (error);
                    222:                break;
                    223:        case CLOCK_MONOTONIC:
                    224:                return (EINVAL);        /* read-only clock */
                    225:        default:
1.56      manu      226:                return (EINVAL);
1.61      simonb    227:        }
1.22      jtc       228:
                    229:        return 0;
                    230: }
                    231:
                    232: int
1.156     christos  233: sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
1.140     yamt      234:     register_t *retval)
1.22      jtc       235: {
1.135     dsl       236:        /* {
1.22      jtc       237:                syscallarg(clockid_t) clock_id;
1.23      cgd       238:                syscallarg(struct timespec *) tp;
1.135     dsl       239:        } */
1.22      jtc       240:        struct timespec ts;
                    241:        int error = 0;
                    242:
1.164     njoly     243:        if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
                    244:                return error;
                    245:
                    246:        if (SCARG(uap, tp))
                    247:                error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
                    248:
                    249:        return error;
                    250: }
                    251:
                    252: int
                    253: clock_getres1(clockid_t clock_id, struct timespec *ts)
                    254: {
                    255:
1.61      simonb    256:        switch (clock_id) {
                    257:        case CLOCK_REALTIME:
                    258:        case CLOCK_MONOTONIC:
1.164     njoly     259:                ts->tv_sec = 0;
1.102     kardel    260:                if (tc_getfrequency() > 1000000000)
1.164     njoly     261:                        ts->tv_nsec = 1;
1.102     kardel    262:                else
1.164     njoly     263:                        ts->tv_nsec = 1000000000 / tc_getfrequency();
1.61      simonb    264:                break;
                    265:        default:
1.164     njoly     266:                return EINVAL;
1.61      simonb    267:        }
1.22      jtc       268:
1.164     njoly     269:        return 0;
1.22      jtc       270: }
                    271:
1.27      jtc       272: /* ARGSUSED */
                    273: int
1.156     christos  274: sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
1.140     yamt      275:     register_t *retval)
1.27      jtc       276: {
1.135     dsl       277:        /* {
1.101     kardel    278:                syscallarg(struct timespec *) rqtp;
                    279:                syscallarg(struct timespec *) rmtp;
1.135     dsl       280:        } */
1.101     kardel    281:        struct timespec rmt, rqt;
1.120     dsl       282:        int error, error1;
1.101     kardel    283:
                    284:        error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
                    285:        if (error)
                    286:                return (error);
                    287:
1.175     christos  288:        error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
                    289:            SCARG(uap, rmtp) ? &rmt : NULL);
                    290:        if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
                    291:                return error;
                    292:
                    293:        error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
                    294:        return error1 ? error1 : error;
                    295: }
                    296:
                    297: /* ARGSUSED */
                    298: int
                    299: sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
                    300:     register_t *retval)
                    301: {
                    302:        /* {
                    303:                syscallarg(clockid_t) clock_id;
                    304:                syscallarg(int) flags;
                    305:                syscallarg(struct timespec *) rqtp;
                    306:                syscallarg(struct timespec *) rmtp;
                    307:        } */
                    308:        struct timespec rmt, rqt;
                    309:        int error, error1;
                    310:
                    311:        error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
                    312:        if (error)
                    313:                return (error);
                    314:
                    315:        error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
                    316:            SCARG(uap, rmtp) ? &rmt : NULL);
1.120     dsl       317:        if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
                    318:                return error;
                    319:
                    320:        error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
                    321:        return error1 ? error1 : error;
                    322: }
                    323:
                    324: int
1.175     christos  325: nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
                    326:     struct timespec *rmt)
1.120     dsl       327: {
1.141     yamt      328:        struct timespec rmtstart;
1.120     dsl       329:        int error, timo;
                    330:
1.179.12.1  martin    331:        if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
                    332:                if (error == ETIMEDOUT) {
                    333:                        error = 0;
                    334:                        if (rmt != NULL)
                    335:                                rmt->tv_sec = rmt->tv_nsec = 0;
                    336:                }
                    337:                return error;
                    338:        }
1.101     kardel    339:
                    340:        /*
1.175     christos  341:         * Avoid inadvertently sleeping forever
1.101     kardel    342:         */
                    343:        if (timo == 0)
                    344:                timo = 1;
1.141     yamt      345: again:
                    346:        error = kpause("nanoslp", true, timo, NULL);
                    347:        if (rmt != NULL || error == 0) {
                    348:                struct timespec rmtend;
                    349:                struct timespec t0;
                    350:                struct timespec *t;
1.101     kardel    351:
1.175     christos  352:                (void)clock_gettime1(clock_id, &rmtend);
1.141     yamt      353:                t = (rmt != NULL) ? rmt : &t0;
1.179     christos  354:                if (flags & TIMER_ABSTIME) {
                    355:                        timespecsub(rqt, &rmtend, t);
                    356:                } else {
                    357:                        timespecsub(&rmtend, &rmtstart, t);
                    358:                        timespecsub(rqt, t, t);
                    359:                }
1.141     yamt      360:                if (t->tv_sec < 0)
                    361:                        timespecclear(t);
                    362:                if (error == 0) {
                    363:                        timo = tstohz(t);
                    364:                        if (timo > 0)
                    365:                                goto again;
                    366:                }
                    367:        }
1.104     kardel    368:
1.101     kardel    369:        if (error == ERESTART)
                    370:                error = EINTR;
                    371:        if (error == EWOULDBLOCK)
                    372:                error = 0;
                    373:
                    374:        return error;
1.27      jtc       375: }
1.22      jtc       376:
1.1       cgd       377: /* ARGSUSED */
1.3       andrew    378: int
1.156     christos  379: sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
1.140     yamt      380:     register_t *retval)
1.15      thorpej   381: {
1.135     dsl       382:        /* {
1.11      cgd       383:                syscallarg(struct timeval *) tp;
1.135     dsl       384:                syscallarg(void *) tzp;         really "struct timezone *";
                    385:        } */
1.1       cgd       386:        struct timeval atv;
                    387:        int error = 0;
1.25      perry     388:        struct timezone tzfake;
1.1       cgd       389:
1.11      cgd       390:        if (SCARG(uap, tp)) {
1.1       cgd       391:                microtime(&atv);
1.35      perry     392:                error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
1.17      christos  393:                if (error)
1.1       cgd       394:                        return (error);
                    395:        }
1.25      perry     396:        if (SCARG(uap, tzp)) {
                    397:                /*
1.32      mycroft   398:                 * NetBSD has no kernel notion of time zone, so we just
1.25      perry     399:                 * fake up a timezone struct and return it if demanded.
