[BACK]Return to kern_resource.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / kern

File: [cvs.NetBSD.org] / src / sys / kern / kern_resource.c (download)

Revision 1.71.2.7, Thu Nov 10 14:09:45 2005 UTC (18 years, 4 months ago) by skrll
Branch: ktrace-lwp
Changes since 1.71.2.6: +28 -49 lines

Sync with HEAD. Here we go again...

/*	$NetBSD: kern_resource.c,v 1.71.2.7 2005/11/10 14:09:45 skrll Exp $	*/

/*-
 * Copyright (c) 1982, 1986, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.71.2.7 2005/11/10 14:09:45 skrll Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/resourcevar.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/sysctl.h>

#include <sys/mount.h>
#include <sys/sa.h>
#include <sys/syscallargs.h>

#include <uvm/uvm_extern.h>

/*
 * Maximum process data and stack limits.
 * They are variables so they are patchable.
 */
rlim_t maxdmap = MAXDSIZ;
rlim_t maxsmap = MAXSSIZ;

struct uihashhead *uihashtbl;
u_long uihash;		/* size of hash table - 1 */
struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;


/*
 * Resource controls and accounting.
 */

int
sys_getpriority(struct lwp *l, void *v, register_t *retval)
{
	struct sys_getpriority_args /* {
		syscallarg(int) which;
		syscallarg(id_t) who;
	} */ *uap = v;
	struct proc *curp = l->l_proc, *p;
	int low = NZERO + PRIO_MAX + 1;

	switch (SCARG(uap, which)) {

	case PRIO_PROCESS:
		if (SCARG(uap, who) == 0)
			p = curp;
		else
			p = pfind(SCARG(uap, who));
		if (p == 0)
			break;
		low = p->p_nice;
		break;

	case PRIO_PGRP: {
		struct pgrp *pg;

		if (SCARG(uap, who) == 0)
			pg = curp->p_pgrp;
		else if ((pg = pgfind(SCARG(uap, who))) == NULL)
			break;
		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
			if (p->p_nice < low)
				low = p->p_nice;
		}
		break;
	}

	case PRIO_USER:
		if (SCARG(uap, who) == 0)
			SCARG(uap, who) = curp->p_ucred->cr_uid;
		proclist_lock_read();
		PROCLIST_FOREACH(p, &allproc) {
			if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who) &&
			    p->p_nice < low)
				low = p->p_nice;
		}
		proclist_unlock_read();
		break;

	default:
		return (EINVAL);
	}
	if (low == NZERO + PRIO_MAX + 1)
		return (ESRCH);
	*retval = low - NZERO;
	return (0);
}

/* ARGSUSED */
int
sys_setpriority(struct lwp *l, void *v, register_t *retval)
{
	struct sys_setpriority_args /* {
		syscallarg(int) which;
		syscallarg(id_t) who;
		syscallarg(int) prio;
	} */ *uap = v;
	struct proc *curp = l->l_proc, *p;
	int found = 0, error = 0;

	switch (SCARG(uap, which)) {

	case PRIO_PROCESS:
		if (SCARG(uap, who) == 0)
			p = curp;
		else
			p = pfind(SCARG(uap, who));
		if (p == 0)
			break;
		error = donice(curp, p, SCARG(uap, prio));
		found++;
		break;

	case PRIO_PGRP: {
		struct pgrp *pg;

		if (SCARG(uap, who) == 0)
			pg = curp->p_pgrp;
		else if ((pg = pgfind(SCARG(uap, who))) == NULL)
			break;
		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
			error = donice(curp, p, SCARG(uap, prio));
			found++;
		}
		break;
	}

	case PRIO_USER:
		if (SCARG(uap, who) == 0)
			SCARG(uap, who) = curp->p_ucred->cr_uid;
		proclist_lock_read();
		PROCLIST_FOREACH(p, &allproc) {
			if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who)) {
				error = donice(curp, p, SCARG(uap, prio));
				found++;
			}
		}
		proclist_unlock_read();
		break;

