[BACK]Return to kern_ntptime.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / kern

Please note that diffs are not public domain; they are subject to the copyright notices on the relevant files.

Diff for /src/sys/kern/kern_ntptime.c between version 1.28 and 1.28.4.4

version 1.28, 2005/02/26 21:34:55 version 1.28.4.4, 2007/09/03 14:40:51
Line 1 
Line 1 
 /*      $NetBSD$        */  /*      $NetBSD$        */
   #include <sys/types.h>  /* XXX to get __HAVE_TIMECOUNTER, remove
                              after all ports are converted. */
   #ifdef __HAVE_TIMECOUNTER
   
   /*-
    ***********************************************************************
    *                                                                     *
    * Copyright (c) David L. Mills 1993-2001                              *
    *                                                                     *
    * Permission to use, copy, modify, and distribute this software and   *
    * its documentation for any purpose and without fee is hereby         *
    * granted, provided that the above copyright notice appears in all    *
    * copies and that both the copyright notice and this permission       *
    * notice appear in supporting documentation, and that the name        *
    * University of Delaware not be used in advertising or publicity      *
    * pertaining to distribution of the software without specific,        *
    * written prior permission. The University of Delaware makes no       *
    * representations about the suitability this software for any         *
    * purpose. It is provided "as is" without express or implied          *
    * warranty.                                                           *
    *                                                                     *
    **********************************************************************/
   
   /*
    * Adapted from the original sources for FreeBSD and timecounters by:
    * Poul-Henning Kamp <phk@FreeBSD.org>.
    *
    * The 32bit version of the "LP" macros seems a bit past its "sell by"
    * date so I have retained only the 64bit version and included it directly
    * in this file.
    *
    * Only minor changes done to interface with the timecounters over in
    * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
    * confusing and/or plain wrong in that context.
    */
   
   #include <sys/cdefs.h>
   /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
   __KERNEL_RCSID(0, "$NetBSD$");
   
   #include "opt_ntp.h"
   #include "opt_compat_netbsd.h"
   
   #include <sys/param.h>
   #include <sys/resourcevar.h>
   #include <sys/systm.h>
   #include <sys/kernel.h>
   #include <sys/proc.h>
   #include <sys/sysctl.h>
   #include <sys/timex.h>
   #ifdef COMPAT_30
   #include <compat/sys/timex.h>
   #endif
   #include <sys/vnode.h>
   #include <sys/kauth.h>
   
   #include <sys/mount.h>
   #include <sys/syscallargs.h>
   
   #include <machine/cpu.h>
   
   /*
    * Single-precision macros for 64-bit machines
    */
   typedef int64_t l_fp;
   #define L_ADD(v, u)     ((v) += (u))
   #define L_SUB(v, u)     ((v) -= (u))
   #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   #define L_NEG(v)        ((v) = -(v))
   #define L_RSHIFT(v, n) \
           do { \
                   if ((v) < 0) \
                           (v) = -(-(v) >> (n)); \
                   else \
                           (v) = (v) >> (n); \
           } while (0)
   #define L_MPY(v, a)     ((v) *= (a))
   #define L_CLR(v)        ((v) = 0)
   #define L_ISNEG(v)      ((v) < 0)
   #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   
   #ifdef NTP
   /*
    * Generic NTP kernel interface
    *
    * These routines constitute the Network Time Protocol (NTP) interfaces
    * for user and daemon application programs. The ntp_gettime() routine
    * provides the time, maximum error (synch distance) and estimated error
    * (dispersion) to client user application programs. The ntp_adjtime()
    * routine is used by the NTP daemon to adjust the system clock to an
    * externally derived time. The time offset and related variables set by
    * this routine are used by other routines in this module to adjust the
    * phase and frequency of the clock discipline loop which controls the
    * system clock.
    *
    * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
    * defined), the time at each tick interrupt is derived directly from
    * the kernel time variable. When the kernel time is reckoned in
    * microseconds, (NTP_NANO undefined), the time is derived from the
    * kernel time variable together with a variable representing the
    * leftover nanoseconds at the last tick interrupt. In either case, the
    * current nanosecond time is reckoned from these values plus an
    * interpolated value derived by the clock routines in another
    * architecture-specific module. The interpolation can use either a
    * dedicated counter or a processor cycle counter (PCC) implemented in
    * some architectures.
    *
    * Note that all routines must run at priority splclock or higher.
    */
   /*
    * Phase/frequency-lock loop (PLL/FLL) definitions
    *
    * The nanosecond clock discipline uses two variable types, time
    * variables and frequency variables. Both types are represented as 64-
    * bit fixed-point quantities with the decimal point between two 32-bit
    * halves. On a 32-bit machine, each half is represented as a single
    * word and mathematical operations are done using multiple-precision
    * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    * used.
    *
    * A time variable is a signed 64-bit fixed-point number in ns and
    * fraction. It represents the remaining time offset to be amortized
    * over succeeding tick interrupts. The maximum time offset is about
    * 0.5 s and the resolution is about 2.3e-10 ns.
    *
    *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    * |s s s|                       ns                                |
    * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    * |                        fraction                               |
    * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    *
    * A frequency variable is a signed 64-bit fixed-point number in ns/s
    * and fraction. It represents the ns and fraction to be added to the
    * kernel time variable at each second. The maximum frequency offset is
    * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    *
    *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    * |s s s s s s s s s s s s s|            ns/s                     |
    * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    * |                        fraction                               |
    * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    */
   /*
    * The following variables establish the state of the PLL/FLL and the
    * residual time and frequency offset of the local clock.
    */
   #define SHIFT_PLL       4               /* PLL loop gain (shift) */
   #define SHIFT_FLL       2               /* FLL loop gain (shift) */
   