                    400:                 */
                    401:                tzfake.tz_minuteswest = 0;
                    402:                tzfake.tz_dsttime = 0;
1.35      perry     403:                error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
1.25      perry     404:        }
1.1       cgd       405:        return (error);
                    406: }
                    407:
                    408: /* ARGSUSED */
1.3       andrew    409: int
1.156     christos  410: sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
1.140     yamt      411:     register_t *retval)
1.15      thorpej   412: {
1.135     dsl       413:        /* {
1.24      cgd       414:                syscallarg(const struct timeval *) tv;
1.140     yamt      415:                syscallarg(const void *) tzp; really "const struct timezone *";
1.135     dsl       416:        } */
1.60      manu      417:
1.119     dsl       418:        return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
1.60      manu      419: }
                    420:
                    421: int
1.119     dsl       422: settimeofday1(const struct timeval *utv, bool userspace,
                    423:     const void *utzp, struct lwp *l, bool check_kauth)
1.60      manu      424: {
1.22      jtc       425:        struct timeval atv;
1.98      christos  426:        struct timespec ts;
1.22      jtc       427:        int error;
1.1       cgd       428:
1.8       cgd       429:        /* Verify all parameters before changing time. */
1.119     dsl       430:
1.25      perry     431:        /*
1.32      mycroft   432:         * NetBSD has no kernel notion of time zone, and only an
1.25      perry     433:         * obsolete program would try to set it, so we log a warning.
                    434:         */
1.98      christos  435:        if (utzp)
1.25      perry     436:                log(LOG_WARNING, "pid %d attempted to set the "
1.119     dsl       437:                    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
1.98      christos  438:
                    439:        if (utv == NULL)
                    440:                return 0;
                    441:
1.119     dsl       442:        if (userspace) {
                    443:                if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
                    444:                        return error;
                    445:                utv = &atv;
                    446:        }
                    447:
                    448:        TIMEVAL_TO_TIMESPEC(utv, &ts);
1.133     elad      449:        return settime1(l->l_proc, &ts, check_kauth);
1.1       cgd       450: }
                    451:
1.68      dsl       452: int    time_adjusted;                  /* set if an adjustment is made */
1.1       cgd       453:
                    454: /* ARGSUSED */
1.3       andrew    455: int
1.156     christos  456: sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
1.140     yamt      457:     register_t *retval)
1.15      thorpej   458: {
1.135     dsl       459:        /* {
1.24      cgd       460:                syscallarg(const struct timeval *) delta;
1.11      cgd       461:                syscallarg(struct timeval *) olddelta;
1.135     dsl       462:        } */
1.156     christos  463:        int error = 0;
                    464:        struct timeval atv, oldatv;
1.1       cgd       465:
1.106     elad      466:        if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
                    467:            KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
1.156     christos  468:                return error;
1.17      christos  469:
1.156     christos  470:        if (SCARG(uap, delta)) {
                    471:                error = copyin(SCARG(uap, delta), &atv,
                    472:                    sizeof(*SCARG(uap, delta)));
                    473:                if (error)
                    474:                        return (error);
                    475:        }
                    476:        adjtime1(SCARG(uap, delta) ? &atv : NULL,
                    477:            SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
                    478:        if (SCARG(uap, olddelta))
                    479:                error = copyout(&oldatv, SCARG(uap, olddelta),
                    480:                    sizeof(*SCARG(uap, olddelta)));
                    481:        return error;
1.56      manu      482: }
                    483:
1.156     christos  484: void
1.110     yamt      485: adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
1.56      manu      486: {
1.101     kardel    487:        extern int64_t time_adjtime;  /* in kern_ntptime.c */
                    488:
                    489:        if (olddelta) {
1.143     ad        490:                mutex_spin_enter(&timecounter_lock);
1.156     christos  491:                olddelta->tv_sec = time_adjtime / 1000000;
                    492:                olddelta->tv_usec = time_adjtime % 1000000;
                    493:                if (olddelta->tv_usec < 0) {
                    494:                        olddelta->tv_usec += 1000000;
                    495:                        olddelta->tv_sec--;
1.101     kardel    496:                }
1.157     christos  497:                mutex_spin_exit(&timecounter_lock);
1.101     kardel    498:        }
                    499:
                    500:        if (delta) {
1.156     christos  501:                mutex_spin_enter(&timecounter_lock);
1.157     christos  502:                time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
1.101     kardel    503:
1.143     ad        504:                if (time_adjtime) {
1.101     kardel    505:                        /* We need to save the system time during shutdown */
                    506:                        time_adjusted |= 1;
1.143     ad        507:                }
                    508:                mutex_spin_exit(&timecounter_lock);
1.101     kardel    509:        }
1.1       cgd       510: }
                    511:
                    512: /*
1.63      thorpej   513:  * Interval timer support. Both the BSD getitimer() family and the POSIX
                    514:  * timer_*() family of routines are supported.
1.1       cgd       515:  *
1.63      thorpej   516:  * All timers are kept in an array pointed to by p_timers, which is
                    517:  * allocated on demand - many processes don't use timers at all. The
                    518:  * first three elements in this array are reserved for the BSD timers:
1.170     christos  519:  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
                    520:  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
                    521:  * allocated by the timer_create() syscall.
1.1       cgd       522:  *
1.63      thorpej   523:  * Realtime timers are kept in the ptimer structure as an absolute
                    524:  * time; virtual time timers are kept as a linked list of deltas.
