[BACK]Return to if_iwn.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / dev / pci

Annotation of src/sys/dev/pci/if_iwn.c, Revision 1.22.2.1

1.22.2.1! skrll       1: /*     $NetBSD: if_iwn.c,v 1.28 2008/12/22 11:32:04 blymn Exp $        */
1.1       ober        2:
                      3: /*-
                      4:  * Copyright (c) 2007
                      5:  *     Damien Bergamini <damien.bergamini@free.fr>
                      6:  *
                      7:  * Permission to use, copy, modify, and distribute this software for any
                      8:  * purpose with or without fee is hereby granted, provided that the above
                      9:  * copyright notice and this permission notice appear in all copies.
                     10:  *
                     11:  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
                     12:  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
                     13:  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
                     14:  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
                     15:  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
                     16:  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
                     17:  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
                     18:  */
                     19:
                     20: #include <sys/cdefs.h>
1.22.2.1! skrll      21: __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.28 2008/12/22 11:32:04 blymn Exp $");
1.1       ober       22:
                     23:
                     24: /*
                     25:  * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
                     26:  */
                     27:
                     28: #include "bpfilter.h"
                     29:
                     30: #include <sys/param.h>
                     31: #include <sys/sockio.h>
                     32: #include <sys/sysctl.h>
                     33: #include <sys/mbuf.h>
                     34: #include <sys/kernel.h>
                     35: #include <sys/socket.h>
                     36: #include <sys/systm.h>
                     37: #include <sys/malloc.h>
1.17      cube       38: #include <sys/mutex.h>
1.1       ober       39: #include <sys/conf.h>
                     40: #include <sys/kauth.h>
                     41: #include <sys/callout.h>
                     42:
                     43: #include <machine/bus.h>
                     44: #include <machine/endian.h>
                     45: #include <machine/intr.h>
                     46:
                     47: #include <dev/pci/pcireg.h>
                     48: #include <dev/pci/pcivar.h>
                     49: #include <dev/pci/pcidevs.h>
                     50:
                     51: #if NBPFILTER > 0
                     52: #include <net/bpf.h>
                     53: #endif
                     54: #include <net/if.h>
                     55: #include <net/if_arp.h>
                     56: #include <net/if_dl.h>
                     57: #include <net/if_media.h>
                     58: #include <net/if_types.h>
                     59:
                     60: #include <netinet/in.h>
                     61: #include <netinet/in_systm.h>
                     62: #include <netinet/in_var.h>
                     63: #include <net/if_ether.h>
                     64: #include <netinet/ip.h>
                     65:
                     66: #include <net80211/ieee80211_var.h>
                     67: #include <net80211/ieee80211_amrr.h>
                     68: #include <net80211/ieee80211_radiotap.h>
                     69:
                     70: #include <dev/firmload.h>
                     71:
                     72: #include <dev/pci/if_iwnreg.h>
                     73: #include <dev/pci/if_iwnvar.h>
                     74:
1.8       blymn      75: #if 0
1.1       ober       76: static const struct pci_matchid iwn_devices[] = {
                     77:        { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 },
                     78:        { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2 }
                     79: };
                     80: #endif
                     81:
                     82: /*
                     83:  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
                     84:  */
                     85: static const struct ieee80211_rateset iwn_rateset_11a =
                     86:        { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
                     87:
                     88: static const struct ieee80211_rateset iwn_rateset_11b =
                     89:        { 4, { 2, 4, 11, 22 } };
                     90:
                     91: static const struct ieee80211_rateset iwn_rateset_11g =
                     92:        { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
                     93:
                     94:
1.15      christos   95: #define EDCA_NUM_AC    4
1.1       ober       96: static int             iwn_match(device_t , struct cfdata *, void *);
                     97: static void            iwn_attach(device_t , device_t, void *);
                     98: static int             iwn_detach(device_t, int);
                     99:
                    100: static void            iwn_radiotap_attach(struct iwn_softc *);
                    101: static int             iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
1.2       ober      102:     void **, bus_size_t, bus_size_t, int);
1.1       ober      103: static void            iwn_dma_contig_free(struct iwn_dma_info *);
                    104: static int             iwn_alloc_shared(struct iwn_softc *);
                    105: static void            iwn_free_shared(struct iwn_softc *);
                    106: static int             iwn_alloc_kw(struct iwn_softc *);
                    107: static void            iwn_free_kw(struct iwn_softc *);
                    108: static int             iwn_alloc_fwmem(struct iwn_softc *);
                    109: static void            iwn_free_fwmem(struct iwn_softc *);
                    110: static struct          iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
                    111: static void            iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
                    112: static int             iwn_alloc_rpool(struct iwn_softc *);
                    113: static void            iwn_free_rpool(struct iwn_softc *);
                    114: static int             iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
                    115: static void            iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
                    116: static void            iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
                    117: static int             iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
1.2       ober      118:     int, int);
1.1       ober      119: static void            iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
                    120: static void            iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
                    121: static struct          ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
                    122: static void            iwn_newassoc(struct ieee80211_node *, int);
                    123: static int             iwn_media_change(struct ifnet *);
                    124: static int             iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
                    125: static void            iwn_mem_lock(struct iwn_softc *);
                    126: static void            iwn_mem_unlock(struct iwn_softc *);
1.15      christos  127: static uint32_t iwn_mem_read(struct iwn_softc *, uint32_t);
1.1       ober      128: static void            iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
                    129: static void            iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
1.2       ober      130:     const uint32_t *, int);
1.1       ober      131: static int             iwn_eeprom_lock(struct iwn_softc *);
                    132: static void            iwn_eeprom_unlock(struct iwn_softc *);
                    133: static int             iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
                    134: static int             iwn_load_microcode(struct iwn_softc *, const uint8_t *, int);
                    135: static int             iwn_load_firmware(struct iwn_softc *);
                    136: static void            iwn_calib_timeout(void *);
                    137: static void            iwn_iter_func(void *, struct ieee80211_node *);
                    138: static void            iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
                    139: static void            iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
1.2       ober      140:     struct iwn_rx_data *);
1.1       ober      141: static void            iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
                    142: static void            iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
                    143: static void            iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
                    144: static void            iwn_notif_intr(struct iwn_softc *);
                    145: static int             iwn_intr(void *);
                    146: static void            iwn_read_eeprom(struct iwn_softc *);
                    147: static void            iwn_read_eeprom_channels(struct iwn_softc *, int);
                    148: static uint8_t         iwn_plcp_signal(int);
                    149: static int             iwn_tx_data(struct iwn_softc *, struct mbuf *,
1.2       ober      150:     struct ieee80211_node *, int);
1.1       ober      151: static void            iwn_start(struct ifnet *);
                    152: static void            iwn_watchdog(struct ifnet *);
                    153: static int             iwn_ioctl(struct ifnet *, u_long, void *);
                    154: static int             iwn_cmd(struct iwn_softc *, int, const void *, int, int);
1.15      christos  155: static int             iwn_wme_update(struct ieee80211com *);
1.1       ober      156: static int             iwn_setup_node_mrr(struct iwn_softc *, uint8_t, int);
                    157: static void            iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
                    158: static int             iwn_set_critical_temp(struct iwn_softc *);
                    159: static void            iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
                    160: static void            iwn_power_calibration(struct iwn_softc *, int);
                    161: static int             iwn_set_txpower(struct iwn_softc *,
1.2       ober      162:     struct ieee80211_channel *, int);
1.1       ober      163: static int             iwn_get_rssi(const struct iwn_rx_stat *);
                    164: static int             iwn_get_noise(const struct iwn_rx_general_stats *);
                    165: static int             iwn_get_temperature(struct iwn_softc *);
                    166: static int             iwn_init_sensitivity(struct iwn_softc *);
                    167: static void            iwn_compute_differential_gain(struct iwn_softc *,
1.2       ober      168:     const struct iwn_rx_general_stats *);
1.1       ober      169: static void            iwn_tune_sensitivity(struct iwn_softc *,
1.2       ober      170:     const struct iwn_rx_stats *);
1.1       ober      171: static int             iwn_send_sensitivity(struct iwn_softc *);
1.20      blymn     172: static int             iwn_setup_beacon(struct iwn_softc *, struct ieee80211_node *);
1.1       ober      173: static int             iwn_auth(struct iwn_softc *);
                    174: static int             iwn_run(struct iwn_softc *);
                    175: static int             iwn_scan(struct iwn_softc *, uint16_t);
                    176: static int             iwn_config(struct iwn_softc *);
                    177: static void            iwn_post_alive(struct iwn_softc *);
                    178: static void            iwn_stop_master(struct iwn_softc *);
                    179: static int             iwn_reset(struct iwn_softc *);
                    180: static void            iwn_hw_config(struct iwn_softc *);
                    181: static int             iwn_init(struct ifnet *);
                    182: static void            iwn_stop(struct ifnet *, int);
                    183: static void            iwn_fix_channel(struct ieee80211com *, struct mbuf *);
1.7       taca      184: static bool            iwn_resume(device_t PMF_FN_PROTO);
1.11      blymn     185: static int             iwn_add_node(struct iwn_softc *sc,
1.20      blymn     186:                                     struct ieee80211_node *ni, bool broadcast, bool async, uint32_t htflags);
1.1       ober      187:
                    188:
                    189:
                    190: #define IWN_DEBUG
                    191:
                    192: #ifdef IWN_DEBUG
                    193: #define DPRINTF(x)     do { if (iwn_debug > 0) printf x; } while (0)
                    194: #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
1.11      blymn     195: int iwn_debug = 0;
1.1       ober      196: #else
                    197: #define DPRINTF(x)
                    198: #define DPRINTFN(n, x)
                    199: #endif
                    200:
1.11      blymn     201: #ifdef IWN_DEBUG
                    202: static void            iwn_print_power_group(struct iwn_softc *, int);
                    203: #endif
                    204:
1.8       blymn     205: CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
1.2       ober      206:     iwn_detach, NULL);
1.1       ober      207:
                    208: static int
                    209: iwn_match(device_t parent, struct cfdata *match __unused, void *aux)
                    210: {
1.2       ober      211:        struct pci_attach_args *pa = aux;
1.8       blymn     212:
1.2       ober      213:        if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
                    214:                return 0;
1.1       ober      215:
1.8       blymn     216:        if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 ||
1.2       ober      217:            PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2)
                    218:                return 1;
1.1       ober      219:
1.2       ober      220:        return 0;
1.1       ober      221: }
                    222:
                    223: /* Base Address Register */
                    224: #define IWN_PCI_BAR0   0x10
                    225:
                    226: static void
                    227: iwn_attach(device_t parent __unused, device_t self, void *aux)
                    228: {
                    229:        struct iwn_softc *sc = device_private(self);
                    230:        struct ieee80211com *ic = &sc->sc_ic;
                    231:        struct ifnet *ifp = &sc->sc_ec.ec_if;
                    232:        struct pci_attach_args *pa = aux;
                    233:        const char *intrstr;
                    234:        char devinfo[256];
                    235:        pci_intr_handle_t ih;
                    236:        pcireg_t memtype, data;
1.8       blymn     237:        int i, error, revision;
1.1       ober      238:
                    239:        sc->sc_dev = self;
1.2       ober      240:        sc->sc_pct = pa->pa_pc;
1.1       ober      241:        sc->sc_pcitag = pa->pa_tag;
                    242:
                    243:        callout_init(&sc->calib_to, 0);
                    244:        callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
1.8       blymn     245:
1.1       ober      246:        pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
                    247:        revision = PCI_REVISION(pa->pa_class);
                    248:        aprint_normal(": %s (rev. 0x%2x)\n", devinfo, revision);
1.8       blymn     249:
1.1       ober      250:
                    251:        /* clear device specific PCI configuration register 0x41 */
                    252:        data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
                    253:        data &= ~0x0000ff00;
                    254:        pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
                    255:
                    256:        data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
                    257:        data |= PCI_COMMAND_MASTER_ENABLE;
                    258:        pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
                    259:
                    260:        /* enable bus-mastering */
                    261:        data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
                    262:        data |= PCI_COMMAND_MASTER_ENABLE;
                    263:        pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
                    264:
                    265:        /* map the register window */
                    266:        memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
                    267:        error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
                    268:            &sc->sc_sh, NULL, &sc->sc_sz);
                    269:        if (error != 0) {
                    270:                aprint_error_dev(self, "could not map memory space\n");
                    271:                return;
                    272:        }
                    273:
1.20      blymn     274: #if 0
1.1       ober      275:        sc->sc_dmat = pa->pa_dmat;
1.20      blymn     276: #endif
                    277:        /* XXX may not be needed */
                    278:        if (bus_dmatag_subregion(pa->pa_dmat, 0, 3 << 30,
                    279:            &(sc->sc_dmat), BUS_DMA_NOWAIT) != 0) {
                    280:                aprint_error_dev(self,
                    281:                    "WARNING: failed to restrict dma range, "
                    282:                    "falling back to parent bus dma range\n");
                    283:                sc->sc_dmat = pa->pa_dmat;
                    284:        }
1.1       ober      285:
                    286:        if (pci_intr_map(pa, &ih) != 0) {
                    287:                aprint_error_dev(self, "could not map interrupt\n");
                    288:                return;
                    289:        }
                    290:
                    291:        intrstr = pci_intr_string(sc->sc_pct, ih);
                    292:        sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
1.3       skrll     293:
1.1       ober      294:        if (sc->sc_ih == NULL) {
1.8       blymn     295:                aprint_error_dev(self, "could not establish interrupt");
1.1       ober      296:                if (intrstr != NULL)
                    297:                        aprint_error(" at %s", intrstr);
                    298:                aprint_error("\n");
                    299:                return;
                    300:        }
                    301:        aprint_normal_dev(self, "interrupting at %s\n", intrstr);
                    302:
                    303:        if (iwn_reset(sc) != 0) {
1.2       ober      304:                aprint_error_dev(self, "could not reset adapter\n");
                    305:                return;
1.1       ober      306:        }
1.8       blymn     307:
1.1       ober      308:        /*
                    309:         * Allocate DMA memory for firmware transfers.
                    310:         */
                    311:        if ((error = iwn_alloc_fwmem(sc)) != 0) {
                    312:                aprint_error_dev(self, "could not allocate firmware memory\n");
                    313:                return;
                    314:        }
                    315:
                    316:        /*
                    317:         * Allocate a "keep warm" page.
                    318:         */
                    319:        if ((error = iwn_alloc_kw(sc)) != 0) {
                    320:                aprint_error_dev(self, "could not allocate keep warm page\n");
                    321:                goto fail1;
                    322:        }
                    323:
                    324:        /*
                    325:         * Allocate shared area (communication area).
                    326:         */
                    327:        if ((error = iwn_alloc_shared(sc)) != 0) {
                    328:                aprint_error_dev(self, "could not allocate shared area\n");
                    329:                goto fail2;
                    330:        }
                    331:
                    332:        /*
                    333:         * Allocate Rx buffers and Tx/Rx rings.