	default:
		return (EINVAL);
	}
	if (found == 0)
		return (ESRCH);
	return (error);
}

int
donice(struct proc *curp, struct proc *chgp, int n)
{
	struct pcred *pcred = curp->p_cred;
	int s;

	if (pcred->pc_ucred->cr_uid && pcred->p_ruid &&
	    pcred->pc_ucred->cr_uid != chgp->p_ucred->cr_uid &&
	    pcred->p_ruid != chgp->p_ucred->cr_uid)
		return (EPERM);
	if (n > PRIO_MAX)
		n = PRIO_MAX;
	if (n < PRIO_MIN)
		n = PRIO_MIN;
	n += NZERO;
	if (n < chgp->p_nice && suser(pcred->pc_ucred, &curp->p_acflag))
		return (EACCES);
	chgp->p_nice = n;
	SCHED_LOCK(s);
	(void)resetprocpriority(chgp);
	SCHED_UNLOCK(s);
	return (0);
}

/* ARGSUSED */
int
sys_setrlimit(struct lwp *l, void *v, register_t *retval)
{
	struct sys_setrlimit_args /* {
		syscallarg(int) which;
		syscallarg(const struct rlimit *) rlp;
	} */ *uap = v;
	struct proc *p = l->l_proc;
	int which = SCARG(uap, which);
	struct rlimit alim;
	int error;

	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
	if (error)
		return (error);
	return (dosetrlimit(p, p->p_cred, which, &alim));
}

int
dosetrlimit(struct proc *p, struct pcred *cred, int which, struct rlimit *limp)
{
	struct rlimit *alimp;
	struct plimit *oldplim;
	int error;

	if ((u_int)which >= RLIM_NLIMITS)
		return (EINVAL);

	if (limp->rlim_cur < 0 || limp->rlim_max < 0)
		return (EINVAL);

	alimp = &p->p_rlimit[which];
	/* if we don't change the value, no need to limcopy() */
	if (limp->rlim_cur == alimp->rlim_cur &&
	    limp->rlim_max == alimp->rlim_max)
		return 0;

	if (limp->rlim_cur > limp->rlim_max) {
		/*
		 * This is programming error. According to SUSv2, we should
		 * return error in this case.
		 */
		return (EINVAL);
	}
	if (limp->rlim_max > alimp->rlim_max
	    && (error = suser(cred->pc_ucred, &p->p_acflag)) != 0)
			return (error);

	if (p->p_limit->p_refcnt > 1 &&
	    (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
		p->p_limit = limcopy(oldplim = p->p_limit);
		limfree(oldplim);
		alimp = &p->p_rlimit[which];
	}

	switch (which) {

	case RLIMIT_DATA:
		if (limp->rlim_cur > maxdmap)
			limp->rlim_cur = maxdmap;
		if (limp->rlim_max > maxdmap)
			limp->rlim_max = maxdmap;
		break;

	case RLIMIT_STACK:
		if (limp->rlim_cur > maxsmap)
			limp->rlim_cur = maxsmap;
		if (limp->rlim_max > maxsmap)
			limp->rlim_max = maxsmap;

		/*
		 * Return EINVAL if the new stack size limit is lower than
		 * current usage. Otherwise, the process would get SIGSEGV the
		 * moment it would try to access anything on it's current stack.
		 * This conforms to SUSv2.
		 */
		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
			return (EINVAL);

		/*
		 * Stack is allocated to the max at exec time with
		 * only "rlim_cur" bytes accessible (In other words,
		 * allocates stack dividing two contiguous regions at
		 * "rlim_cur" bytes boundary).
		 *
		 * Since allocation is done in terms of page, roundup
		 * "rlim_cur" (otherwise, contiguous regions
		 * overlap).  If stack limit is going up make more
		 * accessible, if going down make inaccessible.
		 */
		limp->rlim_cur = round_page(limp->rlim_cur);
		if (limp->rlim_cur != alimp->rlim_cur) {
			vaddr_t addr;
			vsize_t size;
			vm_prot_t prot;