1.1       cgd       525:  * Virtual time timers are processed in the hardclock() routine of
1.63      thorpej   526:  * kern_clock.c.  The real time timer is processed by a callout
                    527:  * routine, called from the softclock() routine.  Since a callout may
                    528:  * be delayed in real time due to interrupt processing in the system,
                    529:  * it is possible for the real time timeout routine (realtimeexpire,
                    530:  * given below), to be delayed in real time past when it is supposed
                    531:  * to occur.  It does not suffice, therefore, to reload the real timer
                    532:  * .it_value from the real time timers .it_interval.  Rather, we
                    533:  * compute the next time in absolute time the timer should go off.  */
                    534:
                    535: /* Allocate a POSIX realtime timer. */
                    536: int
1.140     yamt      537: sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
                    538:     register_t *retval)
1.63      thorpej   539: {
1.135     dsl       540:        /* {
1.63      thorpej   541:                syscallarg(clockid_t) clock_id;
                    542:                syscallarg(struct sigevent *) evp;
                    543:                syscallarg(timer_t *) timerid;
1.135     dsl       544:        } */
1.92      cube      545:
                    546:        return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1.105     ad        547:            SCARG(uap, evp), copyin, l);
1.92      cube      548: }
                    549:
                    550: int
                    551: timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1.105     ad        552:     copyin_t fetch_event, struct lwp *l)
1.92      cube      553: {
                    554:        int error;
                    555:        timer_t timerid;
1.142     ad        556:        struct ptimers *pts;
1.63      thorpej   557:        struct ptimer *pt;
1.105     ad        558:        struct proc *p;
                    559:
                    560:        p = l->l_proc;
1.63      thorpej   561:
1.170     christos  562:        if ((u_int)id > CLOCK_MONOTONIC)
1.63      thorpej   563:                return (EINVAL);
                    564:
1.142     ad        565:        if ((pts = p->p_timers) == NULL)
                    566:                pts = timers_alloc(p);
1.63      thorpej   567:
                    568:        pt = pool_get(&ptimer_pool, PR_WAITOK);
1.179.12.2  martin    569:        memset(pt, 0, sizeof(*pt));
1.142     ad        570:        if (evp != NULL) {
1.63      thorpej   571:                if (((error =
1.92      cube      572:                    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1.63      thorpej   573:                    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1.163     drochner  574:                        (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
                    575:                        (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
                    576:                         (pt->pt_ev.sigev_signo <= 0 ||
                    577:                          pt->pt_ev.sigev_signo >= NSIG))) {
1.63      thorpej   578:                        pool_put(&ptimer_pool, pt);
                    579:                        return (error ? error : EINVAL);
                    580:                }
1.142     ad        581:        }
                    582:
                    583:        /* Find a free timer slot, skipping those reserved for setitimer(). */
                    584:        mutex_spin_enter(&timer_lock);
                    585:        for (timerid = 3; timerid < TIMER_MAX; timerid++)
                    586:                if (pts->pts_timers[timerid] == NULL)
                    587:                        break;
                    588:        if (timerid == TIMER_MAX) {
                    589:                mutex_spin_exit(&timer_lock);
                    590:                pool_put(&ptimer_pool, pt);
                    591:                return EAGAIN;
                    592:        }
                    593:        if (evp == NULL) {
1.63      thorpej   594:                pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
                    595:                switch (id) {
                    596:                case CLOCK_REALTIME:
1.168     yamt      597:                case CLOCK_MONOTONIC:
1.63      thorpej   598:                        pt->pt_ev.sigev_signo = SIGALRM;
                    599:                        break;
                    600:                case CLOCK_VIRTUAL:
                    601:                        pt->pt_ev.sigev_signo = SIGVTALRM;
                    602:                        break;
                    603:                case CLOCK_PROF:
                    604:                        pt->pt_ev.sigev_signo = SIGPROF;
                    605:                        break;
                    606:                }
                    607:                pt->pt_ev.sigev_value.sival_int = timerid;
                    608:        }
1.73      christos  609:        pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
                    610:        pt->pt_info.ksi_errno = 0;
                    611:        pt->pt_info.ksi_code = 0;
                    612:        pt->pt_info.ksi_pid = p->p_pid;
1.105     ad        613:        pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
1.124     christos  614:        pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
1.63      thorpej   615:        pt->pt_type = id;
                    616:        pt->pt_proc = p;
                    617:        pt->pt_overruns = 0;
                    618:        pt->pt_poverruns = 0;
1.64      nathanw   619:        pt->pt_entry = timerid;
1.142     ad        620:        pt->pt_queued = false;
1.150     christos  621:        timespecclear(&pt->pt_time.it_value);
1.168     yamt      622:        if (!CLOCK_VIRTUAL_P(id))
                    623:                callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1.149     christos  624:        else
                    625:                pt->pt_active = 0;
                    626:
1.142     ad        627:        pts->pts_timers[timerid] = pt;
                    628:        mutex_spin_exit(&timer_lock);
1.63      thorpej   629:
1.92      cube      630:        return copyout(&timerid, tid, sizeof(timerid));
1.63      thorpej   631: }
                    632:
                    633: /* Delete a POSIX realtime timer */
1.3       andrew    634: int
1.140     yamt      635: sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
                    636:     register_t *retval)
1.15      thorpej   637: {
1.135     dsl       638:        /* {
1.63      thorpej   639:                syscallarg(timer_t) timerid;
1.135     dsl       640:        } */
1.63      thorpej   641:        struct proc *p = l->l_proc;
1.65      jdolecek  642:        timer_t timerid;
1.142     ad        643:        struct ptimers *pts;
1.63      thorpej   644:        struct ptimer *pt, *ptn;
1.1       cgd       645:
1.63      thorpej   646:        timerid = SCARG(uap, timerid);
1.142     ad        647:        pts = p->p_timers;
                    648:
                    649:        if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
                    650:                return (EINVAL);
1.63      thorpej   651:
1.142     ad        652:        mutex_spin_enter(&timer_lock);
                    653:        if ((pt = pts->pts_timers[timerid]) == NULL) {
                    654:                mutex_spin_exit(&timer_lock);
1.1       cgd       655:                return (EINVAL);
1.142     ad        656:        }
1.168     yamt      657:        if (CLOCK_VIRTUAL_P(pt->pt_type)) {
1.149     christos  658:                if (pt->pt_active) {
                    659:                        ptn = LIST_NEXT(pt, pt_list);
                    660:                        LIST_REMOVE(pt, pt_list);
                    661:                        for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  662:                                timespecadd(&pt->pt_time.it_value,
1.149     christos  663:                                    &ptn->pt_time.it_value,
                    664:                                    &ptn->pt_time.it_value);
                    665:                        pt->pt_active = 0;
                    666:                }
1.63      thorpej   667:        }
1.142     ad        668:        itimerfree(pts, timerid);
1.63      thorpej   669:
                    670:        return (0);
                    671: }
                    672:
                    673: /*
1.67      nathanw   674:  * Set up the given timer. The value in pt->pt_time.it_value is taken
1.168     yamt      675:  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
                    676:  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
1.63      thorpej   677:  */
                    678: void
                    679: timer_settime(struct ptimer *pt)
                    680: {
                    681:        struct ptimer *ptn, *pptn;
                    682:        struct ptlist *ptl;
                    683:
1.142     ad        684:        KASSERT(mutex_owned(&timer_lock));
                    685:
1.168     yamt      686:        if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
                    687:                callout_halt(&pt->pt_ch, &timer_lock);
1.150     christos  688:                if (timespecisset(&pt->pt_time.it_value)) {
1.63      thorpej   689:                        /*
1.150     christos  690:                         * Don't need to check tshzto() return value, here.
1.63      thorpej   691:                         * callout_reset() does it for us.
                    692:                         */
1.171     christos  693:                        callout_reset(&pt->pt_ch,
                    694:                            pt->pt_type == CLOCK_MONOTONIC ?