                    334:         */
                    335:        if ((error = iwn_alloc_rpool(sc)) != 0) {
                    336:                aprint_error_dev(self, "could not allocate Rx buffers\n");
                    337:                goto fail3;
                    338:        }
                    339:
                    340:        for (i = 0; i < IWN_NTXQUEUES; i++) {
                    341:                struct iwn_tx_ring *txq = &sc->txq[i];
                    342:                error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
                    343:                if (error != 0) {
                    344:                        aprint_error_dev(self, "could not allocate Tx ring %d\n", i);
                    345:                        goto fail4;
                    346:                }
                    347:        }
1.8       blymn     348:
1.1       ober      349:        if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0)  {
1.2       ober      350:                aprint_error_dev(self, "could not allocate Rx ring\n");
                    351:                goto fail4;
1.1       ober      352:        }
                    353:
                    354:
1.22.2.1! skrll     355:        /* Set the state of the RF kill switch */
        !           356:        sc->sc_radio = (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED);
        !           357:
1.1       ober      358:        ic->ic_ifp = ifp;
                    359:        ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
                    360:        ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
                    361:        ic->ic_state = IEEE80211_S_INIT;
                    362:
                    363:        /* set device capabilities */
                    364:        ic->ic_caps =
                    365:            IEEE80211_C_IBSS |          /* IBSS mode support */
1.15      christos  366:            IEEE80211_C_WPA  |          /* 802.11i */
1.1       ober      367:            IEEE80211_C_MONITOR |       /* monitor mode supported */
                    368:            IEEE80211_C_TXPMGT |        /* tx power management */
                    369:            IEEE80211_C_SHSLOT |        /* short slot time supported */
                    370:            IEEE80211_C_SHPREAMBLE|     /* short preamble supported */
1.15      christos  371:            IEEE80211_C_WME;            /* 802.11e */
1.8       blymn     372:
1.1       ober      373:        /* read supported channels and MAC address from EEPROM */
                    374:        iwn_read_eeprom(sc);
                    375:
                    376:        /* set supported .11a, .11b and .11g rates */
                    377:        ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
                    378:        ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
                    379:        ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
                    380:
                    381:        /* IBSS channel undefined for now */
                    382:        ic->ic_ibss_chan = &ic->ic_channels[0];
                    383:
1.22.2.1! skrll     384:        memset(ic->ic_des_essid, 0, IEEE80211_NWID_LEN);
        !           385:        ic->ic_des_esslen = 0;
        !           386:
1.1       ober      387:        ifp->if_softc = sc;
                    388:        ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
                    389:        ifp->if_init = iwn_init;
                    390:        ifp->if_stop = iwn_stop;
                    391:        ifp->if_ioctl = iwn_ioctl;
                    392:        ifp->if_start = iwn_start;
                    393:        ifp->if_watchdog = iwn_watchdog;
                    394:        IFQ_SET_READY(&ifp->if_snd);
                    395:        memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
                    396:
                    397:        if_attach(ifp);
                    398:        ieee80211_ifattach(ic);
                    399:        ic->ic_node_alloc = iwn_node_alloc;
                    400:        ic->ic_newassoc = iwn_newassoc;
                    401:        ic->ic_wme.wme_update = iwn_wme_update;
                    402:
                    403:        /* override state transition machine */
                    404:        sc->sc_newstate = ic->ic_newstate;
                    405:        ic->ic_newstate = iwn_newstate;
                    406:        ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
                    407:
                    408:        sc->amrr.amrr_min_success_threshold =  1;
                    409:        sc->amrr.amrr_max_success_threshold = 15;
                    410:
                    411:        if (!pmf_device_register(self, NULL, iwn_resume))
                    412:                aprint_error_dev(self, "couldn't establish power handler\n");
                    413:        else
                    414:                pmf_class_network_register(self, ifp);
                    415:
                    416:        iwn_radiotap_attach(sc);
1.8       blymn     417:
1.1       ober      418:        ieee80211_announce(ic);
                    419:
                    420:        return;
                    421:
                    422:        /* free allocated memory if something failed during attachment */
                    423: fail4: while (--i >= 0)
                    424:                iwn_free_tx_ring(sc, &sc->txq[i]);
                    425:        iwn_free_rpool(sc);
                    426: fail3: iwn_free_shared(sc);
                    427: fail2: iwn_free_kw(sc);
                    428: fail1: iwn_free_fwmem(sc);
                    429: }
                    430:
                    431: static int
                    432: iwn_detach(struct device* self, int flags __unused)
                    433: {
                    434:        struct iwn_softc *sc = (struct iwn_softc *)self;
                    435:        struct ifnet *ifp = sc->sc_ic.ic_ifp;
                    436:        int ac;
                    437:
                    438:        iwn_stop(ifp, 1);
                    439:
                    440: #if NBPFILTER > 0
                    441:        if (ifp != NULL)
                    442:                bpfdetach(ifp);
                    443: #endif
                    444:        ieee80211_ifdetach(&sc->sc_ic);
                    445:        if (ifp != NULL)
                    446:                if_detach(ifp);
                    447:
                    448:        for (ac = 0; ac < IWN_NTXQUEUES; ac++)
                    449:                iwn_free_tx_ring(sc, &sc->txq[ac]);
                    450:        iwn_free_rx_ring(sc, &sc->rxq);
                    451:        iwn_free_rpool(sc);
                    452:        iwn_free_shared(sc);
                    453:
                    454:        if (sc->sc_ih != NULL) {
                    455:                pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
                    456:                sc->sc_ih = NULL;
                    457:        }
                    458:
                    459:        bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
                    460:
                    461:        return 0;
                    462: }
                    463:
                    464: /*
                    465:  * Attach the interface to 802.11 radiotap.
                    466:  */
                    467: static void
                    468: iwn_radiotap_attach(struct iwn_softc *sc)
                    469: {
                    470:        struct ifnet *ifp = sc->sc_ic.ic_ifp;
                    471:
                    472: #if NBPFILTER > 0
                    473:        bpfattach2(ifp, DLT_IEEE802_11_RADIO,
1.8       blymn     474:            sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
1.2       ober      475:            &sc->sc_drvbpf);
1.1       ober      476:
                    477:        sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
                    478:        sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
                    479:        sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
                    480:
                    481:        sc->sc_txtap_len = sizeof sc->sc_txtapu;
                    482:        sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
                    483:        sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
                    484: #endif
                    485: }
                    486:
                    487:
                    488: /*
                    489:  * Build a beacon frame that the firmware will broadcast periodically in
                    490:  * IBSS or HostAP modes.
                    491:  */
                    492: static int
                    493: iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
                    494: {
                    495:        struct ieee80211com *ic = &sc->sc_ic;
                    496:        struct iwn_tx_ring *ring = &sc->txq[4];
                    497:        struct iwn_tx_desc *desc;
                    498:        struct iwn_tx_data *data;
                    499:        struct iwn_tx_cmd *cmd;
                    500:        struct iwn_cmd_beacon *bcn;
                    501:        struct ieee80211_beacon_offsets bo;
                    502:        struct mbuf *m0;
                    503:        bus_addr_t paddr;
                    504:        int error;
                    505:
                    506:        desc = &ring->desc[ring->cur];
                    507:        data = &ring->data[ring->cur];
                    508:
                    509:        m0 = ieee80211_beacon_alloc(ic, ni, &bo);
                    510:        if (m0 == NULL) {
                    511:                aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
                    512:                return ENOMEM;
                    513:        }
                    514:
                    515:        cmd = &ring->cmd[ring->cur];
                    516:        cmd->code = IWN_CMD_SET_BEACON;
                    517:        cmd->flags = 0;
                    518:        cmd->qid = ring->qid;
                    519:        cmd->idx = ring->cur;
                    520:
                    521:        bcn = (struct iwn_cmd_beacon *)cmd->data;
                    522:        memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
                    523:        bcn->id = IWN_ID_BROADCAST;
                    524:        bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
                    525:        bcn->len = htole16(m0->m_pkthdr.len);
                    526:        bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1.2       ober      527:            iwn_plcp_signal(12) : iwn_plcp_signal(2);
1.20      blymn     528:        bcn->flags2 = 0x2; /* RATE_MCS_CCK_MSK */
                    529:
                    530:        bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP
                    531:                             | IWN_TX_USE_NODE_RATE);
1.1       ober      532:
                    533:        /* save and trim IEEE802.11 header */
                    534:        m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
                    535:        m_adj(m0, sizeof (struct ieee80211_frame));
                    536:
                    537:        /* assume beacon frame is contiguous */
                    538:        error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1.2       ober      539:            BUS_DMA_READ | BUS_DMA_NOWAIT);
1.1       ober      540:        if (error) {
                    541:                aprint_error_dev(sc->sc_dev, "could not map beacon\n");
                    542:                m_freem(m0);
                    543:                return error;
                    544:        }
                    545:
                    546:        data->m = m0;
                    547:
                    548:        /* first scatter/gather segment is used by the beacon command */
                    549:        paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
1.8       blymn     550:
1.1       ober      551:        IWN_SET_DESC_NSEGS(desc, 2);
                    552:        IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
                    553:        IWN_SET_DESC_SEG(desc, 1,  data->map->dm_segs[0].ds_addr,
1.2       ober      554:            data->map->dm_segs[1].ds_len);
1.8       blymn     555:
1.20      blymn     556:        bus_dmamap_sync(sc->sc_dmat, data->map, 0,
                    557:            data->map->dm_mapsize /* calc? */, BUS_DMASYNC_PREWRITE);
1.1       ober      558:
                    559:        /* kick cmd ring */
                    560:        ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
                    561:        IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
                    562:
                    563:        return 0;
                    564: }
                    565:
                    566: static int
                    567: iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
                    568:     bus_size_t size, bus_size_t alignment, int flags)
                    569: {
                    570:        int nsegs, error;
                    571:
                    572:        dma->tag = tag;
                    573:        dma->size = size;
                    574:
                    575:        error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
                    576:        if (error != 0)
                    577:                goto fail;
                    578:
                    579:        error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
                    580:            flags);
                    581:        if (error != 0)
                    582:                goto fail;
                    583:
                    584:        error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
                    585:        if (error != 0)
                    586:                goto fail;
                    587:
                    588:        error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
                    589:        if (error != 0)
                    590:                goto fail;
                    591:
                    592:        memset(dma->vaddr, 0, size);
                    593:
                    594:        dma->paddr = dma->map->dm_segs[0].ds_addr;
                    595:        if (kvap != NULL)
                    596:                *kvap = dma->vaddr;
                    597:
                    598:        return 0;
                    599:
                    600: fail:  iwn_dma_contig_free(dma);
                    601:        return error;
                    602: }
                    603:
                    604: static void
                    605: iwn_dma_contig_free(struct iwn_dma_info *dma)
                    606: {
                    607:        if (dma->map != NULL) {
                    608:                if (dma->vaddr != NULL) {
                    609:                        bus_dmamap_unload(dma->tag, dma->map);
                    610:                        bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
                    611:                        bus_dmamem_free(dma->tag, &dma->seg, 1);
                    612:                        dma->vaddr = NULL;
                    613:                }
                    614:                bus_dmamap_destroy(dma->tag, dma->map);
                    615:                dma->map = NULL;
                    616:        }
                    617: }
                    618:
                    619: static int
                    620: iwn_alloc_shared(struct iwn_softc *sc)
                    621: {
1.15      christos  622:        int error;
1.14      christos  623:        void *p;
1.15      christos  624:        /* must be aligned on a 1KB boundary */
1.1       ober      625:        error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
1.14      christos  626:            &p, sizeof (struct iwn_shared), 1024,BUS_DMA_NOWAIT);
1.16      christos  627:        sc->shared = p;
1.1       ober      628:        if (error != 0)
1.2       ober      629:                aprint_error_dev(sc->sc_dev,
                    630:                    "could not allocate shared area DMA memory\n");
1.1       ober      631:
                    632:        return error;
                    633:
                    634: }
                    635:
                    636: static void
                    637: iwn_free_shared(struct iwn_softc *sc)
                    638: {
                    639:        iwn_dma_contig_free(&sc->shared_dma);
                    640: }
                    641:
                    642: static int
                    643: iwn_alloc_kw(struct iwn_softc *sc)
                    644: {
                    645:        /* must be aligned on a 16-byte boundary */
                    646:        return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL,
                    647:            PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
                    648: }
                    649:
                    650: static void
                    651: iwn_free_kw(struct iwn_softc *sc)
                    652: {
                    653:        iwn_dma_contig_free(&sc->kw_dma);
                    654: }
                    655:
                    656: static int
                    657: iwn_alloc_fwmem(struct iwn_softc *sc)
                    658: {
                    659:        int error;
                    660:        /* allocate enough contiguous space to store text and data */
                    661:        error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1.2       ober      662:            IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
                    663:            BUS_DMA_NOWAIT);
1.1       ober      664:
                    665:        if (error != 0){
                    666:                aprint_error_dev(sc->sc_dev,
1.2       ober      667:                    "could not allocate firmware transfer area DMA memory\n" );
1.8       blymn     668:
1.1       ober      669:        }
                    670:        return error;
                    671: }
                    672:
                    673: static void
                    674: iwn_free_fwmem(struct iwn_softc *sc)
                    675: {
                    676:        iwn_dma_contig_free(&sc->fw_dma);
                    677: }
                    678:
                    679: static struct iwn_rbuf *
                    680: iwn_alloc_rbuf(struct iwn_softc *sc)
                    681: {
                    682:        struct iwn_rbuf *rbuf;
                    683:
1.17      cube      684:        mutex_enter(&sc->rxq.freelist_mtx);
1.1       ober      685:        rbuf = SLIST_FIRST(&sc->rxq.freelist);
1.17      cube      686:        if (rbuf != NULL) {
                    687:                SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
                    688:                sc->rxq.nb_free_entries --;
                    689:        }
                    690:        mutex_exit(&sc->rxq.freelist_mtx);
                    691:
1.1       ober      692:        return rbuf;
                    693: }
                    694:
                    695: /*
                    696:  * This is called automatically by the network stack when the mbuf to which
                    697:  * our Rx buffer is attached is freed.
                    698:  */
                    699: static void
                    700: iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
                    701: {
                    702:        struct iwn_rbuf *rbuf = arg;
                    703:        struct iwn_softc *sc = rbuf->sc;
                    704:
                    705:        /* put the buffer back in the free list */
1.17      cube      706:        mutex_enter(&sc->rxq.freelist_mtx);
1.1       ober      707:        SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
1.17      cube      708:        mutex_exit(&sc->rxq.freelist_mtx);
1.1       ober      709:        sc->rxq.nb_free_entries ++;
                    710:
                    711:        if (__predict_true(m != NULL))
                    712:                pool_cache_put(mb_cache, m);
                    713: }
                    714:
                    715:
                    716: static int
                    717: iwn_alloc_rpool(struct iwn_softc *sc)
                    718: {
                    719:        struct iwn_rx_ring *ring = &sc->rxq;
                    720:        struct iwn_rbuf *rbuf;
                    721:        int i, error;
                    722:
1.17      cube      723:        mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
                    724:
1.1       ober      725:        /* allocate a big chunk of DMA'able memory.. */
                    726:        error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
                    727:            IWN_RBUF_COUNT * IWN_RBUF_SIZE, IWN_BUF_ALIGN, BUS_DMA_NOWAIT);
                    728:        if (error != 0) {
1.3       skrll     729:                aprint_error_dev(sc->sc_dev,
                    730:                    "could not allocate Rx buffers DMA memory\n");
1.1       ober      731:                return error;
                    732:        }
                    733:
                    734:        /* ..and split it into chunks of "rbufsz" bytes */
                    735:        SLIST_INIT(&ring->freelist);
                    736:        for (i = 0; i < IWN_RBUF_COUNT; i++) {
                    737:                rbuf = &ring->rbuf[i];
                    738:
                    739:                rbuf->sc = sc;  /* backpointer for callbacks */
                    740:                rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE;
                    741:                rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
                    742:
                    743:                SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
                    744:        }
                    745:        ring->nb_free_entries = IWN_RBUF_COUNT;
                    746:        return 0;
                    747: }
                    748:
                    749: static void
                    750: iwn_free_rpool(struct iwn_softc *sc)
                    751: {
                    752:        iwn_dma_contig_free(&sc->rxq.buf_dma);
                    753: }
                    754:
                    755: static int
                    756: iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
                    757: {
1.15      christos  758:        struct iwn_rx_data *data;
                    759:        struct iwn_rbuf *rbuf;
                    760:        int i, error;
1.14      christos  761:        void *p;
1.8       blymn     762:
1.1       ober      763:        ring->cur = 0;
                    764:
                    765:        error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1.14      christos  766:            &p, IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc),
1.1       ober      767:            IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
                    768:        if (error != 0) {
1.3       skrll     769:                aprint_error_dev(sc->sc_dev,
                    770:                    "could not allocate rx ring DMA memory\n");
1.1       ober      771:                goto fail;
                    772:        }
1.14      christos  773:        ring->desc = p;
1.1       ober      774:
                    775:        /*
                    776:         * Setup Rx buffers.