   static int time_state = TIME_OK;        /* clock state */
   static int time_status = STA_UNSYNC;    /* clock status bits */
   static long time_tai;                   /* TAI offset (s) */
   static long time_monitor;               /* last time offset scaled (ns) */
   static long time_constant;              /* poll interval (shift) (s) */
   static long time_precision = 1;         /* clock precision (ns) */
   static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
   static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
   static long time_reftime;               /* time at last adjustment (s) */
   static l_fp time_offset;                /* time offset (ns) */
   static l_fp time_freq;                  /* frequency offset (ns/s) */
   #endif /* NTP */
   
   static l_fp time_adj;                   /* tick adjust (ns/s) */
   int64_t time_adjtime;           /* correction from adjtime(2) (usec) */
   
   extern int time_adjusted;       /* ntp might have changed the system time */
   
   #ifdef NTP
   #ifdef PPS_SYNC
   /*
    * The following variables are used when a pulse-per-second (PPS) signal
    * is available and connected via a modem control lead. They establish
    * the engineering parameters of the clock discipline loop when
    * controlled by the PPS signal.
    */
   #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
   #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
   #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
   #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
   #define PPS_VALID       120             /* PPS signal watchdog max (s) */
   #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
   #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
   
   static struct timespec pps_tf[3];       /* phase median filter */
   static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
   static long pps_fcount;                 /* frequency accumulator */
   static long pps_jitter;                 /* nominal jitter (ns) */
   static long pps_stabil;                 /* nominal stability (scaled ns/s) */
   static long pps_lastsec;                /* time at last calibration (s) */
   static int pps_valid;                   /* signal watchdog counter */
   static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
   static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
   static int pps_intcnt;                  /* wander counter */
   
   /*
    * PPS signal quality monitors
    */
   static long pps_calcnt;                 /* calibration intervals */
   static long pps_jitcnt;                 /* jitter limit exceeded */
   static long pps_stbcnt;                 /* stability limit exceeded */
   static long pps_errcnt;                 /* calibration errors */
   #endif /* PPS_SYNC */
   /*
    * End of phase/frequency-lock loop (PLL/FLL) definitions
    */
   
   static void hardupdate(long offset);
   
   /*
    * ntp_gettime() - NTP user application interface
    */
   void
   ntp_gettime(ntv)
           struct ntptimeval *ntv;
   {
           nanotime(&ntv->time);
           ntv->maxerror = time_maxerror;
           ntv->esterror = time_esterror;
           ntv->tai = time_tai;
           ntv->time_state = time_state;
   }
   
   /* ARGSUSED */
   /*
    * ntp_adjtime() - NTP daemon application interface
    */
   int
   sys_ntp_adjtime(l, v, retval)
           struct lwp *l;
           void *v;
           register_t *retval;
   {
           struct sys_ntp_adjtime_args /* {
                   syscallarg(struct timex *) tp;
           } */ *uap = v;
           struct timex ntv;
           int error = 0;
   
           error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
           if (error != 0)
                   return (error);
   
           if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
               KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
               NULL, NULL)) != 0)
                   return (error);
   
           ntp_adjtime1(&ntv);
   
           error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
           if (!error)
                   *retval = ntp_timestatus();
   
           return error;
   }
   
   void
   ntp_adjtime1(ntv)
           struct timex *ntv;
   {
           long freq;
           int modes;
           int s;
   