                    695:                            tshztoup(&pt->pt_time.it_value) :
                    696:                            tshzto(&pt->pt_time.it_value),
1.63      thorpej   697:                            realtimerexpire, pt);
                    698:                }
                    699:        } else {
                    700:                if (pt->pt_active) {
                    701:                        ptn = LIST_NEXT(pt, pt_list);
                    702:                        LIST_REMOVE(pt, pt_list);
                    703:                        for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  704:                                timespecadd(&pt->pt_time.it_value,
1.63      thorpej   705:                                    &ptn->pt_time.it_value,
                    706:                                    &ptn->pt_time.it_value);
                    707:                }
1.150     christos  708:                if (timespecisset(&pt->pt_time.it_value)) {
1.63      thorpej   709:                        if (pt->pt_type == CLOCK_VIRTUAL)
                    710:                                ptl = &pt->pt_proc->p_timers->pts_virtual;
                    711:                        else
                    712:                                ptl = &pt->pt_proc->p_timers->pts_prof;
                    713:
                    714:                        for (ptn = LIST_FIRST(ptl), pptn = NULL;
1.150     christos  715:                             ptn && timespeccmp(&pt->pt_time.it_value,
1.63      thorpej   716:                                 &ptn->pt_time.it_value, >);
                    717:                             pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  718:                                timespecsub(&pt->pt_time.it_value,
1.63      thorpej   719:                                    &ptn->pt_time.it_value,
                    720:                                    &pt->pt_time.it_value);
                    721:
                    722:                        if (pptn)
                    723:                                LIST_INSERT_AFTER(pptn, pt, pt_list);
                    724:                        else
                    725:                                LIST_INSERT_HEAD(ptl, pt, pt_list);
                    726:
                    727:                        for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  728:                                timespecsub(&ptn->pt_time.it_value,
1.63      thorpej   729:                                    &pt->pt_time.it_value,
                    730:                                    &ptn->pt_time.it_value);
                    731:
                    732:                        pt->pt_active = 1;
                    733:                } else
                    734:                        pt->pt_active = 0;
                    735:        }
                    736: }
                    737:
                    738: void
1.150     christos  739: timer_gettime(struct ptimer *pt, struct itimerspec *aits)
1.63      thorpej   740: {
1.150     christos  741:        struct timespec now;
1.63      thorpej   742:        struct ptimer *ptn;
                    743:
1.142     ad        744:        KASSERT(mutex_owned(&timer_lock));
                    745:
1.150     christos  746:        *aits = pt->pt_time;
1.168     yamt      747:        if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
1.1       cgd       748:                /*
1.12      mycroft   749:                 * Convert from absolute to relative time in .it_value
1.63      thorpej   750:                 * part of real time timer.  If time for real time
                    751:                 * timer has passed return 0, else return difference
                    752:                 * between current time and time for the timer to go
                    753:                 * off.
1.1       cgd       754:                 */
1.150     christos  755:                if (timespecisset(&aits->it_value)) {
1.168     yamt      756:                        if (pt->pt_type == CLOCK_REALTIME) {
                    757:                                getnanotime(&now);
                    758:                        } else { /* CLOCK_MONOTONIC */
                    759:                                getnanouptime(&now);
                    760:                        }
1.150     christos  761:                        if (timespeccmp(&aits->it_value, &now, <))
                    762:                                timespecclear(&aits->it_value);
1.101     kardel    763:                        else
1.150     christos  764:                                timespecsub(&aits->it_value, &now,
                    765:                                    &aits->it_value);
1.36      thorpej   766:                }
1.63      thorpej   767:        } else if (pt->pt_active) {
                    768:                if (pt->pt_type == CLOCK_VIRTUAL)
                    769:                        ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
                    770:                else
                    771:                        ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
                    772:                for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
1.150     christos  773:                        timespecadd(&aits->it_value,
                    774:                            &ptn->pt_time.it_value, &aits->it_value);
1.63      thorpej   775:                KASSERT(ptn != NULL); /* pt should be findable on the list */
1.1       cgd       776:        } else
1.150     christos  777:                timespecclear(&aits->it_value);
1.63      thorpej   778: }
                    779:
                    780:
                    781:
                    782: /* Set and arm a POSIX realtime timer */
                    783: int
1.156     christos  784: sys___timer_settime50(struct lwp *l,
                    785:     const struct sys___timer_settime50_args *uap,
1.140     yamt      786:     register_t *retval)
1.63      thorpej   787: {
1.135     dsl       788:        /* {
1.63      thorpej   789:                syscallarg(timer_t) timerid;
                    790:                syscallarg(int) flags;
                    791:                syscallarg(const struct itimerspec *) value;
                    792:                syscallarg(struct itimerspec *) ovalue;
1.135     dsl       793:        } */
1.92      cube      794:        int error;
                    795:        struct itimerspec value, ovalue, *ovp = NULL;
                    796:
                    797:        if ((error = copyin(SCARG(uap, value), &value,
                    798:            sizeof(struct itimerspec))) != 0)
                    799:                return (error);
                    800:
                    801:        if (SCARG(uap, ovalue))
                    802:                ovp = &ovalue;
                    803:
                    804:        if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
                    805:            SCARG(uap, flags), l->l_proc)) != 0)
                    806:                return error;
                    807:
                    808:        if (ovp)
                    809:                return copyout(&ovalue, SCARG(uap, ovalue),
                    810:                    sizeof(struct itimerspec));
                    811:        return 0;
                    812: }
                    813:
                    814: int
                    815: dotimer_settime(int timerid, struct itimerspec *value,
                    816:     struct itimerspec *ovalue, int flags, struct proc *p)
                    817: {
1.150     christos  818:        struct timespec now;
                    819:        struct itimerspec val, oval;
1.142     ad        820:        struct ptimers *pts;
1.63      thorpej   821:        struct ptimer *pt;
1.160     christos  822:        int error;
1.63      thorpej   823:
1.142     ad        824:        pts = p->p_timers;
1.63      thorpej   825:
1.142     ad        826:        if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
                    827:                return EINVAL;
1.150     christos  828:        val = *value;
1.160     christos  829:        if ((error = itimespecfix(&val.it_value)) != 0 ||
                    830:            (error = itimespecfix(&val.it_interval)) != 0)
                    831:                return error;
1.63      thorpej   832:
1.142     ad        833:        mutex_spin_enter(&timer_lock);
                    834:        if ((pt = pts->pts_timers[timerid]) == NULL) {
                    835:                mutex_spin_exit(&timer_lock);
1.150     christos  836:                return EINVAL;
1.142     ad        837:        }
                    838:
1.63      thorpej   839:        oval = pt->pt_time;
                    840:        pt->pt_time = val;
                    841:
1.67      nathanw   842:        /*
                    843:         * If we've been passed a relative time for a realtime timer,
                    844:         * convert it to absolute; if an absolute time for a virtual
                    845:         * timer, convert it to relative and make sure we don't set it
                    846:         * to zero, which would cancel the timer, or let it go
                    847:         * negative, which would confuse the comparison tests.