			if (limp->rlim_cur > alimp->rlim_cur) {
				prot = VM_PROT_READ | VM_PROT_WRITE;
				size = limp->rlim_cur - alimp->rlim_cur;
				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
				    limp->rlim_cur;
			} else {
				prot = VM_PROT_NONE;
				size = alimp->rlim_cur - limp->rlim_cur;
				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
				     alimp->rlim_cur;
			}
			(void) uvm_map_protect(&p->p_vmspace->vm_map,
					      addr, addr+size, prot, FALSE);
		}
		break;

	case RLIMIT_NOFILE:
		if (limp->rlim_cur > maxfiles)
			limp->rlim_cur = maxfiles;
		if (limp->rlim_max > maxfiles)
			limp->rlim_max = maxfiles;
		break;

	case RLIMIT_NPROC:
		if (limp->rlim_cur > maxproc)
			limp->rlim_cur = maxproc;
		if (limp->rlim_max > maxproc)
			limp->rlim_max = maxproc;
		break;
	}
	*alimp = *limp;
	return (0);
}

/* ARGSUSED */
int
sys_getrlimit(struct lwp *l, void *v, register_t *retval)
{
	struct sys_getrlimit_args /* {
		syscallarg(int) which;
		syscallarg(struct rlimit *) rlp;
	} */ *uap = v;
	struct proc *p = l->l_proc;
	int which = SCARG(uap, which);

	if ((u_int)which >= RLIM_NLIMITS)
		return (EINVAL);
	return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
	    sizeof(struct rlimit)));
}

/*
 * Transform the running time and tick information in proc p into user,
 * system, and interrupt time usage.
 */
void
calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    struct timeval *ip)
{
	u_quad_t u, st, ut, it, tot;
	unsigned long sec;
	long usec;
	int s;
	struct timeval tv;
	struct lwp *l;

	s = splstatclock();
	st = p->p_sticks;
	ut = p->p_uticks;
	it = p->p_iticks;
	splx(s);

	sec = p->p_rtime.tv_sec;
	usec = p->p_rtime.tv_usec;
	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
		if (l->l_stat == LSONPROC) {
			struct schedstate_percpu *spc;

			KDASSERT(l->l_cpu != NULL);
			spc = &l->l_cpu->ci_schedstate;

			/*
			 * Adjust for the current time slice.  This is
			 * actually fairly important since the error
			 * here is on the order of a time quantum,
			 * which is much greater than the sampling
			 * error.
			 */
			microtime(&tv);
			sec += tv.tv_sec - spc->spc_runtime.tv_sec;
			usec += tv.tv_usec - spc->spc_runtime.tv_usec;
		}
	}

	tot = st + ut + it;
	u = sec * 1000000ull + usec;

	if (tot == 0) {
		/* No ticks, so can't use to share time out, split 50-50 */
		st = ut = u / 2;
	} else {
		st = (u * st) / tot;
		ut = (u * ut) / tot;
	}
	sp->tv_sec = st / 1000000;
	sp->tv_usec = st % 1000000;
	up->tv_sec = ut / 1000000;
	up->tv_usec = ut % 1000000;
	if (ip != NULL) {
		if (it != 0)
			it = (u * it) / tot;
		ip->tv_sec = it / 1000000;
		ip->tv_usec = it % 1000000;
	}
}

/* ARGSUSED */
int
sys_getrusage(struct lwp *l, void *v, register_t *retval)
{
	struct sys_getrusage_args /* {
		syscallarg(int) who;
		syscallarg(struct rusage *) rusage;
	} */ *uap = v;
	struct rusage *rup;
	struct proc *p = l->l_proc;

	switch (SCARG(uap, who)) {

	case RUSAGE_SELF:
		rup = &p->p_stats->p_ru;
		calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
		break;

	case RUSAGE_CHILDREN:
		rup = &p->p_stats->p_cru;
		break;

	default:
		return (EINVAL);
	}
	return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
}

void
ruadd(struct rusage *ru, struct rusage *ru2)
{
	long *ip, *ip2;
	int i;