           /*
            * Update selected clock variables - only the superuser can
            * change anything. Note that there is no error checking here on
            * the assumption the superuser should know what it is doing.
            * Note that either the time constant or TAI offset are loaded
            * from the ntv.constant member, depending on the mode bits. If
            * the STA_PLL bit in the status word is cleared, the state and
            * status words are reset to the initial values at boot.
            */
           modes = ntv->modes;
           if (modes != 0)
                   /* We need to save the system time during shutdown */
                   time_adjusted |= 2;
           s = splclock();
           if (modes & MOD_MAXERROR)
                   time_maxerror = ntv->maxerror;
           if (modes & MOD_ESTERROR)
                   time_esterror = ntv->esterror;
           if (modes & MOD_STATUS) {
                   if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
                           time_state = TIME_OK;
                           time_status = STA_UNSYNC;
   #ifdef PPS_SYNC
                           pps_shift = PPS_FAVG;
   #endif /* PPS_SYNC */
                   }
                   time_status &= STA_RONLY;
                   time_status |= ntv->status & ~STA_RONLY;
           }
           if (modes & MOD_TIMECONST) {
                   if (ntv->constant < 0)
                           time_constant = 0;
                   else if (ntv->constant > MAXTC)
                           time_constant = MAXTC;
                   else
                           time_constant = ntv->constant;
           }
           if (modes & MOD_TAI) {
                   if (ntv->constant > 0)  /* XXX zero & negative numbers ? */
                           time_tai = ntv->constant;
           }
   #ifdef PPS_SYNC
           if (modes & MOD_PPSMAX) {
                   if (ntv->shift < PPS_FAVG)
                           pps_shiftmax = PPS_FAVG;
                   else if (ntv->shift > PPS_FAVGMAX)
                           pps_shiftmax = PPS_FAVGMAX;
                   else
                           pps_shiftmax = ntv->shift;
           }
   #endif /* PPS_SYNC */
           if (modes & MOD_NANO)
                   time_status |= STA_NANO;
           if (modes & MOD_MICRO)
                   time_status &= ~STA_NANO;
           if (modes & MOD_CLKB)
                   time_status |= STA_CLK;
           if (modes & MOD_CLKA)
                   time_status &= ~STA_CLK;
           if (modes & MOD_FREQUENCY) {
                   freq = (ntv->freq * 1000LL) >> 16;
                   if (freq > MAXFREQ)
                           L_LINT(time_freq, MAXFREQ);
                   else if (freq < -MAXFREQ)
                           L_LINT(time_freq, -MAXFREQ);
                   else {
                           /*
                            * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
                            * time_freq is [ns/s * 2^32]
                            */
                           time_freq = ntv->freq * 1000LL * 65536LL;
                   }
   #ifdef PPS_SYNC
                   pps_freq = time_freq;
   #endif /* PPS_SYNC */
           }
           if (modes & MOD_OFFSET) {
                   if (time_status & STA_NANO)
                           hardupdate(ntv->offset);
                   else
                           hardupdate(ntv->offset * 1000);
           }
   
           /*
            * Retrieve all clock variables. Note that the TAI offset is
            * returned only by ntp_gettime();
            */
           if (time_status & STA_NANO)
                   ntv->offset = L_GINT(time_offset);
           else
                   ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
           ntv->freq = L_GINT((time_freq / 1000LL) << 16);
           ntv->maxerror = time_maxerror;
           ntv->esterror = time_esterror;
           ntv->status = time_status;
           ntv->constant = time_constant;
           if (time_status & STA_NANO)
                   ntv->precision = time_precision;
           else
                   ntv->precision = time_precision / 1000;
           ntv->tolerance = MAXFREQ * SCALE_PPM;
   #ifdef PPS_SYNC
           ntv->shift = pps_shift;
           ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
           if (time_status & STA_NANO)
                   ntv->jitter = pps_jitter;
           else
                   ntv->jitter = pps_jitter / 1000;
           ntv->stabil = pps_stabil;
           ntv->calcnt = pps_calcnt;
           ntv->errcnt = pps_errcnt;
           ntv->jitcnt = pps_jitcnt;
           ntv->stbcnt = pps_stbcnt;
   #endif /* PPS_SYNC */
           splx(s);
   }
   #endif /* NTP */
   
   /*
    * second_overflow() - called after ntp_tick_adjust()
    *
    * This routine is ordinarily called immediately following the above
    * routine ntp_tick_adjust(). While these two routines are normally
    * combined, they are separated here only for the purposes of
    * simulation.
    */
   void
   ntp_update_second(int64_t *adjustment, time_t *newsec)
   {
           int tickrate;
           l_fp ftemp;             /* 32/64-bit temporary */
   
   #ifdef NTP
   
           /*
            * On rollover of the second both the nanosecond and microsecond
            * clocks are updated and the state machine cranked as
            * necessary. The phase adjustment to be used for the next
            * second is calculated and the maximum error is increased by
            * the tolerance.
            */
           time_maxerror += MAXFREQ / 1000;
   
           /*
            * Leap second processing. If in leap-insert state at
            * the end of the day, the system clock is set back one
            * second; if in leap-delete state, the system clock is
            * set ahead one second. The nano_time() routine or
            * external clock driver will insure that reported time
            * is always monotonic.
            */
           switch (time_state) {
   
                   /*
                    * No warning.
                    */
                   case TIME_OK:
                   if (time_status & STA_INS)
                           time_state = TIME_INS;
                   else if (time_status & STA_DEL)
                           time_state = TIME_DEL;
                   break;
   
                   /*
                    * Insert second 23:59:60 following second
                    * 23:59:59.
                    */
                   case TIME_INS:
                   if (!(time_status & STA_INS))
                           time_state = TIME_OK;
                   else if ((*newsec) % 86400 == 0) {
                           (*newsec)--;
                           time_state = TIME_OOP;
                           time_tai++;
                   }
                   break;
   
                   /*
                    * Delete second 23:59:59.
                    */
                   case TIME_DEL:
                   if (!(time_status & STA_DEL))
                           time_state = TIME_OK;
                   else if (((*newsec) + 1) % 86400 == 0) {
                           (*newsec)++;
                           time_tai--;
                           time_state = TIME_WAIT;
                   }
                   break;
   
                   /*
                    * Insert second in progress.
                    */
                   case TIME_OOP:
                           time_state = TIME_WAIT;
                   break;
   