                    777:         */
                    778:        for (i = 0; i < IWN_RX_RING_COUNT; i++) {
                    779:                data = &ring->data[i];
1.8       blymn     780:
1.1       ober      781:                MGETHDR(data->m, M_DONTWAIT, MT_DATA);
                    782:                if (data->m == NULL) {
                    783:                        aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
                    784:                        error = ENOMEM;
                    785:                        goto fail;
                    786:                }
                    787:                if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
                    788:                        m_freem(data->m);
                    789:                        data->m = NULL;
                    790:                        aprint_error_dev(sc->sc_dev, "could not allocate rx buffer\n");
                    791:                        error = ENOMEM;
                    792:                        goto fail;
                    793:                }
                    794:                /* attach Rx buffer to mbuf */
                    795:                MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
                    796:                    rbuf);
                    797:
                    798:                data->m->m_flags |= M_EXT_RW;
                    799:                /* Rx buffers are aligned on a 256-byte boundary */
                    800:                ring->desc[i] = htole32(rbuf->paddr >> 8);
                    801:        }
                    802:
                    803:        return 0;
                    804:
                    805: fail:  iwn_free_rx_ring(sc, ring);
                    806:        return error;
                    807: }
                    808:
                    809: static void
                    810: iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
                    811: {
                    812:        int ntries;
                    813:
                    814:        iwn_mem_lock(sc);
                    815:
                    816:        IWN_WRITE(sc, IWN_RX_CONFIG, 0);
                    817:        for (ntries = 0; ntries < 100; ntries++) {
                    818:                if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
                    819:                        break;
                    820:                DELAY(10);
                    821:        }
                    822: #ifdef IWN_DEBUG
                    823:        if (ntries == 100 && iwn_debug > 0)
                    824:                aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
                    825: #endif
                    826:        iwn_mem_unlock(sc);
                    827:
                    828:        ring->cur = 0;
                    829: }
                    830:
                    831: static void
                    832: iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
                    833: {
                    834:        int i;
                    835:
                    836:        iwn_dma_contig_free(&ring->desc_dma);
                    837:
                    838:        for (i = 0; i < IWN_RX_RING_COUNT; i++) {
                    839:                if (ring->data[i].m != NULL)
                    840:                        m_freem(ring->data[i].m);
                    841:        }
                    842: }
                    843:
                    844: static int
                    845: iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
                    846:     int qid)
                    847: {
1.2       ober      848:        struct iwn_tx_data *data;
1.1       ober      849:        int i, error;
1.14      christos  850:        void *p;
1.1       ober      851:
                    852:        ring->qid = qid;
                    853:        ring->count = count;
                    854:        ring->queued = 0;
                    855:        ring->cur = 0;
                    856:
                    857:        error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1.14      christos  858:            &p, count * sizeof (struct iwn_tx_desc),
1.1       ober      859:            IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
                    860:        if (error != 0) {
                    861:                aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
                    862:                goto fail;
                    863:        }
1.14      christos  864:        ring->desc = p;
1.1       ober      865:
                    866:        error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1.14      christos  867:            &p, count * sizeof (struct iwn_tx_cmd), 4, BUS_DMA_NOWAIT);
1.1       ober      868:        if (error != 0) {
                    869:                aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
                    870:                goto fail;
                    871:        }
1.14      christos  872:        ring->cmd = p;
1.1       ober      873:
                    874:        ring->data = malloc(count * sizeof (struct iwn_tx_data), M_DEVBUF, M_NOWAIT);
1.8       blymn     875:
1.1       ober      876:        if (ring->data == NULL) {
                    877:                aprint_error_dev(sc->sc_dev,"could not allocate tx data slots\n");
                    878:                goto fail;
                    879:        }
                    880:
                    881:        memset(ring->data, 0, count * sizeof (struct iwn_tx_data));
                    882:
                    883:        for (i = 0; i < count; i++) {
1.2       ober      884:                data = &ring->data[i];
1.1       ober      885:
                    886:                error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
                    887:                    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
                    888:                    &data->map);
                    889:                if (error != 0) {
                    890:                        aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
                    891:                        goto fail;
                    892:                }
                    893:        }
                    894:
                    895:        return 0;
                    896:
                    897: fail:  iwn_free_tx_ring(sc, ring);
                    898:        return error;
                    899: }
                    900:
                    901: static void
                    902: iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
                    903: {
1.15      christos  904:        struct iwn_tx_data *data;
1.1       ober      905:        uint32_t tmp;
                    906:        int i, ntries;
                    907:
                    908:        iwn_mem_lock(sc);
                    909:
                    910:        IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
                    911:        for (ntries = 0; ntries < 100; ntries++) {
                    912:                tmp = IWN_READ(sc, IWN_TX_STATUS);
                    913:                if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
                    914:                        break;
                    915:                DELAY(10);
                    916:        }
                    917: #ifdef IWN_DEBUG
                    918:        if (ntries == 100 && iwn_debug > 1) {
                    919:                aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", ring->qid);
                    920:        }
                    921: #endif
                    922:        iwn_mem_unlock(sc);
                    923:
                    924:        for (i = 0; i < ring->count; i++) {
                    925:                data = &ring->data[i];
                    926:
                    927:                if (data->m != NULL) {
                    928:                        bus_dmamap_unload(sc->sc_dmat, data->map);
                    929:                        m_freem(data->m);
                    930:                        data->m = NULL;
                    931:                }
                    932:        }
                    933:
                    934:        ring->queued = 0;
                    935:        ring->cur = 0;
                    936: }
                    937:
                    938: static void
                    939: iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
                    940: {
1.2       ober      941:        struct iwn_tx_data *data;
                    942:        int i;
1.1       ober      943:
                    944:        iwn_dma_contig_free(&ring->desc_dma);
                    945:        iwn_dma_contig_free(&ring->cmd_dma);
                    946:
                    947:        if (ring->data != NULL) {
                    948:                for (i = 0; i < ring->count; i++) {
                    949:                        data = &ring->data[i];
                    950:
                    951:                        if (data->m != NULL) {
                    952:                                bus_dmamap_unload(sc->sc_dmat, data->map);
                    953:                                m_freem(data->m);
                    954:                        }
                    955:                }
                    956:                free(ring->data, M_DEVBUF);
                    957:        }
                    958: }
                    959:
                    960: /*ARGUSED*/
                    961: struct ieee80211_node *
                    962: iwn_node_alloc(struct ieee80211_node_table *nt __unused)
                    963: {
                    964:        struct iwn_node *wn;
                    965:
1.19      freza     966:        wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1.1       ober      967:
                    968:        return (struct ieee80211_node *)wn;
                    969: }
                    970:
                    971: static void
                    972: iwn_newassoc(struct ieee80211_node *ni, int isnew)
                    973: {
                    974:        struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
                    975:        int i;
                    976:
                    977:        ieee80211_amrr_node_init(&sc->amrr, &((struct iwn_node *)ni)->amn);
                    978:
                    979:        /* set rate to some reasonable initial value */
                    980:        for (i = ni->ni_rates.rs_nrates - 1;
                    981:             i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
                    982:             i--);
                    983:        ni->ni_txrate = i;
                    984: }
                    985:
                    986: static int
                    987: iwn_media_change(struct ifnet *ifp)
                    988: {
                    989:        int error;
                    990:
                    991:        error = ieee80211_media_change(ifp);
                    992:        if (error != ENETRESET)
                    993:                return error;
                    994:
                    995:        if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
                    996:                iwn_init(ifp);
                    997:
                    998:        return 0;
                    999: }
                   1000:
                   1001: static int
                   1002: iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
                   1003: {
                   1004:        struct ifnet *ifp = ic->ic_ifp;
                   1005:        struct iwn_softc *sc = ifp->if_softc;
                   1006:        int error;
                   1007:
                   1008:        callout_stop(&sc->calib_to);
                   1009:
1.11      blymn    1010:        DPRINTF(("iwn_newstate: nstate = %d, ic->ic_state = %d\n", nstate,
                   1011:                ic->ic_state));
                   1012:
1.1       ober     1013:        switch (nstate) {
                   1014:
                   1015:        case IEEE80211_S_SCAN:
1.8       blymn    1016:
1.1       ober     1017:                if (sc->is_scanning)
                   1018:                        break;
                   1019:
                   1020:                sc->is_scanning = true;
                   1021:                ieee80211_node_table_reset(&ic->ic_scan);
                   1022:                ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
                   1023:
                   1024:                /* make the link LED blink while we're scanning */
                   1025:                iwn_set_led(sc, IWN_LED_LINK, 20, 2);
                   1026:
                   1027:                if ((error = iwn_scan(sc, IEEE80211_CHAN_G)) != 0) {
                   1028:                        aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
1.8       blymn    1029:                        ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
1.1       ober     1030:                        return error;
                   1031:                }
                   1032:                ic->ic_state = nstate;
                   1033:                return 0;
                   1034:
                   1035:        case IEEE80211_S_ASSOC:
                   1036:                if (ic->ic_state != IEEE80211_S_RUN)
                   1037:                        break;
                   1038:                /* FALLTHROUGH */
                   1039:        case IEEE80211_S_AUTH:
1.20      blymn    1040:                /* cancel any active scan - it apparently breaks auth */
1.22.2.1! skrll    1041:                /*(void)iwn_cmd(sc, IWN_CMD_SCAN_ABORT, NULL, 0, 1);*/
1.1       ober     1042:
                   1043:                if ((error = iwn_auth(sc)) != 0) {
1.20      blymn    1044:                        aprint_error_dev(sc->sc_dev,
                   1045:                                         "could not move to auth state\n");
1.1       ober     1046:                        return error;
                   1047:                }
                   1048:                break;
                   1049:
                   1050:        case IEEE80211_S_RUN:
                   1051:                if ((error = iwn_run(sc)) != 0) {
1.20      blymn    1052:                        aprint_error_dev(sc->sc_dev,
                   1053:                                         "could not move to run state\n");
1.1       ober     1054:                        return error;
                   1055:                }
                   1056:                break;
                   1057:
                   1058:        case IEEE80211_S_INIT:
                   1059:                sc->is_scanning = false;
                   1060:                break;
                   1061:        }
                   1062:
                   1063:        return sc->sc_newstate(ic, nstate, arg);
                   1064: }
                   1065:
                   1066: /*
                   1067:  * Grab exclusive access to NIC memory.
                   1068:  */
                   1069: static void
                   1070: iwn_mem_lock(struct iwn_softc *sc)
                   1071: {
                   1072:        uint32_t tmp;
                   1073:        int ntries;
                   1074:
                   1075:        tmp = IWN_READ(sc, IWN_GPIO_CTL);
                   1076:        IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
                   1077:
                   1078:        /* spin until we actually get the lock */
                   1079:        for (ntries = 0; ntries < 1000; ntries++) {
                   1080:                if ((IWN_READ(sc, IWN_GPIO_CTL) &
1.2       ober     1081:                        (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1.1       ober     1082:                        break;
                   1083:                DELAY(10);
                   1084:        }
                   1085:        if (ntries == 1000)
                   1086:                aprint_error_dev(sc->sc_dev, "could not lock memory\n");
                   1087: }
                   1088:
                   1089: /*
                   1090:  * Release lock on NIC memory.
                   1091:  */
                   1092: static void
                   1093: iwn_mem_unlock(struct iwn_softc *sc)
                   1094: {
                   1095:        uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
                   1096:        IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
                   1097: }
                   1098:
                   1099: static uint32_t
                   1100: iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
                   1101: {
                   1102:        IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
                   1103:        return IWN_READ(sc, IWN_READ_MEM_DATA);
                   1104: }
                   1105:
                   1106: static void
                   1107: iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
                   1108: {
                   1109:        IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
                   1110:        IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
                   1111: }
                   1112:
                   1113: static void
                   1114: iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
                   1115:     const uint32_t *data, int wlen)
                   1116: {
                   1117:        for (; wlen > 0; wlen--, data++, addr += 4)
                   1118:                iwn_mem_write(sc, addr, *data);
                   1119: }
                   1120:
                   1121: static int
                   1122: iwn_eeprom_lock(struct iwn_softc *sc)
                   1123: {
                   1124:        uint32_t tmp;
                   1125:        int ntries;
                   1126:
                   1127:        tmp = IWN_READ(sc, IWN_HWCONFIG);
                   1128:        IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
                   1129:
                   1130:        /* spin until we actually get the lock */
                   1131:        for (ntries = 0; ntries < 100; ntries++) {
                   1132:                if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
                   1133:                        return 0;
                   1134:                DELAY(10);
                   1135:        }
                   1136:        return ETIMEDOUT;
                   1137: }
                   1138:
                   1139: static void
                   1140: iwn_eeprom_unlock(struct iwn_softc *sc)
                   1141: {
                   1142:        uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
                   1143:        IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
                   1144: }
                   1145:
                   1146: /*
1.15      christos 1147:  * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1.1       ober     1148:  * instead of using the traditional bit-bang method.
                   1149:  */
                   1150: static int
                   1151: iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
                   1152: {
                   1153:        uint8_t *out = data;
                   1154:        uint32_t val;
                   1155:        int ntries;
                   1156:
                   1157:        iwn_mem_lock(sc);
                   1158:        for (; len > 0; len -= 2, addr++) {
                   1159:                IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
                   1160:                IWN_WRITE(sc, IWN_EEPROM_CTL,
                   1161:                    IWN_READ(sc, IWN_EEPROM_CTL) & ~IWN_EEPROM_CMD);
                   1162:
                   1163:                for (ntries = 0; ntries < 10; ntries++) {
                   1164:                        if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
                   1165:                            IWN_EEPROM_READY)
                   1166:                                break;
                   1167:                        DELAY(5);
                   1168:                }
                   1169:                if (ntries == 10) {
                   1170:                        aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
                   1171:                        return ETIMEDOUT;
                   1172:                }
                   1173:                *out++ = val >> 16;
                   1174:                if (len > 1)
                   1175:                        *out++ = val >> 24;
                   1176:        }
                   1177:        iwn_mem_unlock(sc);
                   1178:
                   1179:        return 0;
                   1180: }
                   1181:
                   1182: /*
                   1183:  * The firmware boot code is small and is intended to be copied directly into
                   1184:  * the NIC internal memory.