	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
	if (ru->ru_maxrss < ru2->ru_maxrss)
		ru->ru_maxrss = ru2->ru_maxrss;
	ip = &ru->ru_first; ip2 = &ru2->ru_first;
	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
		*ip++ += *ip2++;
}

/*
 * Make a copy of the plimit structure.
 * We share these structures copy-on-write after fork,
 * and copy when a limit is changed.
 */
struct plimit *
limcopy(struct plimit *lim)
{
	struct plimit *newlim;
	size_t l = 0;

	simple_lock(&lim->p_slock);
	if (lim->pl_corename != defcorename)
		l = strlen(lim->pl_corename) + 1;
	simple_unlock(&lim->p_slock);

	newlim = pool_get(&plimit_pool, PR_WAITOK);
	simple_lock_init(&newlim->p_slock);
	newlim->p_lflags = 0;
	newlim->p_refcnt = 1;
	newlim->pl_corename = (l != 0)
		? malloc(l, M_TEMP, M_WAITOK)
		: defcorename;

	simple_lock(&lim->p_slock);
	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
	    sizeof(struct rlimit) * RLIM_NLIMITS);

	if (l != 0)
		strlcpy(newlim->pl_corename, lim->pl_corename, l);
	simple_unlock(&lim->p_slock);

	return (newlim);
}

void
limfree(struct plimit *lim)
{
	int n;

	simple_lock(&lim->p_slock);
	n = --lim->p_refcnt;
	simple_unlock(&lim->p_slock);
	if (n > 0)
		return;
#ifdef DIAGNOSTIC
	if (n < 0)
		panic("limfree");
#endif
	if (lim->pl_corename != defcorename)
		free(lim->pl_corename, M_TEMP);
	pool_put(&plimit_pool, lim);
}

struct pstats *
pstatscopy(struct pstats *ps)
{

	struct pstats *newps;

	newps = pool_get(&pstats_pool, PR_WAITOK);

	memset(&newps->pstat_startzero, 0,
	(unsigned) ((caddr_t)&newps->pstat_endzero -
		    (caddr_t)&newps->pstat_startzero));
	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
	((caddr_t)&newps->pstat_endcopy -
	 (caddr_t)&newps->pstat_startcopy));

	return (newps);

}

void
pstatsfree(struct pstats *ps)
{

	pool_put(&pstats_pool, ps);
}

/*
 * sysctl interface in five parts
 */

/*
 * a routine for sysctl proc subtree helpers that need to pick a valid
 * process by pid.
 */
static int
sysctl_proc_findproc(struct proc *p, struct proc **p2, pid_t pid)
{
	struct proc *ptmp;
	int i, error = 0;

	if (pid == PROC_CURPROC)
		ptmp = p;
	else if ((ptmp = pfind(pid)) == NULL)
		error = ESRCH;
	else {
		/*
		 * suid proc of ours or proc not ours
		 */
		if (p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
		    p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
			error = suser(p->p_ucred, &p->p_acflag);

		/*
		 * sgid proc has sgid back to us temporarily
		 */
		else if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
			error = suser(p->p_ucred, &p->p_acflag);

		/*
		 * our rgid must be in target's group list (ie,
		 * sub-processes started by a sgid process)
		 */
		else {
			for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
				if (p->p_ucred->cr_groups[i] ==
				    ptmp->p_cred->p_rgid)
					break;
			}
			if (i == p->p_ucred->cr_ngroups)
				error = suser(p->p_ucred, &p->p_acflag);
		}
	}

	*p2 = ptmp;
	return (error);
}

/*
 * sysctl helper routine for setting a process's specific corefile
 * name.  picks the process based on the given pid and checks the
 * correctness of the new value.
 */
static int
sysctl_proc_corename(SYSCTLFN_ARGS)
{
	struct proc *ptmp, *p;
	struct plimit *lim;
	int error = 0, len;
	char cname[MAXPATHLEN], *tmp;
	struct sysctlnode node;

	/*
	 * is this all correct?
	 */
	if (namelen != 0)
		return (EINVAL);
	if (name[-1] != PROC_PID_CORENAME)
		return (EINVAL);