                   /*
                    * Wait for status bits to clear.
                    */
                   case TIME_WAIT:
                   if (!(time_status & (STA_INS | STA_DEL)))
                           time_state = TIME_OK;
           }
   
           /*
            * Compute the total time adjustment for the next second
            * in ns. The offset is reduced by a factor depending on
            * whether the PPS signal is operating. Note that the
            * value is in effect scaled by the clock frequency,
            * since the adjustment is added at each tick interrupt.
            */
           ftemp = time_offset;
   #ifdef PPS_SYNC
           /* XXX even if PPS signal dies we should finish adjustment ? */
           if (time_status & STA_PPSTIME && time_status &
               STA_PPSSIGNAL)
                   L_RSHIFT(ftemp, pps_shift);
           else
                   L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
   #else
                   L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
   #endif /* PPS_SYNC */
           time_adj = ftemp;
           L_SUB(time_offset, ftemp);
           L_ADD(time_adj, time_freq);
   
   #ifdef PPS_SYNC
           if (pps_valid > 0)
                   pps_valid--;
           else
                   time_status &= ~STA_PPSSIGNAL;
   #endif /* PPS_SYNC */
   #else  /* !NTP */
           L_CLR(time_adj);
   #endif /* !NTP */
   
           /*
            * Apply any correction from adjtime(2).  If more than one second
            * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
            * until the last second is slewed the final < 500 usecs.
            */
           if (time_adjtime != 0) {
                   if (time_adjtime > 1000000)
                           tickrate = 5000;
                   else if (time_adjtime < -1000000)
                           tickrate = -5000;
                   else if (time_adjtime > 500)
                           tickrate = 500;
                   else if (time_adjtime < -500)
                           tickrate = -500;
                   else
                           tickrate = time_adjtime;
                   time_adjtime -= tickrate;
                   L_LINT(ftemp, tickrate * 1000);
                   L_ADD(time_adj, ftemp);
           }
           *adjustment = time_adj;
   }
   
   /*
    * ntp_init() - initialize variables and structures
    *
    * This routine must be called after the kernel variables hz and tick
    * are set or changed and before the next tick interrupt. In this
    * particular implementation, these values are assumed set elsewhere in
    * the kernel. The design allows the clock frequency and tick interval
    * to be changed while the system is running. So, this routine should
    * probably be integrated with the code that does that.
    */
   void
   ntp_init(void)
   {
   
           /*
            * The following variables are initialized only at startup. Only
            * those structures not cleared by the compiler need to be
            * initialized, and these only in the simulator. In the actual
            * kernel, any nonzero values here will quickly evaporate.
            */
           L_CLR(time_adj);
   #ifdef NTP
           L_CLR(time_offset);
           L_CLR(time_freq);
   #ifdef PPS_SYNC
           pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
           pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
           pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
           pps_fcount = 0;
           L_CLR(pps_freq);
   #endif /* PPS_SYNC */
   #endif
   }
   
   #ifdef NTP
   /*
    * hardupdate() - local clock update
    *
    * This routine is called by ntp_adjtime() to update the local clock
    * phase and frequency. The implementation is of an adaptive-parameter,
    * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    * time and frequency offset estimates for each call. If the kernel PPS
    * discipline code is configured (PPS_SYNC), the PPS signal itself
    * determines the new time offset, instead of the calling argument.
    * Presumably, calls to ntp_adjtime() occur only when the caller
    * believes the local clock is valid within some bound (+-128 ms with
    * NTP). If the caller's time is far different than the PPS time, an
    * argument will ensue, and it's not clear who will lose.
    *
    * For uncompensated quartz crystal oscillators and nominal update
    * intervals less than 256 s, operation should be in phase-lock mode,
    * where the loop is disciplined to phase. For update intervals greater
    * than 1024 s, operation should be in frequency-lock mode, where the
    * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    * is selected by the STA_MODE status bit.
    *
    * Note: splclock() is in effect.
    */
   void
   hardupdate(long offset)
   {
           long mtemp;
           l_fp ftemp;
   
           /*
            * Select how the phase is to be controlled and from which
            * source. If the PPS signal is present and enabled to
            * discipline the time, the PPS offset is used; otherwise, the
            * argument offset is used.
            */
           if (!(time_status & STA_PLL))
                   return;
           if (!(time_status & STA_PPSTIME && time_status &
               STA_PPSSIGNAL)) {
                   if (offset > MAXPHASE)
                           time_monitor = MAXPHASE;
                   else if (offset < -MAXPHASE)
                           time_monitor = -MAXPHASE;
                   else
                           time_monitor = offset;
                   L_LINT(time_offset, time_monitor);
           }
   
           /*
            * Select how the frequency is to be controlled and in which
            * mode (PLL or FLL). If the PPS signal is present and enabled
            * to discipline the frequency, the PPS frequency is used;
            * otherwise, the argument offset is used to compute it.
            */
           if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
                   time_reftime = time_second;
                   return;
           }
           if (time_status & STA_FREQHOLD || time_reftime == 0)
                   time_reftime = time_second;
           mtemp = time_second - time_reftime;
           L_LINT(ftemp, time_monitor);
           L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
           L_MPY(ftemp, mtemp);
           L_ADD(time_freq, ftemp);
           time_status &= ~STA_MODE;
           if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
               MAXSEC)) {
                   L_LINT(ftemp, (time_monitor << 4) / mtemp);
                   L_RSHIFT(ftemp, SHIFT_FLL + 4);
                   L_ADD(time_freq, ftemp);
                   time_status |= STA_MODE;
           }
           time_reftime = time_second;
           if (L_GINT(time_freq) > MAXFREQ)
                   L_LINT(time_freq, MAXFREQ);
           else if (L_GINT(time_freq) < -MAXFREQ)
                   L_LINT(time_freq, -MAXFREQ);
   }
   