                   1185:  */
                   1186: static int
                   1187: iwn_load_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
                   1188: {
                   1189:        int ntries;
                   1190:
                   1191:        size /= sizeof (uint32_t);
                   1192:
                   1193:        iwn_mem_lock(sc);
                   1194:
                   1195:        /* copy microcode image into NIC memory */
                   1196:        iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
                   1197:            (const uint32_t *)ucode, size);
                   1198:
                   1199:        iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
                   1200:        iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
                   1201:        iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
                   1202:
                   1203:        /* run microcode */
                   1204:        iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
                   1205:
                   1206:        /* wait for transfer to complete */
                   1207:        for (ntries = 0; ntries < 1000; ntries++) {
                   1208:                if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
                   1209:                        break;
                   1210:                DELAY(10);
                   1211:        }
                   1212:        if (ntries == 1000) {
                   1213:                iwn_mem_unlock(sc);
                   1214:                aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
                   1215:                return ETIMEDOUT;
                   1216:        }
                   1217:        iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
                   1218:
                   1219:        iwn_mem_unlock(sc);
                   1220:
                   1221:        return 0;
                   1222: }
                   1223:
                   1224: static int
                   1225: iwn_load_firmware(struct iwn_softc *sc)
                   1226: {
                   1227:        struct iwn_dma_info *dma = &sc->fw_dma;
                   1228:        struct iwn_firmware_hdr hdr;
                   1229:        const uint8_t *init_text, *init_data, *main_text, *main_data;
                   1230:        const uint8_t *boot_text;
                   1231:        uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
                   1232:        uint32_t boot_textsz;
                   1233:        firmware_handle_t fw;
                   1234:        u_char *dfw;
                   1235:        size_t size;
                   1236:        int error;
                   1237:
                   1238:        /* load firmware image from disk */
1.22.2.1! skrll    1239:        if ((error = firmware_open("if_iwn","iwlwifi-4965-1.ucode", &fw)) != 0) {
1.1       ober     1240:                aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
                   1241:                goto fail1;
                   1242:        }
1.8       blymn    1243:
1.1       ober     1244:        size = firmware_get_size(fw);
                   1245:
                   1246:        /* extract firmware header information */
                   1247:        if (size < sizeof (struct iwn_firmware_hdr)) {
                   1248:                aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n", size);
1.8       blymn    1249:
1.1       ober     1250:                error = EINVAL;
                   1251:                goto fail2;
                   1252:        }
                   1253:
                   1254:
                   1255:        if ((error = firmware_read(fw, 0, &hdr,
1.2       ober     1256:                    sizeof (struct iwn_firmware_hdr))) != 0) {
1.1       ober     1257:                aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
                   1258:                goto fail2;
                   1259:        }
                   1260:
                   1261:        main_textsz = le32toh(hdr.main_textsz);
                   1262:        main_datasz = le32toh(hdr.main_datasz);
                   1263:        init_textsz = le32toh(hdr.init_textsz);
                   1264:        init_datasz = le32toh(hdr.init_datasz);
                   1265:        boot_textsz = le32toh(hdr.boot_textsz);
                   1266:
                   1267:        /* sanity-check firmware segments sizes */
                   1268:        if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
                   1269:            main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
                   1270:            init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
                   1271:            init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
                   1272:            boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
                   1273:            (boot_textsz & 3) != 0) {
                   1274:                aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
                   1275:                error = EINVAL;
                   1276:                goto fail2;
                   1277:        }
                   1278:
                   1279:        /* check that all firmware segments are present */
                   1280:        if (size < sizeof (struct iwn_firmware_hdr) + main_textsz +
                   1281:            main_datasz + init_textsz + init_datasz + boot_textsz) {
                   1282:                aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n", size);
                   1283:                error = EINVAL;
                   1284:                goto fail2;
                   1285:        }
                   1286:
                   1287:        dfw = firmware_malloc(size);
                   1288:        if (dfw == NULL) {
                   1289:                aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
                   1290:                error = ENOMEM;
                   1291:                goto fail2;
                   1292:        }
                   1293:
                   1294:        if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
                   1295:                aprint_error_dev(sc->sc_dev, "can't get firmware\n");
                   1296:                goto fail2;
                   1297:        }
                   1298:
                   1299:        /* get pointers to firmware segments */
                   1300:        main_text = dfw + sizeof (struct iwn_firmware_hdr);
                   1301:        main_data = main_text + main_textsz;
                   1302:        init_text = main_data + main_datasz;
                   1303:        init_data = init_text + init_textsz;
                   1304:        boot_text = init_data + init_datasz;
                   1305:
                   1306:        /* copy initialization images into pre-allocated DMA-safe memory */
                   1307:        memcpy(dma->vaddr, init_data, init_datasz);
                   1308:        memcpy((char *)dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
                   1309:
                   1310:        /* tell adapter where to find initialization images */
                   1311:        iwn_mem_lock(sc);
                   1312:        iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
                   1313:        iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
                   1314:        iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
                   1315:            (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
                   1316:        iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
                   1317:        iwn_mem_unlock(sc);
                   1318:
                   1319:        /* load firmware boot code */
                   1320:        if ((error = iwn_load_microcode(sc, boot_text, boot_textsz)) != 0) {
                   1321:                aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
                   1322:                goto fail3;
                   1323:        }
                   1324:
                   1325:        /* now press "execute" ;-) */
                   1326:        IWN_WRITE(sc, IWN_RESET, 0);
                   1327:
1.8       blymn    1328:        /* ..and wait at most one second for adapter to initialize */
1.1       ober     1329:        if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
                   1330:                /* this isn't what was supposed to happen.. */
                   1331:                aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
                   1332:        }
                   1333:
                   1334:        /* copy runtime images into pre-allocated DMA-safe memory */
                   1335:        memcpy((char *)dma->vaddr, main_data, main_datasz);
                   1336:        memcpy((char *)dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
                   1337:
                   1338:        /* tell adapter where to find runtime images */
                   1339:        iwn_mem_lock(sc);
                   1340:        iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
                   1341:        iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
                   1342:        iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
                   1343:            (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
                   1344:        iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
                   1345:        iwn_mem_unlock(sc);
                   1346:
                   1347:        /* wait at most one second for second alive notification */
                   1348:        if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
                   1349:                /* this isn't what was supposed to happen.. */
                   1350:                aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
                   1351:        }
                   1352:
                   1353: fail3: firmware_free(dfw,size);
                   1354: fail2: firmware_close(fw);
                   1355: fail1: return error;
                   1356: }
                   1357:
                   1358: static void
                   1359: iwn_calib_timeout(void *arg)
                   1360: {
                   1361:        struct iwn_softc *sc = arg;
                   1362:        struct ieee80211com *ic = &sc->sc_ic;
                   1363:        int s;
                   1364:
                   1365:        /* automatic rate control triggered every 500ms */
                   1366:        if (ic->ic_fixed_rate == -1) {
                   1367:                s = splnet();
                   1368:                if (ic->ic_opmode == IEEE80211_M_STA)
                   1369:                        iwn_iter_func(sc, ic->ic_bss);
                   1370:                else
                   1371:                        ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
                   1372:                splx(s);
                   1373:        }
                   1374:
                   1375:        /* automatic calibration every 60s */
                   1376:        if (++sc->calib_cnt >= 120) {
                   1377:                DPRINTF(("sending request for statistics\n"));
                   1378:                (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
                   1379:                sc->calib_cnt = 0;
                   1380:        }
                   1381:
                   1382:        callout_schedule(&sc->calib_to, hz/2);
                   1383:
                   1384: }
                   1385:
                   1386: static void
                   1387: iwn_iter_func(void *arg, struct ieee80211_node *ni)
                   1388: {
                   1389:        struct iwn_softc *sc = arg;
                   1390:        struct iwn_node *wn = (struct iwn_node *)ni;
                   1391:
                   1392:        ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
                   1393: }
                   1394:
                   1395: static void
                   1396: iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
                   1397: {
                   1398:        struct iwn_rx_stat *stat;
                   1399:
                   1400:        DPRINTFN(2, ("received AMPDU stats\n"));
                   1401:        /* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
                   1402:        stat = (struct iwn_rx_stat *)(desc + 1);
                   1403:        memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
                   1404:        sc->last_rx_valid = 1;
                   1405: }
                   1406:
                   1407: void
                   1408: iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
                   1409:     struct iwn_rx_data *data)
                   1410: {
                   1411:        struct ieee80211com *ic = &sc->sc_ic;
                   1412:        struct ifnet *ifp = ic->ic_ifp;
                   1413:        struct iwn_rx_ring *ring = &sc->rxq;
                   1414:        struct iwn_rbuf *rbuf;
                   1415:        struct ieee80211_frame *wh;
                   1416:        struct ieee80211_node *ni;
                   1417:        struct mbuf *m, *mnew;
                   1418:        struct iwn_rx_stat *stat;
                   1419:        char *head;
                   1420:        uint32_t *tail;
                   1421:        int len, rssi;
                   1422:
                   1423:        if (desc->type == IWN_AMPDU_RX_DONE) {
                   1424:                /* check for prior AMPDU_RX_START */
                   1425:                if (!sc->last_rx_valid) {
                   1426:                        DPRINTF(("missing AMPDU_RX_START\n"));
                   1427:                        ifp->if_ierrors++;
                   1428:                        return;
                   1429:                }
                   1430:                sc->last_rx_valid = 0;
                   1431:                stat = &sc->last_rx_stat;
                   1432:        } else
                   1433:                stat = (struct iwn_rx_stat *)(desc + 1);
                   1434:
                   1435:        if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
                   1436:                aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
                   1437:                ifp->if_ierrors++;
                   1438:                return;
                   1439:        }
                   1440:
                   1441:        if (desc->type == IWN_AMPDU_RX_DONE) {
                   1442:                struct iwn_rx_ampdu *ampdu =
                   1443:                    (struct iwn_rx_ampdu *)(desc + 1);
                   1444:                head = (char *)(ampdu + 1);
                   1445:                len = le16toh(ampdu->len);
                   1446:        } else {
                   1447:                head = (char *)(stat + 1) + stat->cfg_phy_len;
                   1448:                len = le16toh(stat->len);
                   1449:        }
                   1450:
1.11      blymn    1451:        DPRINTF(("rx packet len %d\n", len));
1.1       ober     1452:        /* discard Rx frames with bad CRC early */
                   1453:        tail = (uint32_t *)(head + len);
                   1454:        if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
                   1455:                DPRINTFN(2, ("rx flags error %x\n", le32toh(*tail)));
                   1456:                ifp->if_ierrors++;
                   1457:                return;
                   1458:        }
                   1459:        /* XXX for ieee80211_find_rxnode() */
                   1460:        if (len < sizeof (struct ieee80211_frame)) {
                   1461:                DPRINTF(("frame too short: %d\n", len));
                   1462:                ic->ic_stats.is_rx_tooshort++;
                   1463:                ifp->if_ierrors++;
                   1464:                return;
                   1465:        }
                   1466:
                   1467:        m = data->m;
                   1468:
                   1469:        /* finalize mbuf */
                   1470:        m->m_pkthdr.rcvif = ifp;
                   1471:        m->m_data = head;
                   1472:        m->m_pkthdr.len = m->m_len = len;
                   1473:
1.17      cube     1474:        /*
                   1475:         * See comment in if_wpi.c:wpi_rx_intr() about locking
                   1476:         * nb_free_entries here.  In short:  it's not required.
                   1477:         */
1.18      freza    1478:        if (sc->rxq.nb_free_entries > 0) {
1.1       ober     1479:                MGETHDR(mnew, M_DONTWAIT, MT_DATA);
                   1480:                if (mnew == NULL) {
                   1481:                        ic->ic_stats.is_rx_nobuf++;
                   1482:                        ifp->if_ierrors++;
                   1483:                        return;
                   1484:                }
                   1485:
1.17      cube     1486:                rbuf = iwn_alloc_rbuf(sc);
                   1487:
1.1       ober     1488:                /* attach Rx buffer to mbuf */
                   1489:                MEXTADD(mnew, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
                   1490:                    rbuf);
                   1491:                mnew->m_flags |= M_EXT_RW;
                   1492:
                   1493:                data->m = mnew;
                   1494:
                   1495:                /* update Rx descriptor */
                   1496:                ring->desc[ring->cur] = htole32(rbuf->paddr >> 8);
                   1497:        } else {
                   1498:                /* no free rbufs, copy frame */
                   1499:                m = m_dup(m, 0, M_COPYALL, M_DONTWAIT);
                   1500:                if (m == NULL) {
                   1501:                        /* no free mbufs either, drop frame */
                   1502:                        ic->ic_stats.is_rx_nobuf++;
                   1503:                        ifp->if_ierrors++;
                   1504:                        return;
                   1505:                }
                   1506:        }
                   1507:
                   1508:        rssi = iwn_get_rssi(stat);
                   1509:
1.22      rtr      1510:        if (ic->ic_state == IEEE80211_S_SCAN)
1.1       ober     1511:                iwn_fix_channel(ic, m);
                   1512:
                   1513: #if NBPFILTER > 0
                   1514:        if (sc->sc_drvbpf != NULL) {
1.2       ober     1515:                struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1.1       ober     1516:
                   1517:                tap->wr_flags = 0;
                   1518:                tap->wr_chan_freq =
                   1519:                    htole16(ic->ic_channels[stat->chan].ic_freq);
                   1520:                tap->wr_chan_flags =
                   1521:                    htole16(ic->ic_channels[stat->chan].ic_flags);
                   1522:                tap->wr_dbm_antsignal = (int8_t)rssi;
                   1523:                tap->wr_dbm_antnoise = (int8_t)sc->noise;
                   1524:                tap->wr_tsft = stat->tstamp;
                   1525:                switch (stat->rate) {
1.2       ober     1526:                        /* CCK rates */
1.1       ober     1527:                case  10: tap->wr_rate =   2; break;
                   1528:                case  20: tap->wr_rate =   4; break;
                   1529:                case  55: tap->wr_rate =  11; break;
                   1530:                case 110: tap->wr_rate =  22; break;
1.2       ober     1531:                        /* OFDM rates */
1.1       ober     1532:                case 0xd: tap->wr_rate =  12; break;
                   1533:                case 0xf: tap->wr_rate =  18; break;
                   1534:                case 0x5: tap->wr_rate =  24; break;
                   1535:                case 0x7: tap->wr_rate =  36; break;
                   1536:                case 0x9: tap->wr_rate =  48; break;
                   1537:                case 0xb: tap->wr_rate =  72; break;
                   1538:                case 0x1: tap->wr_rate =  96; break;
                   1539:                case 0x3: tap->wr_rate = 108; break;
1.2       ober     1540:                        /* unknown rate: should not happen */
1.1       ober     1541:                default:  tap->wr_rate =   0;
                   1542:                }
                   1543:
                   1544:                bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
                   1545:        }
                   1546: #endif
                   1547:
                   1548:        /* grab a reference to the source node */
                   1549:        wh = mtod(m, struct ieee80211_frame *);
                   1550:        ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
                   1551:
                   1552:        /* send the frame to the 802.11 layer */
                   1553:        ieee80211_input(ic, m, ni, rssi, 0);
                   1554:
                   1555:        /* node is no longer needed */
                   1556:        ieee80211_free_node(ni);
                   1557: }
                   1558:
                   1559:
                   1560: /*
                   1561:  * XXX: Hack to set the current channel to the value advertised in beacons or
                   1562:  * probe responses. Only used during AP detection.