                    848:         */
1.150     christos  849:        if (timespecisset(&pt->pt_time.it_value)) {
1.168     yamt      850:                if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
1.101     kardel    851:                        if ((flags & TIMER_ABSTIME) == 0) {
1.168     yamt      852:                                if (pt->pt_type == CLOCK_REALTIME) {
                    853:                                        getnanotime(&now);
                    854:                                } else { /* CLOCK_MONOTONIC */
                    855:                                        getnanouptime(&now);
                    856:                                }
1.150     christos  857:                                timespecadd(&pt->pt_time.it_value, &now,
1.101     kardel    858:                                    &pt->pt_time.it_value);
                    859:                        }
1.67      nathanw   860:                } else {
1.92      cube      861:                        if ((flags & TIMER_ABSTIME) != 0) {
1.150     christos  862:                                getnanotime(&now);
                    863:                                timespecsub(&pt->pt_time.it_value, &now,
1.101     kardel    864:                                    &pt->pt_time.it_value);
1.150     christos  865:                                if (!timespecisset(&pt->pt_time.it_value) ||
1.67      nathanw   866:                                    pt->pt_time.it_value.tv_sec < 0) {
                    867:                                        pt->pt_time.it_value.tv_sec = 0;
1.150     christos  868:                                        pt->pt_time.it_value.tv_nsec = 1;
1.67      nathanw   869:                                }
                    870:                        }
                    871:                }
                    872:        }
                    873:
1.63      thorpej   874:        timer_settime(pt);
1.142     ad        875:        mutex_spin_exit(&timer_lock);
1.63      thorpej   876:
1.150     christos  877:        if (ovalue)
                    878:                *ovalue = oval;
1.63      thorpej   879:
                    880:        return (0);
                    881: }
                    882:
                    883: /* Return the time remaining until a POSIX timer fires. */
                    884: int
1.156     christos  885: sys___timer_gettime50(struct lwp *l,
                    886:     const struct sys___timer_gettime50_args *uap, register_t *retval)
1.63      thorpej   887: {
1.135     dsl       888:        /* {
1.63      thorpej   889:                syscallarg(timer_t) timerid;
                    890:                syscallarg(struct itimerspec *) value;
1.135     dsl       891:        } */
1.63      thorpej   892:        struct itimerspec its;
1.92      cube      893:        int error;
                    894:
                    895:        if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
                    896:            &its)) != 0)
                    897:                return error;
                    898:
                    899:        return copyout(&its, SCARG(uap, value), sizeof(its));
                    900: }
                    901:
                    902: int
                    903: dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
                    904: {
1.63      thorpej   905:        struct ptimer *pt;
1.142     ad        906:        struct ptimers *pts;
1.63      thorpej   907:
1.142     ad        908:        pts = p->p_timers;
                    909:        if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1.63      thorpej   910:                return (EINVAL);
1.142     ad        911:        mutex_spin_enter(&timer_lock);
                    912:        if ((pt = pts->pts_timers[timerid]) == NULL) {
                    913:                mutex_spin_exit(&timer_lock);
                    914:                return (EINVAL);
                    915:        }
1.150     christos  916:        timer_gettime(pt, its);
1.142     ad        917:        mutex_spin_exit(&timer_lock);
1.63      thorpej   918:
1.92      cube      919:        return 0;
1.63      thorpej   920: }
                    921:
                    922: /*
                    923:  * Return the count of the number of times a periodic timer expired
                    924:  * while a notification was already pending. The counter is reset when
                    925:  * a timer expires and a notification can be posted.
                    926:  */
                    927: int
1.140     yamt      928: sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
                    929:     register_t *retval)
1.63      thorpej   930: {
1.135     dsl       931:        /* {
1.63      thorpej   932:                syscallarg(timer_t) timerid;
1.135     dsl       933:        } */
1.63      thorpej   934:        struct proc *p = l->l_proc;
1.142     ad        935:        struct ptimers *pts;
1.63      thorpej   936:        int timerid;
                    937:        struct ptimer *pt;
                    938:
                    939:        timerid = SCARG(uap, timerid);
                    940:
1.142     ad        941:        pts = p->p_timers;
                    942:        if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
                    943:                return (EINVAL);
                    944:        mutex_spin_enter(&timer_lock);
                    945:        if ((pt = pts->pts_timers[timerid]) == NULL) {
                    946:                mutex_spin_exit(&timer_lock);
1.63      thorpej   947:                return (EINVAL);
1.142     ad        948:        }
1.63      thorpej   949:        *retval = pt->pt_poverruns;
1.142     ad        950:        mutex_spin_exit(&timer_lock);
1.63      thorpej   951:
                    952:        return (0);
                    953: }
                    954:
                    955: /*
                    956:  * Real interval timer expired:
                    957:  * send process whose timer expired an alarm signal.
                    958:  * If time is not set up to reload, then just return.
                    959:  * Else compute next time timer should go off which is > current time.
                    960:  * This is where delay in processing this timeout causes multiple
                    961:  * SIGALRM calls to be compressed into one.
                    962:  */
                    963: void
                    964: realtimerexpire(void *arg)
                    965: {
1.166     yamt      966:        uint64_t last_val, next_val, interval, now_ns;
1.150     christos  967:        struct timespec now, next;
1.63      thorpej   968:        struct ptimer *pt;
1.148     joerg     969:        int backwards;
1.63      thorpej   970:
1.142     ad        971:        pt = arg;
1.63      thorpej   972:
1.142     ad        973:        mutex_spin_enter(&timer_lock);
1.63      thorpej   974:        itimerfire(pt);
                    975:
1.150     christos  976:        if (!timespecisset(&pt->pt_time.it_interval)) {
                    977:                timespecclear(&pt->pt_time.it_value);
1.142     ad        978:                mutex_spin_exit(&timer_lock);
1.63      thorpej   979:                return;
                    980:        }
1.148     joerg     981:
1.171     christos  982:        if (pt->pt_type == CLOCK_MONOTONIC) {
                    983:                getnanouptime(&now);
                    984:        } else {
                    985:                getnanotime(&now);
                    986:        }
1.150     christos  987:        backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
                    988:        timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1.148     joerg     989:        /* Handle the easy case of non-overflown timers first. */
1.150     christos  990:        if (!backwards && timespeccmp(&next, &now, >)) {
1.148     joerg     991:                pt->pt_time.it_value = next;
                    992:        } else {
1.166     yamt      993:                now_ns = timespec2ns(&now);
1.150     christos  994:                last_val = timespec2ns(&pt->pt_time.it_value);
                    995:                interval = timespec2ns(&pt->pt_time.it_interval);
1.148     joerg     996:
1.166     yamt      997:                next_val = now_ns +
                    998:                    (now_ns - last_val + interval - 1) % interval;
1.148     joerg     999:
                   1000:                if (backwards)
                   1001:                        next_val += interval;
                   1002:                else
1.166     yamt     1003:                        pt->pt_overruns += (now_ns - last_val) / interval;
1.148     joerg    1004:
1.150     christos 1005:                pt->pt_time.it_value.tv_sec = next_val / 1000000000;
                   1006:                pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1.101     kardel   1007:        }
1.148     joerg    1008:
                   1009:        /*
1.150     christos 1010:         * Don't need to check tshzto() return value, here.
1.148     joerg    1011:         * callout_reset() does it for us.