   #ifdef PPS_SYNC
   /*
    * hardpps() - discipline CPU clock oscillator to external PPS signal
    *
    * This routine is called at each PPS interrupt in order to discipline
    * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    * and leaves it in a handy spot for the hardclock() routine. It
    * integrates successive PPS phase differences and calculates the
    * frequency offset. This is used in hardclock() to discipline the CPU
    * clock oscillator so that intrinsic frequency error is cancelled out.
    * The code requires the caller to capture the time and hardware counter
    * value at the on-time PPS signal transition.
    *
    * Note that, on some Unix systems, this routine runs at an interrupt
    * priority level higher than the timer interrupt routine hardclock().
    * Therefore, the variables used are distinct from the hardclock()
    * variables, except for certain exceptions: The PPS frequency pps_freq
    * and phase pps_offset variables are determined by this routine and
    * updated atomically. The time_tolerance variable can be considered a
    * constant, since it is infrequently changed, and then only when the
    * PPS signal is disabled. The watchdog counter pps_valid is updated
    * once per second by hardclock() and is atomically cleared in this
    * routine.
    */
   void
   hardpps(struct timespec *tsp,           /* time at PPS */
           long nsec                       /* hardware counter at PPS */)
   {
           long u_sec, u_nsec, v_nsec; /* temps */
           l_fp ftemp;
   
           /*
            * The signal is first processed by a range gate and frequency
            * discriminator. The range gate rejects noise spikes outside
            * the range +-500 us. The frequency discriminator rejects input
            * signals with apparent frequency outside the range 1 +-500
            * PPM. If two hits occur in the same second, we ignore the
            * later hit; if not and a hit occurs outside the range gate,
            * keep the later hit for later comparison, but do not process
            * it.
            */
           time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
           time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
           pps_valid = PPS_VALID;
           u_sec = tsp->tv_sec;
           u_nsec = tsp->tv_nsec;
           if (u_nsec >= (NANOSECOND >> 1)) {
                   u_nsec -= NANOSECOND;
                   u_sec++;
           }
           v_nsec = u_nsec - pps_tf[0].tv_nsec;
           if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
               MAXFREQ)
                   return;
           pps_tf[2] = pps_tf[1];
           pps_tf[1] = pps_tf[0];
           pps_tf[0].tv_sec = u_sec;
           pps_tf[0].tv_nsec = u_nsec;
   
           /*
            * Compute the difference between the current and previous
            * counter values. If the difference exceeds 0.5 s, assume it
            * has wrapped around, so correct 1.0 s. If the result exceeds
            * the tick interval, the sample point has crossed a tick
            * boundary during the last second, so correct the tick. Very
            * intricate.
            */
           u_nsec = nsec;
           if (u_nsec > (NANOSECOND >> 1))
                   u_nsec -= NANOSECOND;
           else if (u_nsec < -(NANOSECOND >> 1))
                   u_nsec += NANOSECOND;
           pps_fcount += u_nsec;
           if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
                   return;
           time_status &= ~STA_PPSJITTER;
   
           /*
            * A three-stage median filter is used to help denoise the PPS
            * time. The median sample becomes the time offset estimate; the
            * difference between the other two samples becomes the time
            * dispersion (jitter) estimate.
            */
           if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
                   if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
                           v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
                           u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
                   } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
                           v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
                           u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
                   } else {
                           v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
                           u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
                   }
           } else {
                   if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
                           v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
                           u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
                   } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
                           v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
                           u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
                   } else {
                           v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
                           u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
                   }
           }
   
           /*
            * Nominal jitter is due to PPS signal noise and interrupt
            * latency. If it exceeds the popcorn threshold, the sample is
            * discarded. otherwise, if so enabled, the time offset is
            * updated. We can tolerate a modest loss of data here without
            * much degrading time accuracy.
            */
           if (u_nsec > (pps_jitter << PPS_POPCORN)) {
                   time_status |= STA_PPSJITTER;
                   pps_jitcnt++;
           } else if (time_status & STA_PPSTIME) {
                   time_monitor = -v_nsec;
                   L_LINT(time_offset, time_monitor);
           }
           pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
           u_sec = pps_tf[0].tv_sec - pps_lastsec;
           if (u_sec < (1 << pps_shift))
                   return;
   
           /*
            * At the end of the calibration interval the difference between
            * the first and last counter values becomes the scaled
            * frequency. It will later be divided by the length of the
            * interval to determine the frequency update. If the frequency
            * exceeds a sanity threshold, or if the actual calibration
            * interval is not equal to the expected length, the data are
            * discarded. We can tolerate a modest loss of data here without
            * much degrading frequency accuracy.
            */
           pps_calcnt++;
           v_nsec = -pps_fcount;
           pps_lastsec = pps_tf[0].tv_sec;
           pps_fcount = 0;
           u_nsec = MAXFREQ << pps_shift;
           if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
               pps_shift)) {
                   time_status |= STA_PPSERROR;
                   pps_errcnt++;
                   return;
           }
   