	/*
	 * whom are we tweaking?
	 */
	p = l->l_proc;
	error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
	if (error)
		return (error);

	/*
	 * let them modify a temporary copy of the core name
	 */
	node = *rnode;
	strlcpy(cname, ptmp->p_limit->pl_corename, sizeof(cname));
	node.sysctl_data = cname;
	error = sysctl_lookup(SYSCTLFN_CALL(&node));

	/*
	 * if that failed, or they have nothing new to say, or we've
	 * heard it before...
	 */
	if (error || newp == NULL ||
	    strcmp(cname, ptmp->p_limit->pl_corename) == 0)
		return (error);

	/*
	 * no error yet and cname now has the new core name in it.
	 * let's see if it looks acceptable.  it must be either "core"
	 * or end in ".core" or "/core".
	 */
	len = strlen(cname);
	if (len < 4)
		return (EINVAL);
	if (strcmp(cname + len - 4, "core") != 0)
		return (EINVAL);
	if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.')
		return (EINVAL);

	/*
	 * hmm...looks good.  now...where do we put it?
	 */
	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
	if (tmp == NULL)
		return (ENOMEM);
	strlcpy(tmp, cname, len + 1);

	lim = ptmp->p_limit;
	if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
		ptmp->p_limit = limcopy(lim);
		limfree(lim);
		lim = ptmp->p_limit;
	}
	if (lim->pl_corename != defcorename)
		free(lim->pl_corename, M_TEMP);
	lim->pl_corename = tmp;

	return (error);
}

/*
 * sysctl helper routine for checking/setting a process's stop flags,
 * one for fork and one for exec.
 */
static int
sysctl_proc_stop(SYSCTLFN_ARGS)
{
	struct proc *p, *ptmp;
	int i, f, error = 0;
	struct sysctlnode node;

	if (namelen != 0)
		return (EINVAL);

	p = l->l_proc;
	error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
	if (error)
		return (error);

	switch (rnode->sysctl_num) {
	case PROC_PID_STOPFORK:
		f = P_STOPFORK;
		break;
	case PROC_PID_STOPEXEC:
		f = P_STOPEXEC;
		break;
	case PROC_PID_STOPEXIT:
		f = P_STOPEXIT;
		break;
	default:
		return (EINVAL);
	}

	i = (ptmp->p_flag & f) ? 1 : 0;
	node = *rnode;
	node.sysctl_data = &i;
	error = sysctl_lookup(SYSCTLFN_CALL(&node));
	if (error || newp == NULL)
		return (error);

	if (i)
		ptmp->p_flag |= f;
	else
		ptmp->p_flag &= ~f;

	return (0);
}

/*
 * sysctl helper routine for a process's rlimits as exposed by sysctl.
 */
static int
sysctl_proc_plimit(SYSCTLFN_ARGS)
{
	struct proc *ptmp, *p;
	u_int limitno;
	int which, error = 0;
        struct rlimit alim;
	struct sysctlnode node;

	if (namelen != 0)
		return (EINVAL);

	which = name[-1];
	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
	    which != PROC_PID_LIMIT_TYPE_HARD)
		return (EINVAL);

	limitno = name[-2] - 1;
	if (limitno >= RLIM_NLIMITS)
		return (EINVAL);

	if (name[-3] != PROC_PID_LIMIT)
		return (EINVAL);

	p = l->l_proc;
	error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-4]);
	if (error)
		return (error);

	node = *rnode;
	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
	if (which == PROC_PID_LIMIT_TYPE_HARD)
		node.sysctl_data = &alim.rlim_max;
	else
		node.sysctl_data = &alim.rlim_cur;

	error = sysctl_lookup(SYSCTLFN_CALL(&node));
	if (error || newp == NULL)
		return (error);

	return (dosetrlimit(ptmp, p->p_cred, limitno, &alim));
}

/*
 * and finally, the actually glue that sticks it to the tree
 */
SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
{