                   1012:         */
1.171     christos 1013:        callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
                   1014:            tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1.148     joerg    1015:            realtimerexpire, pt);
                   1016:        mutex_spin_exit(&timer_lock);
1.63      thorpej  1017: }
                   1018:
                   1019: /* BSD routine to get the value of an interval timer. */
                   1020: /* ARGSUSED */
                   1021: int
1.156     christos 1022: sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1.140     yamt     1023:     register_t *retval)
1.63      thorpej  1024: {
1.135     dsl      1025:        /* {
1.63      thorpej  1026:                syscallarg(int) which;
                   1027:                syscallarg(struct itimerval *) itv;
1.135     dsl      1028:        } */
1.63      thorpej  1029:        struct proc *p = l->l_proc;
                   1030:        struct itimerval aitv;
1.91      cube     1031:        int error;
                   1032:
                   1033:        error = dogetitimer(p, SCARG(uap, which), &aitv);
                   1034:        if (error)
                   1035:                return error;
                   1036:        return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
                   1037: }
1.63      thorpej  1038:
1.91      cube     1039: int
                   1040: dogetitimer(struct proc *p, int which, struct itimerval *itvp)
                   1041: {
1.142     ad       1042:        struct ptimers *pts;
                   1043:        struct ptimer *pt;
1.150     christos 1044:        struct itimerspec its;
1.63      thorpej  1045:
1.170     christos 1046:        if ((u_int)which > ITIMER_MONOTONIC)
1.63      thorpej  1047:                return (EINVAL);
                   1048:
1.142     ad       1049:        mutex_spin_enter(&timer_lock);
                   1050:        pts = p->p_timers;
                   1051:        if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1.91      cube     1052:                timerclear(&itvp->it_value);
                   1053:                timerclear(&itvp->it_interval);
1.150     christos 1054:        } else {
                   1055:                timer_gettime(pt, &its);
1.151     christos 1056:                TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
                   1057:                TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1.150     christos 1058:        }
1.142     ad       1059:        mutex_spin_exit(&timer_lock);
1.63      thorpej  1060:
1.91      cube     1061:        return 0;
1.1       cgd      1062: }
                   1063:
1.63      thorpej  1064: /* BSD routine to set/arm an interval timer. */
1.1       cgd      1065: /* ARGSUSED */
1.3       andrew   1066: int
1.156     christos 1067: sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1.140     yamt     1068:     register_t *retval)
1.15      thorpej  1069: {
1.135     dsl      1070:        /* {
1.30      mycroft  1071:                syscallarg(int) which;
1.24      cgd      1072:                syscallarg(const struct itimerval *) itv;
1.11      cgd      1073:                syscallarg(struct itimerval *) oitv;
1.135     dsl      1074:        } */
1.63      thorpej  1075:        struct proc *p = l->l_proc;
1.30      mycroft  1076:        int which = SCARG(uap, which);
1.156     christos 1077:        struct sys___getitimer50_args getargs;
1.91      cube     1078:        const struct itimerval *itvp;
1.1       cgd      1079:        struct itimerval aitv;
1.91      cube     1080:        int error;
1.1       cgd      1081:
1.170     christos 1082:        if ((u_int)which > ITIMER_MONOTONIC)
1.1       cgd      1083:                return (EINVAL);
1.11      cgd      1084:        itvp = SCARG(uap, itv);
1.63      thorpej  1085:        if (itvp &&
1.174     dholland 1086:            (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1.1       cgd      1087:                return (error);
1.21      cgd      1088:        if (SCARG(uap, oitv) != NULL) {
1.30      mycroft  1089:                SCARG(&getargs, which) = which;
1.21      cgd      1090:                SCARG(&getargs, itv) = SCARG(uap, oitv);
1.156     christos 1091:                if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1.21      cgd      1092:                        return (error);
                   1093:        }
1.1       cgd      1094:        if (itvp == 0)
                   1095:                return (0);
1.91      cube     1096:
                   1097:        return dosetitimer(p, which, &aitv);
                   1098: }
                   1099:
                   1100: int
                   1101: dosetitimer(struct proc *p, int which, struct itimerval *itvp)
                   1102: {
1.150     christos 1103:        struct timespec now;
1.142     ad       1104:        struct ptimers *pts;
                   1105:        struct ptimer *pt, *spare;
1.91      cube     1106:
1.170     christos 1107:        KASSERT((u_int)which <= CLOCK_MONOTONIC);
1.91      cube     1108:        if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1.1       cgd      1109:                return (EINVAL);
1.63      thorpej  1110:
                   1111:        /*
                   1112:         * Don't bother allocating data structures if the process just
                   1113:         * wants to clear the timer.
                   1114:         */
1.142     ad       1115:        spare = NULL;
                   1116:        pts = p->p_timers;
                   1117:  retry:
                   1118:        if (!timerisset(&itvp->it_value) && (pts == NULL ||
                   1119:            pts->pts_timers[which] == NULL))
1.63      thorpej  1120:                return (0);
1.142     ad       1121:        if (pts == NULL)
                   1122:                pts = timers_alloc(p);
                   1123:        mutex_spin_enter(&timer_lock);
                   1124:        pt = pts->pts_timers[which];
                   1125:        if (pt == NULL) {
                   1126:                if (spare == NULL) {
                   1127:                        mutex_spin_exit(&timer_lock);
                   1128:                        spare = pool_get(&ptimer_pool, PR_WAITOK);
1.179.12.3! martin   1129:                        memset(spare, 0, sizeof(*spare));
1.142     ad       1130:                        goto retry;
                   1131:                }
                   1132:                pt = spare;
                   1133:                spare = NULL;
1.63      thorpej  1134:                pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1.76      christos 1135:                pt->pt_ev.sigev_value.sival_int = which;
1.63      thorpej  1136:                pt->pt_overruns = 0;
                   1137:                pt->pt_proc = p;
                   1138:                pt->pt_type = which;
1.64      nathanw  1139:                pt->pt_entry = which;
1.142     ad       1140:                pt->pt_queued = false;
1.149     christos 1141:                if (pt->pt_type == CLOCK_REALTIME)
                   1142:                        callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
                   1143:                else
                   1144:                        pt->pt_active = 0;
                   1145:
1.63      thorpej  1146:                switch (which) {
                   1147:                case ITIMER_REAL:
1.170     christos 1148:                case ITIMER_MONOTONIC:
1.63      thorpej  1149:                        pt->pt_ev.sigev_signo = SIGALRM;
                   1150:                        break;
                   1151:                case ITIMER_VIRTUAL:
                   1152:                        pt->pt_ev.sigev_signo = SIGVTALRM;
                   1153:                        break;
                   1154:                case ITIMER_PROF:
                   1155:                        pt->pt_ev.sigev_signo = SIGPROF;
                   1156:                        break;
1.1       cgd      1157:                }
1.142     ad       1158:                pts->pts_timers[which] = pt;
                   1159:        }
1.63      thorpej  1160:
1.150     christos 1161:        TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
                   1162:        TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
                   1163:
1.170     christos 1164:        if (timespecisset(&pt->pt_time.it_value)) {
1.67      nathanw  1165:                /* Convert to absolute time */