           /*
            * Here the raw frequency offset and wander (stability) is
            * calculated. If the wander is less than the wander threshold
            * for four consecutive averaging intervals, the interval is
            * doubled; if it is greater than the threshold for four
            * consecutive intervals, the interval is halved. The scaled
            * frequency offset is converted to frequency offset. The
            * stability metric is calculated as the average of recent
            * frequency changes, but is used only for performance
            * monitoring.
            */
           L_LINT(ftemp, v_nsec);
           L_RSHIFT(ftemp, pps_shift);
           L_SUB(ftemp, pps_freq);
           u_nsec = L_GINT(ftemp);
           if (u_nsec > PPS_MAXWANDER) {
                   L_LINT(ftemp, PPS_MAXWANDER);
                   pps_intcnt--;
                   time_status |= STA_PPSWANDER;
                   pps_stbcnt++;
           } else if (u_nsec < -PPS_MAXWANDER) {
                   L_LINT(ftemp, -PPS_MAXWANDER);
                   pps_intcnt--;
                   time_status |= STA_PPSWANDER;
                   pps_stbcnt++;
           } else {
                   pps_intcnt++;
           }
           if (pps_intcnt >= 4) {
                   pps_intcnt = 4;
                   if (pps_shift < pps_shiftmax) {
                           pps_shift++;
                           pps_intcnt = 0;
                   }
           } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
                   pps_intcnt = -4;
                   if (pps_shift > PPS_FAVG) {
                           pps_shift--;
                           pps_intcnt = 0;
                   }
           }
           if (u_nsec < 0)
                   u_nsec = -u_nsec;
           pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
   
           /*
            * The PPS frequency is recalculated and clamped to the maximum
            * MAXFREQ. If enabled, the system clock frequency is updated as
            * well.
            */
           L_ADD(pps_freq, ftemp);
           u_nsec = L_GINT(pps_freq);
           if (u_nsec > MAXFREQ)
                   L_LINT(pps_freq, MAXFREQ);
           else if (u_nsec < -MAXFREQ)
                   L_LINT(pps_freq, -MAXFREQ);
           if (time_status & STA_PPSFREQ)
                   time_freq = pps_freq;
   }
   #endif /* PPS_SYNC */
   #endif /* NTP */
   #else /* !__HAVE_TIMECOUNTER */
 /******************************************************************************  /******************************************************************************
  *                                                                            *   *                                                                            *
  * Copyright (c) David L. Mills 1993, 1994                                    *   * Copyright (c) David L. Mills 1993, 1994                                    *
Line 53 
Line 906 
 __KERNEL_RCSID(0, "$NetBSD$");  __KERNEL_RCSID(0, "$NetBSD$");
   
 #include "opt_ntp.h"  #include "opt_ntp.h"
   #include "opt_compat_netbsd.h"
   
 #include <sys/param.h>  #include <sys/param.h>
 #include <sys/resourcevar.h>  #include <sys/resourcevar.h>
Line 61  __KERNEL_RCSID(0, "$NetBSD$");
Line 915  __KERNEL_RCSID(0, "$NetBSD$");
 #include <sys/proc.h>  #include <sys/proc.h>
 #include <sys/sysctl.h>  #include <sys/sysctl.h>
 #include <sys/timex.h>  #include <sys/timex.h>
   #ifdef COMPAT_30
   #include <compat/sys/timex.h>
   #endif
 #include <sys/vnode.h>  #include <sys/vnode.h>
   #include <sys/kauth.h>
   
 #include <sys/mount.h>  #include <sys/mount.h>
 #include <sys/sa.h>  
 #include <sys/syscallargs.h>  #include <sys/syscallargs.h>
   
 #include <machine/cpu.h>  #include <machine/cpu.h>
Line 104  extern long pps_stbcnt;  /* stability li
Line 961  extern long pps_stbcnt;  /* stability li
 /*  /*
  * ntp_gettime() - NTP user application interface   * ntp_gettime() - NTP user application interface
  */   */
 int  void
 sys_ntp_gettime(l, v, retval)  ntp_gettime(ntvp)
         struct lwp *l;          struct ntptimeval *ntvp;
         void *v;  
         register_t *retval;  
   