                   1563:  * XXX: Duplicated from if_iwi.c
                   1564:  */
                   1565: static void
                   1566: iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
                   1567: {
                   1568:        struct ieee80211_frame *wh;
                   1569:        uint8_t subtype;
                   1570:        uint8_t *frm, *efrm;
                   1571:
                   1572:        wh = mtod(m, struct ieee80211_frame *);
                   1573:
                   1574:        if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
                   1575:                return;
                   1576:
                   1577:        subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
                   1578:
                   1579:        if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
                   1580:            subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
                   1581:                return;
                   1582:
                   1583:        frm = (uint8_t *)(wh + 1);
                   1584:        efrm = mtod(m, uint8_t *) + m->m_len;
                   1585:
                   1586:        frm += 12;      /* skip tstamp, bintval and capinfo fields */
                   1587:        while (frm < efrm) {
                   1588:                if (*frm == IEEE80211_ELEMID_DSPARMS)
                   1589: #if IEEE80211_CHAN_MAX < 255
1.2       ober     1590:                        if (frm[2] <= IEEE80211_CHAN_MAX)
1.1       ober     1591: #endif
1.2       ober     1592:                                ic->ic_curchan = &ic->ic_channels[frm[2]];
1.1       ober     1593:
                   1594:                frm += frm[1] + 2;
                   1595:        }
                   1596: }
                   1597:
                   1598: static void
                   1599: iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
                   1600: {
                   1601:        struct ieee80211com *ic = &sc->sc_ic;
                   1602:        struct iwn_calib_state *calib = &sc->calib;
                   1603:        struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
                   1604:
                   1605:        /* ignore beacon statistics received during a scan */
                   1606:        if (ic->ic_state != IEEE80211_S_RUN)
                   1607:                return;
                   1608:
                   1609:        DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
                   1610:        sc->calib_cnt = 0;      /* reset timeout */
                   1611:
                   1612:        /* test if temperature has changed */
                   1613:        if (stats->general.temp != sc->rawtemp) {
                   1614:                int temp;
                   1615:
                   1616:                sc->rawtemp = stats->general.temp;
                   1617:                temp = iwn_get_temperature(sc);
                   1618:                DPRINTFN(2, ("temperature=%d\n", temp));
                   1619:
                   1620:                /* update Tx power if need be */
                   1621:                iwn_power_calibration(sc, temp);
                   1622:        }
                   1623:
                   1624:        if (desc->type != IWN_BEACON_STATISTICS)
1.15      christos 1625:                return; /* reply to a statistics request */
1.1       ober     1626:
                   1627:        sc->noise = iwn_get_noise(&stats->rx.general);
                   1628:        DPRINTFN(3, ("noise=%d\n", sc->noise));
                   1629:
                   1630:        /* test that RSSI and noise are present in stats report */
                   1631:        if (le32toh(stats->rx.general.flags) != 1) {
                   1632:                DPRINTF(("received statistics without RSSI\n"));
                   1633:                return;
                   1634:        }
                   1635:
                   1636:        if (calib->state == IWN_CALIB_STATE_ASSOC)
                   1637:                iwn_compute_differential_gain(sc, &stats->rx.general);
                   1638:        else if (calib->state == IWN_CALIB_STATE_RUN)
                   1639:                iwn_tune_sensitivity(sc, &stats->rx);
                   1640: }
                   1641:
                   1642: static void
                   1643: iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
                   1644: {
                   1645:        struct ifnet *ifp = sc->sc_ic.ic_ifp;
                   1646:        struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
                   1647:        struct iwn_tx_data *txdata = &ring->data[desc->idx];
                   1648:        struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
                   1649:        struct iwn_node *wn = (struct iwn_node *)txdata->ni;
                   1650:        uint32_t status;
                   1651:
                   1652:        DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1.2       ober     1653:                "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
                   1654:                stat->nkill, stat->rate, le16toh(stat->duration),
                   1655:                le32toh(stat->status)));
1.1       ober     1656:
                   1657:        /*
                   1658:         * Update rate control statistics for the node.
                   1659:         */
                   1660:        wn->amn.amn_txcnt++;
                   1661:        if (stat->ntries > 0) {
                   1662:                DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
                   1663:                wn->amn.amn_retrycnt++;
                   1664:        }
                   1665:
                   1666:        status = le32toh(stat->status) & 0xff;
                   1667:        if (status != 1 && status != 2)
                   1668:                ifp->if_oerrors++;
                   1669:        else
                   1670:                ifp->if_opackets++;
                   1671:
                   1672:        bus_dmamap_unload(sc->sc_dmat, txdata->map);
                   1673:        m_freem(txdata->m);
                   1674:        txdata->m = NULL;
                   1675:        ieee80211_free_node(txdata->ni);
                   1676:        txdata->ni = NULL;
                   1677:
                   1678:        ring->queued--;
                   1679:
                   1680:        sc->sc_tx_timer = 0;
                   1681:        ifp->if_flags &= ~IFF_OACTIVE;
                   1682:        iwn_start(ifp);
                   1683: }
                   1684:
                   1685: static void
                   1686: iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
                   1687: {
                   1688:        struct iwn_tx_ring *ring = &sc->txq[4];
                   1689:        struct iwn_tx_data *data;
                   1690:
                   1691:        if ((desc->qid & 0xf) != 4)
1.15      christos 1692:                return; /* not a command ack */
1.1       ober     1693:
                   1694:        data = &ring->data[desc->idx];
                   1695:
                   1696:        /* if the command was mapped in a mbuf, free it */
                   1697:        if (data->m != NULL) {
                   1698:                bus_dmamap_unload(sc->sc_dmat, data->map);
                   1699:                m_freem(data->m);
                   1700:                data->m = NULL;
                   1701:        }
                   1702:
                   1703:        wakeup(&ring->cmd[desc->idx]);
                   1704: }
                   1705:
                   1706: static void
1.22.2.1! skrll    1707: iwn_microcode_ready(struct iwn_softc *sc, struct iwn_ucode_info *uc)
        !          1708: {
        !          1709:
        !          1710:        /* the microcontroller is ready */
        !          1711:        DPRINTF(("microcode alive notification version=%d.%d "
        !          1712:                 "subtype=%x alive=%x\n", uc->major, uc->minor,
        !          1713:                 uc->subtype, le32toh(uc->valid)));
        !          1714:
        !          1715:        if (le32toh(uc->valid) != 1) {
        !          1716:                aprint_error_dev(sc->sc_dev, "microcontroller initialization "
        !          1717:                                 "failed\n");
        !          1718:                return;
        !          1719:        }
        !          1720:        if (uc->subtype == IWN_UCODE_INIT) {
        !          1721:                /* save microcontroller's report */
        !          1722:                memcpy(&sc->ucode_info, uc, sizeof (*uc));
        !          1723:        }
        !          1724: }
        !          1725:
        !          1726:
        !          1727: static void
1.1       ober     1728: iwn_notif_intr(struct iwn_softc *sc)
                   1729: {
                   1730:        struct ieee80211com *ic = &sc->sc_ic;
                   1731:        struct ifnet *ifp = ic->ic_ifp;
1.22.2.1! skrll    1732:        struct iwn_rx_data *data;
        !          1733:        struct iwn_rx_desc *desc;
1.1       ober     1734:        uint16_t hw;
                   1735:
                   1736:        hw = le16toh(sc->shared->closed_count);
1.22.2.1! skrll    1737:
        !          1738:        /*
        !          1739:         * If the radio is disabled then down the interface and stop
        !          1740:         * processing - scan the queue for a microcode load command
        !          1741:         * result.  It is the only thing that we can do with the radio
        !          1742:         * off.
        !          1743:         */
        !          1744:        if (!sc->sc_radio) {
        !          1745:                while (sc->rxq.cur != hw) {
        !          1746:                        data = &sc->rxq.data[sc->rxq.cur];
        !          1747:                        desc = (void *)data->m->m_ext.ext_buf;
        !          1748:                        if (desc->type == IWN_UC_READY) {
        !          1749:                                iwn_microcode_ready(sc,
        !          1750:                                    (struct iwn_ucode_info *)(desc + 1));
        !          1751:                        } else if (desc->type == IWN_STATE_CHANGED) {
        !          1752:                                uint32_t *status = (uint32_t *)(desc + 1);
        !          1753:
        !          1754:                                /* enabled/disabled notification */
        !          1755:                                DPRINTF(("state changed to %x\n",
        !          1756:                                         le32toh(*status)));
        !          1757:
        !          1758:                                sc->sc_radio = !(le32toh(*status) & 1);
        !          1759:                        }
        !          1760:
        !          1761:                        sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
        !          1762:                }
        !          1763:
        !          1764:                if (!sc->sc_radio) {
        !          1765:                        ifp->if_flags &= ~IFF_UP;
        !          1766:                        iwn_stop(ifp, 1);
        !          1767:                }
        !          1768:
        !          1769:                return;
        !          1770:        }
        !          1771:
1.1       ober     1772:        while (sc->rxq.cur != hw) {
1.22.2.1! skrll    1773:                data = &sc->rxq.data[sc->rxq.cur];
        !          1774:                desc = (void *)data->m->m_ext.ext_buf;
1.1       ober     1775:
                   1776:                DPRINTFN(4,("rx notification qid=%x idx=%d flags=%x type=%d "
1.2       ober     1777:                        "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
                   1778:                        le32toh(desc->len)));
1.1       ober     1779:
                   1780:                if (!(desc->qid & 0x80))        /* reply to a command */
                   1781:                        iwn_cmd_intr(sc, desc);
                   1782:
                   1783:                switch (desc->type) {
                   1784:                case IWN_RX_DONE:
                   1785:                case IWN_AMPDU_RX_DONE:
                   1786:                        iwn_rx_intr(sc, desc, data);
                   1787:                        break;
                   1788:
                   1789:                case IWN_AMPDU_RX_START:
                   1790:                        iwn_ampdu_rx_start(sc, desc);
                   1791:                        break;
                   1792:
                   1793:                case IWN_TX_DONE:
                   1794:                        /* a 802.11 frame has been transmitted */
                   1795:                        iwn_tx_intr(sc, desc);
                   1796:                        break;
                   1797:
                   1798:                case IWN_RX_STATISTICS:
                   1799:                case IWN_BEACON_STATISTICS:
                   1800:                        iwn_rx_statistics(sc, desc);
                   1801:                        break;
                   1802:
                   1803:                case IWN_BEACON_MISSED:
                   1804:                {
                   1805:                        struct iwn_beacon_missed *miss =
                   1806:                            (struct iwn_beacon_missed *)(desc + 1);
                   1807:                        /*
                   1808:                         * If more than 5 consecutive beacons are missed,
                   1809:                         * reinitialize the sensitivity state machine.
                   1810:                         */
                   1811:                        DPRINTFN(2, ("beacons missed %d/%d\n",
1.2       ober     1812:                                le32toh(miss->consecutive), le32toh(miss->total)));
1.1       ober     1813:                        if (ic->ic_state == IEEE80211_S_RUN &&
                   1814:                            le32toh(miss->consecutive) > 5)
                   1815:                                (void)iwn_init_sensitivity(sc);
                   1816:                        break;
                   1817:                }
                   1818:
                   1819:                case IWN_UC_READY:
                   1820:                {
1.22.2.1! skrll    1821:                        iwn_microcode_ready(sc,
        !          1822:                            (struct iwn_ucode_info *)(desc + 1));
1.1       ober     1823:                        break;
                   1824:                }
                   1825:                case IWN_STATE_CHANGED:
                   1826:                {
                   1827:                        uint32_t *status = (uint32_t *)(desc + 1);
                   1828:
                   1829:                        /* enabled/disabled notification */
                   1830:                        DPRINTF(("state changed to %x\n", le32toh(*status)));
                   1831:
1.22.2.1! skrll    1832:                        sc->sc_radio = !(le32toh(*status) & 1);
1.1       ober     1833:                        if (le32toh(*status) & 1) {
                   1834:                                /* the radio button has to be pushed */
                   1835:                                aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
                   1836:                                /* turn the interface down */
                   1837:                                ifp->if_flags &= ~IFF_UP;
                   1838:                                iwn_stop(ifp, 1);
1.15      christos 1839:                                return; /* no further processing */
1.1       ober     1840:                        }
                   1841:                        break;
                   1842:                }
                   1843:                case IWN_START_SCAN:
                   1844:                {
                   1845:                        struct iwn_start_scan *scan =
                   1846:                            (struct iwn_start_scan *)(desc + 1);
                   1847:
                   1848:                        DPRINTFN(2, ("scanning channel %d status %x\n",
1.2       ober     1849:                                scan->chan, le32toh(scan->status)));
1.1       ober     1850:
                   1851:                        /* fix current channel */
                   1852:                        ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
                   1853:                        break;
                   1854:                }
                   1855:                case IWN_STOP_SCAN:
                   1856:                {
                   1857:                        struct iwn_stop_scan *scan =
                   1858:                            (struct iwn_stop_scan *)(desc + 1);
                   1859:
                   1860:                        DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1.2       ober     1861:                                scan->nchan, scan->status, scan->chan));
1.1       ober     1862:
                   1863:                        if (scan->status == 1 && scan->chan <= 14) {
                   1864:                                /*
                   1865:                                 * We just finished scanning 802.11g channels,
                   1866:                                 * start scanning 802.11a ones.