1.101     kardel   1166:                /* XXX need to wrap in splclock for timecounters case? */
1.170     christos 1167:                switch (which) {
                   1168:                case ITIMER_REAL:
                   1169:                        getnanotime(&now);
                   1170:                        timespecadd(&pt->pt_time.it_value, &now,
                   1171:                            &pt->pt_time.it_value);
                   1172:                        break;
                   1173:                case ITIMER_MONOTONIC:
                   1174:                        getnanouptime(&now);
                   1175:                        timespecadd(&pt->pt_time.it_value, &now,
                   1176:                            &pt->pt_time.it_value);
                   1177:                        break;
                   1178:                default:
                   1179:                        break;
                   1180:                }
1.67      nathanw  1181:        }
1.63      thorpej  1182:        timer_settime(pt);
1.142     ad       1183:        mutex_spin_exit(&timer_lock);
                   1184:        if (spare != NULL)
                   1185:                pool_put(&ptimer_pool, spare);
1.63      thorpej  1186:
1.1       cgd      1187:        return (0);
                   1188: }
                   1189:
1.63      thorpej  1190: /* Utility routines to manage the array of pointers to timers. */
1.142     ad       1191: struct ptimers *
1.63      thorpej  1192: timers_alloc(struct proc *p)
                   1193: {
1.142     ad       1194:        struct ptimers *pts;
1.63      thorpej  1195:        int i;
                   1196:
1.100     yamt     1197:        pts = pool_get(&ptimers_pool, PR_WAITOK);
1.63      thorpej  1198:        LIST_INIT(&pts->pts_virtual);
                   1199:        LIST_INIT(&pts->pts_prof);
                   1200:        for (i = 0; i < TIMER_MAX; i++)
                   1201:                pts->pts_timers[i] = NULL;
1.64      nathanw  1202:        pts->pts_fired = 0;
1.142     ad       1203:        mutex_spin_enter(&timer_lock);
                   1204:        if (p->p_timers == NULL) {
                   1205:                p->p_timers = pts;
                   1206:                mutex_spin_exit(&timer_lock);
                   1207:                return pts;
                   1208:        }
                   1209:        mutex_spin_exit(&timer_lock);
                   1210:        pool_put(&ptimers_pool, pts);
                   1211:        return p->p_timers;
1.63      thorpej  1212: }
                   1213:
1.1       cgd      1214: /*
1.63      thorpej  1215:  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
                   1216:  * then clean up all timers and free all the data structures. If
                   1217:  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
                   1218:  * by timer_create(), not the BSD setitimer() timers, and only free the
                   1219:  * structure if none of those remain.
1.1       cgd      1220:  */
1.3       andrew   1221: void
1.63      thorpej  1222: timers_free(struct proc *p, int which)
1.6       cgd      1223: {
1.63      thorpej  1224:        struct ptimers *pts;
1.142     ad       1225:        struct ptimer *ptn;
1.150     christos 1226:        struct timespec ts;
1.142     ad       1227:        int i;
1.63      thorpej  1228:
1.142     ad       1229:        if (p->p_timers == NULL)
                   1230:                return;
1.63      thorpej  1231:
1.142     ad       1232:        pts = p->p_timers;
                   1233:        mutex_spin_enter(&timer_lock);
                   1234:        if (which == TIMERS_ALL) {
                   1235:                p->p_timers = NULL;
                   1236:                i = 0;
                   1237:        } else {
1.150     christos 1238:                timespecclear(&ts);
1.142     ad       1239:                for (ptn = LIST_FIRST(&pts->pts_virtual);
                   1240:                     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1.149     christos 1241:                     ptn = LIST_NEXT(ptn, pt_list)) {
1.168     yamt     1242:                        KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1.150     christos 1243:                        timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1.149     christos 1244:                }
1.142     ad       1245:                LIST_FIRST(&pts->pts_virtual) = NULL;
                   1246:                if (ptn) {
1.168     yamt     1247:                        KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1.150     christos 1248:                        timespecadd(&ts, &ptn->pt_time.it_value,
1.142     ad       1249:                            &ptn->pt_time.it_value);
                   1250:                        LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
                   1251:                }
1.150     christos 1252:                timespecclear(&ts);
1.142     ad       1253:                for (ptn = LIST_FIRST(&pts->pts_prof);
                   1254:                     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1.149     christos 1255:                     ptn = LIST_NEXT(ptn, pt_list)) {
1.168     yamt     1256:                        KASSERT(ptn->pt_type == CLOCK_PROF);
1.150     christos 1257:                        timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1.149     christos 1258:                }
1.142     ad       1259:                LIST_FIRST(&pts->pts_prof) = NULL;
                   1260:                if (ptn) {
1.168     yamt     1261:                        KASSERT(ptn->pt_type == CLOCK_PROF);
1.150     christos 1262:                        timespecadd(&ts, &ptn->pt_time.it_value,
1.142     ad       1263:                            &ptn->pt_time.it_value);
                   1264:                        LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1.63      thorpej  1265:                }
1.142     ad       1266:                i = 3;
                   1267:        }
                   1268:        for ( ; i < TIMER_MAX; i++) {
                   1269:                if (pts->pts_timers[i] != NULL) {
                   1270:                        itimerfree(pts, i);
                   1271:                        mutex_spin_enter(&timer_lock);
1.1       cgd      1272:                }
                   1273:        }
1.142     ad       1274:        if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
                   1275:            pts->pts_timers[2] == NULL) {
                   1276:                p->p_timers = NULL;
                   1277:                mutex_spin_exit(&timer_lock);
                   1278:                pool_put(&ptimers_pool, pts);
                   1279:        } else
                   1280:                mutex_spin_exit(&timer_lock);
                   1281: }
                   1282:
                   1283: static void
                   1284: itimerfree(struct ptimers *pts, int index)
                   1285: {
                   1286:        struct ptimer *pt;
                   1287:
                   1288:        KASSERT(mutex_owned(&timer_lock));
                   1289:
                   1290:        pt = pts->pts_timers[index];
                   1291:        pts->pts_timers[index] = NULL;
1.168     yamt     1292:        if (!CLOCK_VIRTUAL_P(pt->pt_type))
1.144     ad       1293:                callout_halt(&pt->pt_ch, &timer_lock);
1.167     yamt     1294:        if (pt->pt_queued)
1.142     ad       1295:                TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1.144     ad       1296:        mutex_spin_exit(&timer_lock);
1.168     yamt     1297:        if (!CLOCK_VIRTUAL_P(pt->pt_type))
1.149     christos 1298:                callout_destroy(&pt->pt_ch);
1.142     ad       1299:        pool_put(&ptimer_pool, pt);
1.1       cgd      1300: }
                   1301:
                   1302: /*
                   1303:  * Decrement an interval timer by a specified number
1.152     christos 1304:  * of nanoseconds, which must be less than a second,
                   1305:  * i.e. < 1000000000.  If the timer expires, then reload
                   1306:  * it.  In this case, carry over (nsec - old value) to
1.8       cgd      1307:  * reduce the value reloaded into the timer so that
1.1       cgd      1308:  * the timer does not drift.  This routine assumes
                   1309:  * that it is called in a context where the timers
                   1310:  * on which it is operating cannot change in value.