 {  {
         struct sys_ntp_gettime_args /* {  
                 syscallarg(struct ntptimeval *) ntvp;  
         } */ *uap = v;  
         struct timeval atv;          struct timeval atv;
         struct ntptimeval ntv;  
         int error = 0;  
         int s;          int s;
   
         if (SCARG(uap, ntvp)) {          memset(ntvp, 0, sizeof(struct ntptimeval));
                 s = splclock();  
           s = splclock();
 #ifdef EXT_CLOCK  #ifdef EXT_CLOCK
                 /*          /*
                  * The microtime() external clock routine returns a           * The microtime() external clock routine returns a
                  * status code. If less than zero, we declare an error           * status code. If less than zero, we declare an error
                  * in the clock status word and return the kernel           * in the clock status word and return the kernel
                  * (software) time variable. While there are other           * (software) time variable. While there are other
                  * places that call microtime(), this is the only place           * places that call microtime(), this is the only place
                  * that matters from an application point of view.           * that matters from an application point of view.
                  */           */
                 if (microtime(&atv) < 0) {          if (microtime(&atv) < 0) {
                         time_status |= STA_CLOCKERR;                  time_status |= STA_CLOCKERR;
                         ntv.time = time;                  ntvp->time = time;
                 } else          } else
                         time_status &= ~STA_CLOCKERR;                  time_status &= ~STA_CLOCKERR;
 #else /* EXT_CLOCK */  #else /* EXT_CLOCK */
                 microtime(&atv);          microtime(&atv);
 #endif /* EXT_CLOCK */  #endif /* EXT_CLOCK */
                 ntv.time = atv;          ntvp->maxerror = time_maxerror;
                 ntv.maxerror = time_maxerror;          ntvp->esterror = time_esterror;
                 ntv.esterror = time_esterror;          (void) splx(s);
                 (void) splx(s);          TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
   
                 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),  
                     sizeof(ntv));  
         }  
         if (!error) {  
   
                 /*  
                  * Status word error decode. If any of these conditions  
                  * occur, an error is returned, instead of the status  
                  * word. Most applications will care only about the fact  
                  * the system clock may not be trusted, not about the  
                  * details.  
                  *  
                  * Hardware or software error  
                  */  
                 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||  
   
                 /*  
                  * PPS signal lost when either time or frequency  
                  * synchronization requested  
                  */  
                     (time_status & (STA_PPSFREQ | STA_PPSTIME) &&  
                     !(time_status & STA_PPSSIGNAL)) ||  
   
                 /*  
                  * PPS jitter exceeded when time synchronization  
                  * requested  
                  */  
                     (time_status & STA_PPSTIME &&  
                     time_status & STA_PPSJITTER) ||  
   
                 /*  
                  * PPS wander exceeded or calibration error when  
                  * frequency synchronization requested  
                  */  
                     (time_status & STA_PPSFREQ &&  
                     time_status & (STA_PPSWANDER | STA_PPSERROR)))  
                         *retval = TIME_ERROR;  
                 else  
                         *retval = (register_t)time_state;  
         }  
         return(error);  
 }  }
   
   
 /* ARGSUSED */  /* ARGSUSED */
 /*  /*
Line 199  sys_ntp_adjtime(l, v, retval)
Line 1008  sys_ntp_adjtime(l, v, retval)
         struct sys_ntp_adjtime_args /* {          struct sys_ntp_adjtime_args /* {
                 syscallarg(struct timex *) tp;                  syscallarg(struct timex *) tp;
         } */ *uap = v;          } */ *uap = v;
         struct proc *p = l->l_proc;  
         struct timex ntv;          struct timex ntv;
         int error = 0;          int error = 0;
   
         if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,          error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
                         sizeof(ntv))) != 0)          if (error != 0)
                 return (error);                  return (error);
   
         if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)          if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
               KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
               NULL, NULL)) != 0)
                 return (error);                  return (error);
   
         return (ntp_adjtime1(&ntv, v, retval));          ntp_adjtime1(&ntv);
   
           error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
           if (error == 0)
                   *retval = ntp_timestatus();
   
           return error;
 }  }
   
 int  void
 ntp_adjtime1(ntv, v, retval)  ntp_adjtime1(ntv)
         struct timex *ntv;          struct timex *ntv;
         void *v;  
         register_t      *retval;  
 {  {
         struct sys_ntp_adjtime_args /* {  
                 syscallarg(struct timex *) tp;  
         } */ *uap = v;  
         int error = 0;  
         int modes;          int modes;
         int s;          int s;
   
Line 284  ntp_adjtime1(ntv, v, retval)
Line 1094  ntp_adjtime1(ntv, v, retval)
         ntv->stbcnt = pps_stbcnt;          ntv->stbcnt = pps_stbcnt;
 #endif /* PPS_SYNC */  #endif /* PPS_SYNC */
         (void)splx(s);          (void)splx(s);
   
         error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));  
         if (!error) {  
   
                 /*  
                  * Status word error decode. See comments in  
                  * ntp_gettime() routine.  
                  */  
                 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||  
                     (time_status & (STA_PPSFREQ | STA_PPSTIME) &&  
                     !(time_status & STA_PPSSIGNAL)) ||  
                     (time_status & STA_PPSTIME &&  
                     time_status & STA_PPSJITTER) ||  
                     (time_status & STA_PPSFREQ &&  
                     time_status & (STA_PPSWANDER | STA_PPSERROR)))  
                         *retval = TIME_ERROR;  
                 else  
                         *retval = (register_t)time_state;  
         }  
         return error;  
 }  }
   #endif /* NTP */
   #endif /* !__HAVE_TIMECOUNTER */
   
 /*  #ifdef NTP
  * return information about kernel precision timekeeping  int
  */  ntp_timestatus()
 static int  
 sysctl_kern_ntptime(SYSCTLFN_ARGS)  
 {  {
         struct sysctlnode node;  
         struct timeval atv;  
         struct ntptimeval ntv;  
         int s;  
   