                   1867:                                 */
                   1868:                                if (iwn_scan(sc, IEEE80211_CHAN_A) == 0)
                   1869:                                        break;
                   1870:                        }
                   1871:                        sc->is_scanning = false;
                   1872:                        ieee80211_end_scan(ic);
                   1873:                        break;
                   1874:                }
                   1875:                }
                   1876:
                   1877:                sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
                   1878:        }
                   1879:
                   1880:        /* tell the firmware what we have processed */
                   1881:        hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
                   1882:        IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
                   1883: }
                   1884:
                   1885: static int
                   1886: iwn_intr(void *arg)
                   1887: {
                   1888:        struct iwn_softc *sc = arg;
                   1889:        struct ifnet *ifp = sc->sc_ic.ic_ifp;
                   1890:        uint32_t r1, r2;
                   1891:
                   1892:        /* disable interrupts */
                   1893:        IWN_WRITE(sc, IWN_MASK, 0);
                   1894:
                   1895:        r1 = IWN_READ(sc, IWN_INTR);
                   1896:        r2 = IWN_READ(sc, IWN_INTR_STATUS);
                   1897:
                   1898:        if (r1 == 0 && r2 == 0) {
                   1899:                if (ifp->if_flags & IFF_UP)
                   1900:                        IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
                   1901:                return 0;       /* not for us */
                   1902:        }
                   1903:
                   1904:        if (r1 == 0xffffffff)
                   1905:                return 0;       /* hardware gone */
                   1906:
                   1907:        /* ack interrupts */
                   1908:        IWN_WRITE(sc, IWN_INTR, r1);
                   1909:        IWN_WRITE(sc, IWN_INTR_STATUS, r2);
                   1910:
                   1911:        DPRINTFN(5, ("interrupt reg1=%x reg2=%x\n", r1, r2));
                   1912:
                   1913:        if (r1 & IWN_RF_TOGGLED) {
                   1914:                uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1.8       blymn    1915:                aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
1.1       ober     1916:                    (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1.22.2.1! skrll    1917:                sc->sc_radio = (tmp & IWN_GPIO_RF_ENABLED);
1.1       ober     1918:        }
                   1919:        if (r1 & IWN_CT_REACHED) {
                   1920:                aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
                   1921:        }
                   1922:        if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
                   1923:                aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
                   1924:                sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
                   1925:                iwn_stop(sc->sc_ic.ic_ifp, 1);
                   1926:                return 1;
                   1927:        }
                   1928:
                   1929:        if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) ||
                   1930:            (r2 & IWN_RX_STATUS_INTR))
                   1931:                iwn_notif_intr(sc);
                   1932:
                   1933:        if (r1 & IWN_ALIVE_INTR)
                   1934:                wakeup(sc);
                   1935:
                   1936:        /* re-enable interrupts */
                   1937:        if (ifp->if_flags & IFF_UP)
                   1938:                IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
                   1939:
                   1940:        return 1;
                   1941: }
                   1942:
                   1943: static uint8_t
                   1944: iwn_plcp_signal(int rate)
                   1945: {
                   1946:        switch (rate) {
1.2       ober     1947:                /* CCK rates (returned values are device-dependent) */
1.1       ober     1948:        case 2:         return 10;
                   1949:        case 4:         return 20;
                   1950:        case 11:        return 55;
                   1951:        case 22:        return 110;
                   1952:
1.2       ober     1953:                /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
                   1954:                /* R1-R4, (u)ral is R4-R1 */
1.1       ober     1955:        case 12:        return 0xd;
                   1956:        case 18:        return 0xf;
                   1957:        case 24:        return 0x5;
                   1958:        case 36:        return 0x7;
                   1959:        case 48:        return 0x9;
                   1960:        case 72:        return 0xb;
                   1961:        case 96:        return 0x1;
                   1962:        case 108:       return 0x3;
                   1963:        case 120:       return 0x3;
                   1964:        }
                   1965:        /* unknown rate (should not get there) */
                   1966:        return 0;
                   1967: }
                   1968:
                   1969: /* determine if a given rate is CCK or OFDM */
                   1970: #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
                   1971:
                   1972: static int
                   1973: iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
                   1974:     int ac)
                   1975: {
                   1976:        struct ieee80211com *ic = &sc->sc_ic;
                   1977:        struct iwn_tx_ring *ring = &sc->txq[ac];
                   1978:        struct iwn_tx_desc *desc;
                   1979:        struct iwn_tx_data *data;
                   1980:        struct iwn_tx_cmd *cmd;
                   1981:        struct iwn_cmd_data *tx;
                   1982:        struct ieee80211_frame *wh;
                   1983:        struct ieee80211_key *k;
                   1984:        const struct chanAccParams *cap;
                   1985:        struct mbuf *mnew;
                   1986:        bus_addr_t paddr;
                   1987:        uint32_t flags;
                   1988:        uint8_t type;
                   1989:        int i, error, pad, rate, hdrlen, noack = 0;
                   1990:
1.11      blymn    1991:        DPRINTFN(5, ("iwn_tx_data entry\n"));
                   1992:
1.1       ober     1993:        desc = &ring->desc[ring->cur];
                   1994:        data = &ring->data[ring->cur];
                   1995:
                   1996:        wh = mtod(m0, struct ieee80211_frame *);
                   1997:        type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
                   1998:
                   1999:        if (IEEE80211_QOS_HAS_SEQ(wh)) {
                   2000:                hdrlen = sizeof (struct ieee80211_qosframe);
                   2001:                cap = &ic->ic_wme.wme_chanParams;
                   2002:                noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
                   2003:        } else
                   2004:                hdrlen = sizeof (struct ieee80211_frame);
                   2005:
                   2006:        if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
                   2007:                k = ieee80211_crypto_encap(ic, ni, m0);
                   2008:                if (k == NULL) {
                   2009:                        m_freem(m0);
                   2010:                        return ENOBUFS;
                   2011:                }
                   2012:                /* packet header may have moved, reset our local pointer */
                   2013:                wh = mtod(m0, struct ieee80211_frame *);
                   2014:        }
                   2015:
                   2016:        /* pickup a rate */
1.11      blymn    2017:        if (type == IEEE80211_FC0_TYPE_MGT) {
1.1       ober     2018:                /* mgmt frames are sent at the lowest available bit-rate */
                   2019:                rate = ni->ni_rates.rs_rates[0];
                   2020:        } else {
1.2       ober     2021:                if (ic->ic_fixed_rate != -1) {
                   2022:                        rate = ic->ic_sup_rates[ic->ic_curmode].
                   2023:                            rs_rates[ic->ic_fixed_rate];
                   2024:                } else
                   2025:                        rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1.1       ober     2026:        }
                   2027:        rate &= IEEE80211_RATE_VAL;
                   2028:
                   2029: #if NBPFILTER > 0
                   2030:        if (sc->sc_drvbpf != NULL) {
                   2031:                struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
                   2032:
                   2033:                tap->wt_flags = 0;
                   2034:                tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
                   2035:                tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
                   2036:                tap->wt_rate = rate;
                   2037:                tap->wt_hwqueue = ac;
                   2038:                if (wh->i_fc[1] & IEEE80211_FC1_WEP)
                   2039:                        tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
                   2040:
                   2041:                bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
                   2042:        }
                   2043: #endif
                   2044:
                   2045:        cmd = &ring->cmd[ring->cur];
                   2046:        cmd->code = IWN_CMD_TX_DATA;
                   2047:        cmd->flags = 0;
                   2048:        cmd->qid = ring->qid;
                   2049:        cmd->idx = ring->cur;
1.8       blymn    2050:
1.1       ober     2051:        tx = (struct iwn_cmd_data *)cmd->data;
1.8       blymn    2052:
1.1       ober     2053:        flags = IWN_TX_AUTO_SEQ;
                   2054:        if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)){
                   2055:                flags |= IWN_TX_NEED_ACK;
                   2056:        }else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1.9       blymn    2057:                flags |= (IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP);
1.8       blymn    2058:
1.20      blymn    2059:        if (IEEE80211_IS_MULTICAST(wh->i_addr1)
                   2060:            || (type != IEEE80211_FC0_TYPE_DATA))
                   2061:                tx->id = IWN_ID_BROADCAST;
                   2062:        else
                   2063:                tx->id = IWN_ID_BSS;
1.1       ober     2064:
1.11      blymn    2065:        DPRINTFN(5, ("addr1: %x:%x:%x:%x:%x:%x, id = 0x%x\n",
                   2066:                     wh->i_addr1[0], wh->i_addr1[1], wh->i_addr1[2],
                   2067:                     wh->i_addr1[3], wh->i_addr1[4], wh->i_addr1[5], tx->id));
                   2068:
1.1       ober     2069:        if (type == IEEE80211_FC0_TYPE_MGT) {
                   2070:                uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
                   2071:
                   2072:                /* tell h/w to set timestamp in probe responses */
1.11      blymn    2073:                if ((subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) ||
                   2074:                    (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ))
1.1       ober     2075:                        flags |= IWN_TX_INSERT_TSTAMP;
                   2076:
                   2077:                if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1.20      blymn    2078:                    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ ||
                   2079:                    subtype == IEEE80211_FC0_SUBTYPE_AUTH ||
                   2080:                    subtype == IEEE80211_FC0_SUBTYPE_DEAUTH) {
1.11      blymn    2081:                        flags &= ~IWN_TX_NEED_RTS;
                   2082:                        flags |= IWN_TX_NEED_CTS;
1.1       ober     2083:                        tx->timeout = htole16(3);
1.11      blymn    2084:                } else
1.1       ober     2085:                        tx->timeout = htole16(2);
                   2086:        } else
                   2087:                tx->timeout = htole16(0);
1.8       blymn    2088:
1.1       ober     2089:        if (hdrlen & 3) {
                   2090:                /* first segment's length must be a multiple of 4 */
                   2091:                flags |= IWN_TX_NEED_PADDING;
                   2092:                pad = 4 - (hdrlen & 3);
                   2093:        } else
                   2094:                pad = 0;
                   2095:
1.11      blymn    2096:        if (type == IEEE80211_FC0_TYPE_CTL) {
                   2097:                uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
                   2098:
                   2099:                /* tell h/w to set timestamp in probe responses */
                   2100:                if (subtype == 0x0080) /* linux says this is "back request" */
                   2101:                        /* linux says (1 << 6) is IMM_BA_RSP_MASK */
                   2102:                        flags |= (IWN_TX_NEED_ACK | (1 << 6));
                   2103:        }
                   2104:
                   2105:
1.1       ober     2106:        tx->flags = htole32(flags);
                   2107:        tx->len = htole16(m0->m_pkthdr.len);
                   2108:        tx->rate = iwn_plcp_signal(rate);
                   2109:        tx->rts_ntries = 60;
                   2110:        tx->data_ntries = 15;
                   2111:        tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
                   2112:
                   2113:        /* XXX alternate between Ant A and Ant B ? */
                   2114:        tx->rflags = IWN_RFLAG_ANT_B;
                   2115:        if (tx->id == IWN_ID_BROADCAST) {
                   2116:                tx->ridx = IWN_MAX_TX_RETRIES - 1;
                   2117:                if (!IWN_RATE_IS_OFDM(rate))
                   2118:                        tx->rflags |= IWN_RFLAG_CCK;
                   2119:        } else {
                   2120:                tx->ridx = 0;
                   2121:                /* tell adapter to ignore rflags */
                   2122:                tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
                   2123:        }
                   2124:
                   2125:        /* copy and trim IEEE802.11 header */
1.20      blymn    2126:        memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
1.1       ober     2127:        m_adj(m0, hdrlen);
                   2128:
                   2129:        error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
                   2130:            BUS_DMA_WRITE | BUS_DMA_NOWAIT);
                   2131:        if (error != 0 && error != EFBIG) {
                   2132:                aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
                   2133:                m_freem(m0);
                   2134:                return error;
                   2135:        }
                   2136:        if (error != 0) {
                   2137:                /* too many fragments, linearize */
                   2138:
                   2139:                MGETHDR(mnew, M_DONTWAIT, MT_DATA);
                   2140:                if (mnew == NULL) {
                   2141:                        m_freem(m0);
                   2142:                        return ENOMEM;
                   2143:                }
                   2144:                M_COPY_PKTHDR(mnew, m0);
                   2145:                if (m0->m_pkthdr.len > MHLEN) {
                   2146:                        MCLGET(mnew, M_DONTWAIT);
                   2147:                        if (!(mnew->m_flags & M_EXT)) {
                   2148:                                m_freem(m0);
                   2149:                                m_freem(mnew);
                   2150:                                return ENOMEM;
                   2151:                        }
                   2152:                }
                   2153:
                   2154:                m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
                   2155:                m_freem(m0);
                   2156:                mnew->m_len = mnew->m_pkthdr.len;
                   2157:                m0 = mnew;
                   2158:
                   2159:                error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
                   2160:                    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
                   2161:                if (error != 0) {
                   2162:                        aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
                   2163:                        m_freem(m0);
                   2164:                        return error;
                   2165:                }
                   2166:        }
                   2167:
                   2168:        data->m = m0;
                   2169:        data->ni = ni;
                   2170:
                   2171:        DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1.2       ober     2172:                ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1.1       ober     2173:
                   2174:        paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
                   2175:        tx->loaddr = htole32(paddr + 4 +
                   2176:            offsetof(struct iwn_cmd_data, ntries));
1.15      christos 2177:        tx->hiaddr = 0; /* limit to 32-bit physical addresses */
1.1       ober     2178:
                   2179:        /* first scatter/gather segment is used by the tx data command */
                   2180:        IWN_SET_DESC_NSEGS(desc, 1 + data->map->dm_nsegs);
                   2181:        IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
                   2182:        for (i = 1; i <= data->map->dm_nsegs; i++) {
                   2183:                IWN_SET_DESC_SEG(desc, i, data->map->dm_segs[i - 1].ds_addr,
1.2       ober     2184:                    data->map->dm_segs[i - 1].ds_len);
1.1       ober     2185:        }
                   2186:        sc->shared->len[ring->qid][ring->cur] =
                   2187:            htole16(hdrlen + m0->m_pkthdr.len + 8);
                   2188:        if (ring->cur < IWN_TX_WINDOW) {
                   2189:                sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
                   2190:                    htole16(hdrlen + m0->m_pkthdr.len + 8);
                   2191:        }
                   2192:
                   2193:        ring->queued++;
                   2194:
1.20      blymn    2195:        bus_dmamap_sync(sc->sc_dmat, data->map, 0,
                   2196:            data->map->dm_mapsize /* calc? */, BUS_DMASYNC_PREWRITE);
                   2197:
1.1       ober     2198:        /* kick ring */
                   2199:        ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
                   2200:        IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
                   2201:
                   2202:        return 0;
                   2203: }
                   2204:
                   2205: static void
                   2206: iwn_start(struct ifnet *ifp)
                   2207: {
                   2208:        struct iwn_softc *sc = ifp->if_softc;
                   2209:        struct ieee80211com *ic = &sc->sc_ic;
                   2210:        struct ieee80211_node *ni;
                   2211:        struct ether_header *eh;
                   2212:        struct mbuf *m0;
                   2213:        int ac;
                   2214:
1.11      blymn    2215:        DPRINTFN(5, ("iwn_start enter\n"));
                   2216:
1.1       ober     2217:        /*
                   2218:         * net80211 may still try to send management frames even if the
1.22.2.1! skrll    2219:         * IFF_RUNNING flag is not set... Also, don't bother if the radio
        !          2220:         * is not enabled.