                   1311:  */
1.142     ad       1312: static int
1.152     christos 1313: itimerdecr(struct ptimer *pt, int nsec)
1.63      thorpej  1314: {
1.150     christos 1315:        struct itimerspec *itp;
1.1       cgd      1316:
1.142     ad       1317:        KASSERT(mutex_owned(&timer_lock));
1.168     yamt     1318:        KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1.142     ad       1319:
1.63      thorpej  1320:        itp = &pt->pt_time;
1.150     christos 1321:        if (itp->it_value.tv_nsec < nsec) {
1.1       cgd      1322:                if (itp->it_value.tv_sec == 0) {
                   1323:                        /* expired, and already in next interval */
1.150     christos 1324:                        nsec -= itp->it_value.tv_nsec;
1.1       cgd      1325:                        goto expire;
                   1326:                }
1.150     christos 1327:                itp->it_value.tv_nsec += 1000000000;
1.1       cgd      1328:                itp->it_value.tv_sec--;
                   1329:        }
1.152     christos 1330:        itp->it_value.tv_nsec -= nsec;
                   1331:        nsec = 0;
1.150     christos 1332:        if (timespecisset(&itp->it_value))
1.1       cgd      1333:                return (1);
                   1334:        /* expired, exactly at end of interval */
                   1335: expire:
1.150     christos 1336:        if (timespecisset(&itp->it_interval)) {
1.1       cgd      1337:                itp->it_value = itp->it_interval;
1.150     christos 1338:                itp->it_value.tv_nsec -= nsec;
                   1339:                if (itp->it_value.tv_nsec < 0) {
                   1340:                        itp->it_value.tv_nsec += 1000000000;
1.1       cgd      1341:                        itp->it_value.tv_sec--;
                   1342:                }
1.63      thorpej  1343:                timer_settime(pt);
1.1       cgd      1344:        } else
1.150     christos 1345:                itp->it_value.tv_nsec = 0;              /* sec is already 0 */
1.1       cgd      1346:        return (0);
1.42      cgd      1347: }
                   1348:
1.142     ad       1349: static void
1.63      thorpej  1350: itimerfire(struct ptimer *pt)
                   1351: {
1.78      cl       1352:
1.142     ad       1353:        KASSERT(mutex_owned(&timer_lock));
                   1354:
                   1355:        /*
                   1356:         * XXX Can overrun, but we don't do signal queueing yet, anyway.
                   1357:         * XXX Relying on the clock interrupt is stupid.
                   1358:         */
1.173     rmind    1359:        if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1.142     ad       1360:                return;
1.172     rmind    1361:        }
1.142     ad       1362:        TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
                   1363:        pt->pt_queued = true;
                   1364:        softint_schedule(timer_sih);
                   1365: }
                   1366:
                   1367: void
                   1368: timer_tick(lwp_t *l, bool user)
                   1369: {
                   1370:        struct ptimers *pts;
                   1371:        struct ptimer *pt;
                   1372:        proc_t *p;
                   1373:
                   1374:        p = l->l_proc;
                   1375:        if (p->p_timers == NULL)
                   1376:                return;
                   1377:
                   1378:        mutex_spin_enter(&timer_lock);
                   1379:        if ((pts = l->l_proc->p_timers) != NULL) {
1.63      thorpej  1380:                /*
1.142     ad       1381:                 * Run current process's virtual and profile time, as needed.
1.63      thorpej  1382:                 */
1.142     ad       1383:                if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1.152     christos 1384:                        if (itimerdecr(pt, tick * 1000) == 0)
1.142     ad       1385:                                itimerfire(pt);
                   1386:                if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1.152     christos 1387:                        if (itimerdecr(pt, tick * 1000) == 0)
1.142     ad       1388:                                itimerfire(pt);
                   1389:        }
                   1390:        mutex_spin_exit(&timer_lock);
                   1391: }
                   1392:
                   1393: static void
                   1394: timer_intr(void *cookie)
                   1395: {
                   1396:        ksiginfo_t ksi;
                   1397:        struct ptimer *pt;
                   1398:        proc_t *p;
                   1399:
1.158     ad       1400:        mutex_enter(proc_lock);
1.142     ad       1401:        mutex_spin_enter(&timer_lock);
                   1402:        while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
                   1403:                TAILQ_REMOVE(&timer_queue, pt, pt_chain);
                   1404:                KASSERT(pt->pt_queued);
                   1405:                pt->pt_queued = false;
                   1406:
1.154     wrstuden 1407:                if (pt->pt_proc->p_timers == NULL) {
                   1408:                        /* Process is dying. */
1.142     ad       1409:                        continue;
1.154     wrstuden 1410:                }
1.142     ad       1411:                p = pt->pt_proc;
1.172     rmind    1412:                if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1.142     ad       1413:                        continue;
                   1414:                }
                   1415:                if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1.63      thorpej  1416:                        pt->pt_overruns++;
1.142     ad       1417:                        continue;
1.64      nathanw  1418:                }
1.142     ad       1419:
                   1420:                KSI_INIT(&ksi);
                   1421:                ksi.ksi_signo = pt->pt_ev.sigev_signo;
                   1422:                ksi.ksi_code = SI_TIMER;
                   1423:                ksi.ksi_value = pt->pt_ev.sigev_value;
                   1424:                pt->pt_poverruns = pt->pt_overruns;
                   1425:                pt->pt_overruns = 0;
                   1426:                mutex_spin_exit(&timer_lock);
                   1427:                kpsignal(p, &ksi, NULL);
                   1428:                mutex_spin_enter(&timer_lock);
1.63      thorpej  1429:        }
1.142     ad       1430:        mutex_spin_exit(&timer_lock);
1.158     ad       1431:        mutex_exit(proc_lock);
1.63      thorpej  1432: }
1.162     elad     1433:
                   1434: /*
                   1435:  * Check if the time will wrap if set to ts.
                   1436:  *
                   1437:  * ts - timespec describing the new time
                   1438:  * delta - the delta between the current time and ts
                   1439:  */
                   1440: bool
                   1441: time_wraps(struct timespec *ts, struct timespec *delta)
                   1442: {
                   1443:
                   1444:        /*
                   1445:         * Don't allow the time to be set forward so far it
                   1446:         * will wrap and become negative, thus allowing an
                   1447:         * attacker to bypass the next check below.  The
                   1448:         * cutoff is 1 year before rollover occurs, so even
                   1449:         * if the attacker uses adjtime(2) to move the time
                   1450:         * past the cutoff, it will take a very long time
                   1451:         * to get to the wrap point.
                   1452:         */
                   1453:        if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
                   1454:            (delta->tv_sec < 0 || delta->tv_nsec < 0))
                   1455:                return true;
                   1456:
                   1457:        return false;
                   1458: }

CVSweb <webmaster@jp.NetBSD.org>