         /*  
          * Construct ntp_timeval.  
          */  
   
         s = splclock();  
 #ifdef EXT_CLOCK  
         /*  
          * The microtime() external clock routine returns a  
          * status code. If less than zero, we declare an error  
          * in the clock status word and return the kernel  
          * (software) time variable. While there are other  
          * places that call microtime(), this is the only place  
          * that matters from an application point of view.  
          */  
         if (microtime(&atv) < 0) {  
                 time_status |= STA_CLOCKERR;  
                 ntv.time = time;  
         } else {  
                 time_status &= ~STA_CLOCKERR;  
         }  
 #else /* EXT_CLOCK */  
         microtime(&atv);  
 #endif /* EXT_CLOCK */  
         ntv.time = atv;  
         ntv.maxerror = time_maxerror;  
         ntv.esterror = time_esterror;  
         splx(s);  
   
 #ifdef notyet  
         /*          /*
          * Status word error decode. If any of these conditions           * Status word error decode. If any of these conditions
          * occur, an error is returned, instead of the status           * occur, an error is returned, instead of the status
Line 356  sysctl_kern_ntptime(SYSCTLFN_ARGS)
Line 1112  sysctl_kern_ntptime(SYSCTLFN_ARGS)
          * Hardware or software error           * Hardware or software error
          */           */
         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||          if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
                 ntv.time_state = TIME_ERROR;  
   
         /*          /*
          * PPS signal lost when either time or frequency           * PPS signal lost when either time or frequency
          * synchronization requested           * synchronization requested
          */           */
            (time_status & (STA_PPSFREQ | STA_PPSTIME) &&              (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
             !(time_status & STA_PPSSIGNAL)) ||               !(time_status & STA_PPSSIGNAL)) ||
   
         /*          /*
          * PPS jitter exceeded when time synchronization           * PPS jitter exceeded when time synchronization
          * requested           * requested
          */           */
            (time_status & STA_PPSTIME &&              (time_status & STA_PPSTIME &&
             time_status & STA_PPSJITTER) ||               time_status & STA_PPSJITTER) ||
   
         /*          /*
          * PPS wander exceeded or calibration error when           * PPS wander exceeded or calibration error when
          * frequency synchronization requested           * frequency synchronization requested
          */           */
            (time_status & STA_PPSFREQ &&              (time_status & STA_PPSFREQ &&
             time_status & (STA_PPSWANDER | STA_PPSERROR)))               time_status & (STA_PPSWANDER | STA_PPSERROR)))
                 ntv.time_state = TIME_ERROR;                  return (TIME_ERROR);
         else          else
                 ntv.time_state = time_state;                  return (time_state);
 #endif /* notyet */  }
   
   /*ARGSUSED*/
   /*
    * ntp_gettime() - NTP user application interface
    */
   int
   sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
   {
           struct sys___ntp_gettime30_args /* {
                   syscallarg(struct ntptimeval *) ntvp;
           } */ *uap = v;
           struct ntptimeval ntv;
           int error = 0;
   
           if (SCARG(uap, ntvp)) {
                   ntp_gettime(&ntv);
   
                   error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
                                   sizeof(ntv));
           }
           if (!error) {
                   *retval = ntp_timestatus();
           }
           return(error);
   }
   
   #ifdef COMPAT_30
   int
   compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
   {
           struct compat_30_sys_ntp_gettime_args /* {
                   syscallarg(struct ntptimeval30 *) ontvp;
           } */ *uap = v;
           struct ntptimeval ntv;
           struct ntptimeval30 ontv;
           int error = 0;
   
           if (SCARG(uap, ntvp)) {
                   ntp_gettime(&ntv);
                   TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
                   ontv.maxerror = ntv.maxerror;
                   ontv.esterror = ntv.esterror;
   
                   error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
                                   sizeof(ontv));
           }
           if (!error)
                   *retval = ntp_timestatus();
   
           return (error);
   }
   #endif
   
   /*
    * return information about kernel precision timekeeping
    */
   static int
   sysctl_kern_ntptime(SYSCTLFN_ARGS)
   {
           struct sysctlnode node;
           struct ntptimeval ntv;
   
           ntp_gettime(&ntv);
   
         node = *rnode;          node = *rnode;
         node.sysctl_data = &ntv;          node.sysctl_data = &ntv;
Line 410  SYSCTL_SETUP(sysctl_kern_ntptime_setup, 
Line 1228  SYSCTL_SETUP(sysctl_kern_ntptime_setup, 
 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */  /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
   
 int  int
 sys_ntp_gettime(l, v, retval)  sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
         struct lwp *l;  
         void *v;  
         register_t *retval;  
 {  {
   
         return(ENOSYS);          return(ENOSYS);
 }  }
   
   #ifdef COMPAT_30
   int
   compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
   {
   
           return(ENOSYS);
   }
   #endif
 #endif /* !NTP */  #endif /* !NTP */

Legend:
Removed from v.1.28  
changed lines
  Added in v.1.28.4.4

CVSweb <webmaster@jp.NetBSD.org>