1.1       ober     2221:         */
1.22.2.1! skrll    2222:        if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
        !          2223:            !sc->sc_radio)
1.1       ober     2224:                return;
                   2225:
                   2226:        for (;;) {
                   2227:                IF_DEQUEUE(&ic->ic_mgtq, m0);
                   2228:                if (m0 != NULL) {
                   2229:                        /* management frames go into ring 0 */
1.8       blymn    2230:
1.1       ober     2231:
                   2232:                        ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
                   2233:                        m0->m_pkthdr.rcvif = NULL;
                   2234:
                   2235:                        /* management goes into ring 0 */
                   2236:                        if (sc->txq[0].queued > sc->txq[0].count - 8) {
1.2       ober     2237:                                ifp->if_oerrors++;
                   2238:                                continue;
1.1       ober     2239:                        }
                   2240:
                   2241: #if NBPFILTER > 0
                   2242:                        if (ic->ic_rawbpf != NULL)
                   2243:                                bpf_mtap(ic->ic_rawbpf, m0);
                   2244: #endif
                   2245:                        if (iwn_tx_data(sc, m0, ni, 0) != 0) {
1.2       ober     2246:                                ifp->if_oerrors++;
                   2247:                                break;
1.1       ober     2248:                        }
                   2249:                } else {
                   2250:                        if (ic->ic_state != IEEE80211_S_RUN)
                   2251:                                break;
                   2252:                        IFQ_POLL(&ifp->if_snd, m0);
                   2253:                        if (m0 == NULL)
                   2254:                                break;
1.8       blymn    2255:
1.1       ober     2256:                        if (m0->m_len < sizeof (*eh) &&
1.10      degroote 2257:                            (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1.2       ober     2258:                                ifp->if_oerrors++;
                   2259:                                continue;
1.1       ober     2260:                        }
                   2261:                        eh = mtod(m0, struct ether_header *);
                   2262:                        ni = ieee80211_find_txnode(ic, eh->ether_dhost);
                   2263:                        if (ni == NULL) {
                   2264:                                m_freem(m0);
                   2265:                                ifp->if_oerrors++;
                   2266:                                continue;
                   2267:                        }
                   2268:                        /* classify mbuf so we can find which tx ring to use */
                   2269:                        if (ieee80211_classify(ic, m0, ni) != 0) {
                   2270:                                m_freem(m0);
                   2271:                                ieee80211_free_node(ni);
                   2272:                                ifp->if_oerrors++;
                   2273:                                continue;
                   2274:                        }
1.8       blymn    2275:
1.1       ober     2276:                        /* no QoS encapsulation for EAPOL frames */
                   2277:                        ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1.2       ober     2278:                            M_WME_GETAC(m0) : WME_AC_BE;
1.8       blymn    2279:
1.1       ober     2280:                        if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1.8       blymn    2281:
1.1       ober     2282:                                /* there is no place left in this ring */
                   2283:                                ifp->if_flags |= IFF_OACTIVE;
1.2       ober     2284:                                break;
1.1       ober     2285:                        }
                   2286:                        IFQ_DEQUEUE(&ifp->if_snd, m0);
                   2287: #if NBPFILTER > 0
                   2288:                        if (ifp->if_bpf != NULL)
                   2289:                                bpf_mtap(ifp->if_bpf, m0);
                   2290: #endif
                   2291:                        m0 = ieee80211_encap(ic, m0, ni);
                   2292:                        if (m0 == NULL) {
                   2293:                                ieee80211_free_node(ni);
                   2294:                                ifp->if_oerrors++;
                   2295:                                continue;
                   2296:                        }
                   2297: #if NBPFILTER > 0
                   2298:                        if (ic->ic_rawbpf != NULL)
                   2299:                                bpf_mtap(ic->ic_rawbpf, m0);
                   2300: #endif
                   2301:                        if (iwn_tx_data(sc, m0, ni, ac) != 0) {
                   2302:                                ieee80211_free_node(ni);
                   2303:                                ifp->if_oerrors++;
                   2304:                                break;
                   2305:                        }
                   2306:                }
                   2307:
                   2308:                sc->sc_tx_timer = 5;
                   2309:                ifp->if_timer = 1;
                   2310:        }
                   2311: }
                   2312:
                   2313: static void
                   2314: iwn_watchdog(struct ifnet *ifp)
                   2315: {
                   2316:        struct iwn_softc *sc = ifp->if_softc;
                   2317:
                   2318:        ifp->if_timer = 0;
                   2319:
                   2320:        if (sc->sc_tx_timer > 0) {
                   2321:                if (--sc->sc_tx_timer == 0) {
1.8       blymn    2322:                        aprint_error_dev(sc->sc_dev, "device timeout\n");
1.1       ober     2323:                        ifp->if_flags &= ~IFF_UP;
                   2324:                        iwn_stop(ifp, 1);
                   2325:                        ifp->if_oerrors++;
                   2326:                        return;
                   2327:                }
                   2328:                ifp->if_timer = 1;
                   2329:        }
                   2330:
                   2331:        ieee80211_watchdog(&sc->sc_ic);
                   2332: }
                   2333:
                   2334: static int
                   2335: iwn_ioctl(struct ifnet *ifp, u_long cmd, void * data)
                   2336: {
                   2337:
1.2       ober     2338: #define IS_RUNNING(ifp)                                                        \
1.1       ober     2339:        ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1.8       blymn    2340:
1.1       ober     2341:        struct iwn_softc *sc = ifp->if_softc;
                   2342:        struct ieee80211com *ic = &sc->sc_ic;
                   2343:        int s, error = 0;
                   2344:
                   2345:        s = splnet();
                   2346:
                   2347:        switch (cmd) {
                   2348:        case SIOCSIFFLAGS:
1.22.2.1! skrll    2349:                if ((error = ifioctl_common(ifp, cmd, data)) != 0)
        !          2350:                        break;
1.1       ober     2351:                if (ifp->if_flags & IFF_UP) {
1.22.2.1! skrll    2352:                        /*
        !          2353:                         * resync the radio state just in case we missed
        !          2354:                         * and event.
        !          2355:                         */
        !          2356:                        sc->sc_radio =
        !          2357:                            (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED);
        !          2358:
        !          2359:                        if (!sc->sc_radio) {
        !          2360:                                ifp->if_flags &= ~IFF_UP;
        !          2361:                                error = EBUSY; /* XXX not really but same as elsewhere in driver */
        !          2362:                                if (ifp->if_flags & IFF_RUNNING)
        !          2363:                                        iwn_stop(ifp, 1);
        !          2364:                        } else if (!(ifp->if_flags & IFF_RUNNING))
1.1       ober     2365:                                iwn_init(ifp);
                   2366:                } else {
                   2367:                        if (ifp->if_flags & IFF_RUNNING)
                   2368:                                iwn_stop(ifp, 1);
                   2369:                }
                   2370:                break;
                   2371:
                   2372:        case SIOCADDMULTI:
                   2373:        case SIOCDELMULTI:
                   2374:                /* XXX no h/w multicast filter? --dyoung */
                   2375:                if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
                   2376:                        /* setup multicast filter, etc */
                   2377:                        error = 0;
                   2378:                }
                   2379:                break;
                   2380:
                   2381:        default:
                   2382:                error = ieee80211_ioctl(ic, cmd, data);
                   2383:        }
                   2384:
                   2385:        if (error == ENETRESET) {
1.8       blymn    2386:                if (IS_RUNNING(ifp) &&
1.1       ober     2387:                    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
                   2388:                        iwn_init(ifp);
                   2389:                error = 0;
                   2390:        }
                   2391:
                   2392:        splx(s);
                   2393:        return error;
                   2394:
                   2395: #undef IS_RUNNING
                   2396: }
                   2397:
                   2398: static void
                   2399: iwn_read_eeprom(struct iwn_softc *sc)
                   2400: {
                   2401:        struct ieee80211com *ic = &sc->sc_ic;
                   2402:        char domain[4];
                   2403:        uint16_t val;
                   2404:        int i, error;
                   2405:
                   2406:        if ((error = iwn_eeprom_lock(sc)) != 0) {
                   2407:                aprint_error_dev(sc->sc_dev, "could not lock EEPROM (error=%d)\n", error);
                   2408:                return;
                   2409:        }
                   2410:        /* read and print regulatory domain */
                   2411:        iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
                   2412:        aprint_error_dev(sc->sc_dev, "%.4s", domain);
                   2413:
                   2414:        /* read and print MAC address */
                   2415:        iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
                   2416:        aprint_error(", address %s\n", ether_sprintf(ic->ic_myaddr));
                   2417:
                   2418:        /* read the list of authorized channels */
                   2419:        for (i = 0; i < IWN_CHAN_BANDS_COUNT; i++)
                   2420:                iwn_read_eeprom_channels(sc, i);
                   2421:
                   2422:        /* read maximum allowed Tx power for 2GHz and 5GHz bands */
                   2423:        iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
                   2424:        sc->maxpwr2GHz = val & 0xff;
                   2425:        sc->maxpwr5GHz = val >> 8;
                   2426:        /* check that EEPROM values are correct */
                   2427:        if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
                   2428:                sc->maxpwr5GHz = 38;
                   2429:        if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
                   2430:                sc->maxpwr2GHz = 38;
                   2431:        DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
                   2432:
                   2433:        /* read voltage at which samples were taken */
                   2434:        iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
                   2435:        sc->eeprom_voltage = (int16_t)le16toh(val);
                   2436:        DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
                   2437:
                   2438:        /* read power groups */
                   2439:        iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
                   2440: #ifdef IWN_DEBUG
                   2441:        if (iwn_debug > 0) {
                   2442:                for (i = 0; i < IWN_NBANDS; i++)
                   2443:                        iwn_print_power_group(sc, i);
                   2444:        }
                   2445: #endif
                   2446:        iwn_eeprom_unlock(sc);
                   2447: }
                   2448:
                   2449: static void
                   2450: iwn_read_eeprom_channels(struct iwn_softc *sc, int n)
                   2451: {
                   2452:        struct ieee80211com *ic = &sc->sc_ic;
                   2453:        const struct iwn_chan_band *band = &iwn_bands[n];
                   2454:        struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
                   2455:        int chan, i;
                   2456:
                   2457:        iwn_read_prom_data(sc, band->addr, channels,
                   2458:            band->nchan * sizeof (struct iwn_eeprom_chan));
                   2459:
                   2460:        for (i = 0; i < band->nchan; i++) {
                   2461:                if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
                   2462:                        continue;
                   2463:
                   2464:                chan = band->chan[i];
                   2465:
                   2466:                if (n == 0) {   /* 2GHz band */
                   2467:                        ic->ic_channels[chan].ic_freq =
                   2468:                            ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
                   2469:                        ic->ic_channels[chan].ic_flags =
                   2470:                            IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
                   2471:                            IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
                   2472:
                   2473:                } else {        /* 5GHz band */
                   2474:                        /*
                   2475:                         * Some adapters support channels 7, 8, 11 and 12
                   2476:                         * both in the 2GHz *and* 5GHz bands.
                   2477:                         * Because of limitations in our net80211(9) stack,
                   2478:                         * we can't support these channels in 5GHz band.
                   2479:                         */
                   2480:                        if (chan <= 14)
                   2481:                                continue;
                   2482:
                   2483:                        ic->ic_channels[chan].ic_freq =
                   2484:                            ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
                   2485:                        ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
                   2486:                }
                   2487:
                   2488:                /* is active scan allowed on this channel? */
                   2489:                if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
                   2490:                        ic->ic_channels[chan].ic_flags |=
                   2491:                            IEEE80211_CHAN_PASSIVE;
                   2492:                }
                   2493:
                   2494:                /* save maximum allowed power for this channel */
                   2495:                sc->maxpwr[chan] = channels[i].maxpwr;
                   2496:
                   2497:                DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1.2       ober     2498:                        chan, channels[i].flags, sc->maxpwr[chan]));
1.1       ober     2499:        }
                   2500: }
                   2501:
                   2502: #ifdef IWN_DEBUG
                   2503: static void
                   2504: iwn_print_power_group(struct iwn_softc *sc, int i)
                   2505: {
                   2506:        struct iwn_eeprom_band *band = &sc->bands[i];
                   2507:        struct iwn_eeprom_chan_samples *chans = band->chans;
                   2508:        int j, c;
                   2509:
                   2510:        DPRINTF(("===band %d===\n", i));
                   2511:        DPRINTF(("chan lo=%d, chan hi=%d\n", band->lo, band->hi));
                   2512:        DPRINTF(("chan1 num=%d\n", chans[0].num));
                   2513:        for (c = 0; c < IWN_NTXCHAINS; c++) {
                   2514:                for (j = 0; j < IWN_NSAMPLES; j++) {
                   2515:                        DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
1.2       ober     2516:                                "power=%d pa_det=%d\n", c, j,
                   2517:                                chans[0].samples[c][j].temp,
                   2518:                                chans[0].samples[c][j].gain,
                   2519:                                chans[0].samples[c][j].power,
                   2520:                                chans[0].samples[c][j].pa_det));
1.1       ober     2521:                }
                   2522:        }
                   2523:        DPRINTF(("chan2 num=%d\n", chans[1].num));
                   2524:        for (c = 0; c < IWN_NTXCHAINS; c++) {
                   2525:                for (j = 0; j < IWN_NSAMPLES; j++) {
                   2526:                        DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
1.2       ober     2527:                                "power=%d pa_det=%d\n", c, j,
                   2528:                                chans[1].samples[c][j].temp,
                   2529:                                chans[1].samples[c][j].gain,
                   2530:                                chans[1].samples[c][j].power,
                   2531:                                chans[1].samples[c][j].pa_det));
1.1       ober     2532:                }
                   2533:        }
                   2534: }
                   2535: #endif
                   2536:
                   2537: /*
                   2538:  * Send a command to the firmware.
                   2539:  */
                   2540: static int
                   2541: iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
                   2542: {
                   2543:        struct iwn_tx_ring *ring = &sc->txq[4];
                   2544:        struct iwn_tx_desc *desc;
                   2545:        struct iwn_tx_cmd *cmd;
                   2546:        bus_addr_t paddr;
                   2547:
                   2548:        KASSERT(size <= sizeof cmd->data);
                   2549:
                   2550:        desc = &ring->desc[ring->cur];
                   2551:        cmd = &ring->cmd[ring->cur];
                   2552:
                   2553:        cmd->code = code;
                   2554:        cmd->flags = 0;
                   2555:        cmd->qid = ring->qid;
                   2556:        cmd->idx = ring->cur;
                   2557:        memcpy(cmd->data, buf, size);
                   2558:
                   2559:        paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
                   2560:
                   2561:        IWN_SET_DESC_NSEGS(desc, 1);
                   2562:        IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
                   2563:        sc->shared->len[ring->qid][ring->cur] = htole16(8);
                   2564:        if (ring->cur < IWN_TX_WINDOW) {
                   2565:                sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
                   2566:                    htole16(8);
                   2567:        }
                   2568:
1.20      blymn    2569:        bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
                   2570:            4 + size, BUS_DMASYNC_PREWRITE);
                   2571:
1.1       ober     2572:        /* kick cmd ring */
                   2573:        ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
                   2574:        IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
                   2575:
                   2576:        return async ? 0 : tsleep(cmd, PCATCH, "iwncmd", hz);
                   2577: }
                   2578:
                   2579: /*
                   2580:  * Configure hardware multi-rate retries for one node.
                   2581:  */
                   2582: static int
                   2583: iwn_setup_node_mrr(struct iwn_softc *sc, uint8_t id, int async)
                   2584: {
                   2585:        struct ieee80211com *ic = &sc->sc_ic;
                   2586:        struct iwn_cmd_mrr mrr;
                   2587:        int i, ridx;
                   2588:
                   2589:        memset(&mrr, 0, sizeof mrr);
                   2590:        mrr.id = id;
                   2591:        mrr.ssmask = 2;
                   2592:        mrr.dsmask = 3;
                   2593:        mrr.ampdu_disable = 3;
1.12      christos 2594:        mrr.ampdu_limit = htole16(4000);
1.1       ober     2595:
                   2596:        if (id == IWN_ID_BSS)
                   2597:                ridx = IWN_OFDM54;
                   2598:        else if (ic->ic_curmode == IEEE80211_MODE_11A)
                   2599:                ridx = IWN_OFDM6;
                   2600:        else
                   2601:                ridx = IWN_CCK1;
                   2602:        for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
                   2603:                mrr.table[i].rate = iwn_ridx_to_plcp[ridx];
                   2604:                mrr.table[i].rflags = IWN_RFLAG_ANT_B;
                   2605:                if (ridx <= IWN_CCK11)
                   2606:                        mrr.table[i].rflags |= IWN_RFLAG_CCK;
                   2607:                ridx = iwn_prev_ridx[ridx];
                   2608:        }
                   2609:        return iwn_cmd(sc, IWN_CMD_NODE_MRR_SETUP, &mrr, sizeof mrr, async);
                   2610: }
                   2611:
                   2612: static int
                   2613: iwn_wme_update(struct ieee80211com *ic)
                   2614: {
                   2615: #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
                   2616: #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
                   2617:        struct iwn_softc *sc = ic->ic_ifp->if_softc;
                   2618:        const struct wmeParams *wmep;
                   2619:        struct iwn_wme_setup wme;
                   2620:        int ac;
                   2621:
                   2622:        /* don't override default WME values if WME is not actually enabled */
                   2623:        if (!(ic->ic_flags & IEEE80211_F_WME))
                   2624:                return 0;
                   2625:
                   2626:        wme.flags = 0;
                   2627:        for (ac = 0; ac < WME_NUM_AC; ac++) {
                   2628:                wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
                   2629:                wme.ac[ac].aifsn = wmep->wmep_aifsn;
                   2630:                wme.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
                   2631:                wme.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
1.15      christos 2632:                wme.ac[ac].txop  = IWN_USEC(wmep->wmep_txopLimit);
1.1       ober     2633:
                   2634:                DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
1.2       ober     2635:                        "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
                   2636:                        wme.ac[ac].cwmax, wme.ac[ac].txop));
1.1       ober     2637:        }
                   2638:
                   2639:        return iwn_cmd(sc, IWN_CMD_SET_WME, &wme, sizeof wme, 1);
                   2640: #undef IWN_USEC
                   2641: #undef IWN_EXP2
                   2642: }
                   2643:
                   2644:
                   2645:
                   2646: static void
                   2647: iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
                   2648: {
                   2649:        struct iwn_cmd_led led;
                   2650:
                   2651:        led.which = which;
                   2652:        led.unit = htole32(100000);     /* on/off in unit of 100ms */
                   2653:        led.off = off;
                   2654:        led.on = on;
                   2655:
                   2656:        (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
                   2657: }
                   2658:
                   2659: /*
                   2660:  * Set the critical temperature at which the firmware will automatically stop
                   2661:  * the radio transmitter.