	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT,
		       CTLTYPE_NODE, "proc", NULL,
		       NULL, 0, NULL, 0,
		       CTL_PROC, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
		       CTLTYPE_NODE, "curproc",
		       SYSCTL_DESCR("Per-process settings"),
		       NULL, 0, NULL, 0,
		       CTL_PROC, PROC_CURPROC, CTL_EOL);

	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_READONLY2|CTLFLAG_ANYWRITE,
		       CTLTYPE_STRING, "corename",
		       SYSCTL_DESCR("Core file name"),
		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT,
		       CTLTYPE_NODE, "rlimit",
		       SYSCTL_DESCR("Process limits"),
		       NULL, 0, NULL, 0,
		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);

#define create_proc_plimit(s, n) do {					\
	sysctl_createv(clog, 0, NULL, NULL,				\
		       CTLFLAG_PERMANENT,				\
		       CTLTYPE_NODE, s,					\
		       SYSCTL_DESCR("Process " s " limits"),		\
		       NULL, 0, NULL, 0,				\
		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
		       CTL_EOL);					\
	sysctl_createv(clog, 0, NULL, NULL,				\
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
		       CTLTYPE_QUAD, "soft",				\
		       SYSCTL_DESCR("Process soft " s " limit"),	\
		       sysctl_proc_plimit, 0, NULL, 0,			\
		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
	sysctl_createv(clog, 0, NULL, NULL,				\
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
		       CTLTYPE_QUAD, "hard",				\
		       SYSCTL_DESCR("Process hard " s " limit"),	\
		       sysctl_proc_plimit, 0, NULL, 0,			\
		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
	} while (0/*CONSTCOND*/)

	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);

#undef create_proc_plimit

	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
		       CTLTYPE_INT, "stopfork",
		       SYSCTL_DESCR("Stop process at fork(2)"),
		       sysctl_proc_stop, 0, NULL, 0,
		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
		       CTLTYPE_INT, "stopexec",
		       SYSCTL_DESCR("Stop process at execve(2)"),
		       sysctl_proc_stop, 0, NULL, 0,
		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
		       CTLTYPE_INT, "stopexit",
		       SYSCTL_DESCR("Stop process before completing exit"),
		       sysctl_proc_stop, 0, NULL, 0,
		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
}

struct uidinfo *
uid_find(uid_t uid)
{
	struct uidinfo *uip;
	struct uidinfo *newuip = NULL;
	struct uihashhead *uipp;

	uipp = UIHASH(uid);

again:
	simple_lock(&uihashtbl_slock);
	LIST_FOREACH(uip, uipp, ui_hash)
		if (uip->ui_uid == uid) {
			simple_unlock(&uihashtbl_slock);
			if (newuip)
				free(newuip, M_PROC);
			return uip;
		}

	if (newuip == NULL) {
		simple_unlock(&uihashtbl_slock);
		newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
		goto again;
	}
	uip = newuip;

	LIST_INSERT_HEAD(uipp, uip, ui_hash);
	uip->ui_uid = uid;
	simple_lock_init(&uip->ui_slock);
	simple_unlock(&uihashtbl_slock);

	return uip;
}

/*
 * Change the count associated with number of processes
 * a given user is using.
 */
int
chgproccnt(uid_t uid, int diff)
{
	struct uidinfo *uip;
	int s;

	if (diff == 0)
		return 0;

	uip = uid_find(uid);
	UILOCK(uip, s);
	uip->ui_proccnt += diff;
	KASSERT(uip->ui_proccnt >= 0);
	UIUNLOCK(uip, s);
	return uip->ui_proccnt;
}

int
chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
{
	rlim_t nsb;
	int s;

	UILOCK(uip, s);
	nsb = uip->ui_sbsize + to - *hiwat;
	if (to > *hiwat && nsb > xmax) {
		UIUNLOCK(uip, s);
		splx(s);
		return 0;
	}
	*hiwat = to;
	uip->ui_sbsize = nsb;
	KASSERT(uip->ui_sbsize >= 0);
	UIUNLOCK(uip, s);
	return 1;
}