                   2662:  */
                   2663: static int
                   2664: iwn_set_critical_temp(struct iwn_softc *sc)
                   2665: {
                   2666:        struct iwn_ucode_info *uc = &sc->ucode_info;
                   2667:        struct iwn_critical_temp crit;
                   2668:        uint32_t r1, r2, r3, temp;
                   2669:
                   2670:        IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
                   2671:
                   2672:        r1 = le32toh(uc->temp[0].chan20MHz);
                   2673:        r2 = le32toh(uc->temp[1].chan20MHz);
                   2674:        r3 = le32toh(uc->temp[2].chan20MHz);
                   2675:        /* inverse function of iwn_get_temperature() */
                   2676:
                   2677:        temp = r2 + ((IWN_CTOK(110) * (r3 - r1)) / 259);
                   2678:
                   2679:        memset(&crit, 0, sizeof crit);
                   2680:        crit.tempR = htole32(temp);
                   2681:        DPRINTF(("setting critical temperature to %u\n", temp));
                   2682:        return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
                   2683: }
                   2684:
                   2685: static void
                   2686: iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
                   2687: {
                   2688:        struct iwn_cmd_tsf tsf;
                   2689:        uint64_t val, mod;
                   2690:
                   2691:        memset(&tsf, 0, sizeof tsf);
                   2692:        memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
                   2693:        tsf.bintval = htole16(ni->ni_intval);
                   2694:        tsf.lintval = htole16(10);
                   2695:
                   2696:        /* compute remaining time until next beacon */
                   2697:        val = (uint64_t)ni->ni_intval * 1024;   /* msecs -> usecs */
                   2698:        mod = le64toh(tsf.tstamp) % val;
                   2699:        tsf.binitval = htole32((uint32_t)(val - mod));
                   2700:
1.4       skrll    2701:        DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%" PRIu64 "\n",
                   2702:            ni->ni_intval, le64toh(tsf.tstamp), val - mod));
1.1       ober     2703:
                   2704:        if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
                   2705:                aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
                   2706: }
                   2707:
                   2708: static void
                   2709: iwn_power_calibration(struct iwn_softc *sc, int temp)
                   2710: {
                   2711:        struct ieee80211com *ic = &sc->sc_ic;
                   2712:
                   2713:        DPRINTF(("temperature %d->%d\n", sc->temp, temp));
                   2714:
                   2715:        /* adjust Tx power if need be (delta >= 3�C) */
                   2716:        if (abs(temp - sc->temp) < 3)
                   2717:                return;
                   2718:
                   2719:        sc->temp = temp;
                   2720:
                   2721:        DPRINTF(("setting Tx power for channel %d\n",
1.2       ober     2722:                ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan)));
1.1       ober     2723:        if (iwn_set_txpower(sc, ic->ic_bss->ni_chan, 1) != 0) {
                   2724:                /* just warn, too bad for the automatic calibration... */
                   2725:                aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
                   2726:        }
                   2727: }
                   2728:
                   2729: /*
                   2730:  * Set Tx power for a given channel (each rate has its own power settings).
                   2731:  * This function takes into account the regulatory information from EEPROM,
                   2732:  * the current temperature and the current voltage.
                   2733:  */
                   2734: static int
                   2735: iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
                   2736: {
                   2737: /* fixed-point arithmetic division using a n-bit fractional part */
1.2       ober     2738: #define fdivround(a, b, n)                                             \
1.1       ober     2739:        ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
                   2740: /* linear interpolation */
1.2       ober     2741: #define interpolate(x, x1, y1, x2, y2, n)                              \
1.1       ober     2742:        ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
                   2743:
                   2744:        static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
                   2745:        struct ieee80211com *ic = &sc->sc_ic;
                   2746:        struct iwn_ucode_info *uc = &sc->ucode_info;
                   2747:        struct iwn_cmd_txpower cmd;
                   2748:        struct iwn_eeprom_chan_samples *chans;
                   2749:        const uint8_t *rf_gain, *dsp_gain;
                   2750:        int32_t vdiff, tdiff;
                   2751:        int i, c, grp, maxpwr;
                   2752:        u_int chan;
                   2753:
                   2754:        /* get channel number */
                   2755:        chan = ieee80211_chan2ieee(ic, ch);
                   2756:
                   2757:        memset(&cmd, 0, sizeof cmd);
                   2758:        cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
                   2759:        cmd.chan = chan;
                   2760:
                   2761:        if (IEEE80211_IS_CHAN_5GHZ(ch)) {
1.15      christos 2762:                maxpwr   = sc->maxpwr5GHz;
                   2763:                rf_gain  = iwn_rf_gain_5ghz;
1.1       ober     2764:                dsp_gain = iwn_dsp_gain_5ghz;
                   2765:        } else {
1.15      christos 2766:                maxpwr   = sc->maxpwr2GHz;
                   2767:                rf_gain  = iwn_rf_gain_2ghz;
1.1       ober     2768:                dsp_gain = iwn_dsp_gain_2ghz;
                   2769:        }
                   2770:
                   2771:        /* compute voltage compensation */
                   2772:        vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
                   2773:        if (vdiff > 0)
                   2774:                vdiff *= 2;
                   2775:        if (abs(vdiff) > 2)
                   2776:                vdiff = 0;
                   2777:        DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
1.2       ober     2778:                vdiff, le32toh(uc->volt), sc->eeprom_voltage));
1.1       ober     2779:
                   2780:        /* get channel's attenuation group */
                   2781:        if (chan <= 20)         /* 1-20 */
                   2782:                grp = 4;
                   2783:        else if (chan <= 43)    /* 34-43 */
                   2784:                grp = 0;
                   2785:        else if (chan <= 70)    /* 44-70 */
                   2786:                grp = 1;
                   2787:        else if (chan <= 124)   /* 71-124 */
                   2788:                grp = 2;
                   2789:        else                    /* 125-200 */
                   2790:                grp = 3;
                   2791:        DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
                   2792:
                   2793:        /* get channel's sub-band */
                   2794:        for (i = 0; i < IWN_NBANDS; i++)
                   2795:                if (sc->bands[i].lo != 0 &&
                   2796:                    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
                   2797:                        break;
                   2798:        chans = sc->bands[i].chans;
                   2799:        DPRINTF(("chan %d sub-band=%d\n", chan, i));
                   2800:
                   2801:        for (c = 0; c < IWN_NTXCHAINS; c++) {
                   2802:                uint8_t power, gain, temp;
                   2803:                int maxchpwr, pwr, ridx, idx;
                   2804:
                   2805:                power = interpolate(chan,
                   2806:                    chans[0].num, chans[0].samples[c][1].power,
                   2807:                    chans[1].num, chans[1].samples[c][1].power, 1);
                   2808:                gain  = interpolate(chan,
                   2809:                    chans[0].num, chans[0].samples[c][1].gain,
                   2810:                    chans[1].num, chans[1].samples[c][1].gain, 1);
                   2811:                temp  = interpolate(chan,
                   2812:                    chans[0].num, chans[0].samples[c][1].temp,
                   2813:                    chans[1].num, chans[1].samples[c][1].temp, 1);
                   2814:                DPRINTF(("Tx chain %d: power=%d gain=%d temp=%d\n",
1.2       ober     2815:                        c, power, gain, temp));
1.1       ober     2816:
                   2817:                /* compute temperature compensation */
                   2818:                tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
                   2819:                DPRINTF(("temperature compensation=%d (current=%d, "
1.2       ober     2820:                        "EEPROM=%d)\n", tdiff, sc->temp, temp));
1.1       ober     2821:
                   2822:                for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
                   2823:                        maxchpwr = sc->maxpwr[chan] * 2;
                   2824:                        if ((ridx / 8) & 1) {
                   2825:                                /* MIMO: decrease Tx power (-3dB) */
                   2826:                                maxchpwr -= 6;
                   2827:                        }
                   2828:
                   2829:                        pwr = maxpwr - 10;
                   2830:
                   2831:                        /* decrease power for highest OFDM rates */
                   2832:                        if ((ridx % 8) == 5)            /* 48Mbit/s */
                   2833:                                pwr -= 5;
                   2834:                        else if ((ridx % 8) == 6)       /* 54Mbit/s */
                   2835:                                pwr -= 7;
                   2836:                        else if ((ridx % 8) == 7)       /* 60Mbit/s */
                   2837:                                pwr -= 10;
                   2838:
                   2839:                        if (pwr > maxchpwr)
                   2840:                                pwr = maxchpwr;
                   2841:
                   2842:                        idx = gain - (pwr - power) - tdiff - vdiff;
                   2843:                        if ((ridx / 8) & 1)     /* MIMO */
                   2844:                                idx += (int32_t)le32toh(uc->atten[grp][c]);
                   2845:
                   2846:                        if (cmd.band == 0)
                   2847:                                idx += 9;       /* 5GHz */
                   2848:                        if (ridx == IWN_RIDX_MAX)
                   2849:                                idx += 5;       /* CCK */
                   2850:
                   2851:                        /* make sure idx stays in a valid range */
                   2852:                        if (idx < 0)
                   2853:                                idx = 0;
                   2854:                        else if (idx > IWN_MAX_PWR_INDEX)
                   2855:                                idx = IWN_MAX_PWR_INDEX;
                   2856:
                   2857:                        DPRINTF(("Tx chain %d, rate idx %d: power=%d\n",
1.2       ober     2858:                                c, ridx, idx));
1.1       ober     2859:                        cmd.power[ridx].rf_gain[c] = rf_gain[idx];
                   2860:                        cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
                   2861:                }
                   2862:        }
                   2863:
                   2864:        DPRINTF(("setting tx power for chan %d\n", chan));
                   2865:        return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
                   2866:
                   2867: #undef interpolate
                   2868: #undef fdivround
                   2869: }
                   2870:
                   2871: /*
                   2872:  * Get the best (maximum) RSSI among Rx antennas (in dBm).
                   2873:  */
                   2874: static int
                   2875: iwn_get_rssi(const struct iwn_rx_stat *stat)
                   2876: {
                   2877:        uint8_t mask, agc;
                   2878:        int rssi;
                   2879:
                   2880:        mask = (le16toh(stat->antenna) >> 4) & 0x7;
                   2881:        agc  = (le16toh(stat->agc) >> 7) & 0x7f;
                   2882:
                   2883:        rssi = 0;
                   2884:        if (mask & (1 << 0))    /* Ant A */
                   2885:                rssi = max(rssi, stat->rssi[0]);
                   2886:        if (mask & (1 << 1))    /* Ant B */
                   2887:                rssi = max(rssi, stat->rssi[2]);
                   2888:        if (mask & (1 << 2))    /* Ant C */
                   2889:                rssi = max(rssi, stat->rssi[4]);
                   2890:
                   2891:        return rssi - agc - IWN_RSSI_TO_DBM;
                   2892: }
                   2893:
                   2894: /*
                   2895:  * Get the average noise among Rx antennas (in dBm).
                   2896:  */
                   2897: static int
                   2898: iwn_get_noise(const struct iwn_rx_general_stats *stats)
                   2899: {
                   2900:        int i, total, nbant, noise;
                   2901:
                   2902:        total = nbant = 0;
                   2903:        for (i = 0; i < 3; i++) {
                   2904:                if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
                   2905:                        continue;
                   2906:                total += noise;
                   2907:                nbant++;
                   2908:        }
                   2909:        /* there should be at least one antenna but check anyway */
                   2910:        return (nbant == 0) ? -127 : (total / nbant) - 107;
                   2911: }
                   2912:
                   2913: /*
                   2914:  * Read temperature (in degC) from the on-board thermal sensor.
                   2915:  */
                   2916: static int
                   2917: iwn_get_temperature(struct iwn_softc *sc)
                   2918: {
                   2919:        struct iwn_ucode_info *uc = &sc->ucode_info;
                   2920:        int32_t r1, r2, r3, r4, temp;
                   2921:
                   2922:        r1 = le32toh(uc->temp[0].chan20MHz);
                   2923:        r2 = le32toh(uc->temp[1].chan20MHz);
                   2924:        r3 = le32toh(uc->temp[2].chan20MHz);
                   2925:        r4 = le32toh(sc->rawtemp);
                   2926:
                   2927:        if (r1 == r3)   /* prevents division by 0 (should not happen) */
                   2928:                return 0;
                   2929:
                   2930:        /* sign-extend 23-bit R4 value to 32-bit */
                   2931:        r4 = (r4 << 8) >> 8;
                   2932:        /* compute temperature */
                   2933:        temp = (259 * (r4 - r2)) / (r3 - r1);
                   2934:        temp = (temp * 97) / 100 + 8;
                   2935:
                   2936:        DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
                   2937:        return IWN_KTOC(temp);
                   2938: }
                   2939:
                   2940: /*
                   2941:  * Initialize sensitivity calibration state machine.
                   2942:  */
                   2943: static int
                   2944: iwn_init_sensitivity(struct iwn_softc *sc)
                   2945: {
                   2946:        struct iwn_calib_state *calib = &sc->calib;
                   2947:        struct iwn_phy_calib_cmd cmd;
                   2948:        int error;
                   2949:
                   2950:        /* reset calibration state */
                   2951:        memset(calib, 0, sizeof (*calib));
                   2952:        calib->state = IWN_CALIB_STATE_INIT;
                   2953:        calib->cck_state = IWN_CCK_STATE_HIFA;
                   2954:        /* initial values taken from the reference driver */
1.15      christos 2955:        calib->corr_ofdm_x1     = 105;
1.1       ober     2956:        calib->corr_ofdm_mrc_x1 = 220;
1.15      christos 2957:        calib->corr_ofdm_x4     =  90;
1.1       ober     2958:        calib->corr_ofdm_mrc_x4 = 170;
1.15      christos 2959:        calib->corr_cck_x4      = 125;
                   2960:        calib->corr_cck_mrc_x4  = 200;
                   2961:        calib->energy_cck       = 100;
1.1       ober     2962:
                   2963:        /* write initial sensitivity values */
                   2964:        if ((error = iwn_send_sensitivity(sc)) != 0)
                   2965:                return error;
                   2966:
                   2967:        memset(&cmd, 0, sizeof cmd);
                   2968:        cmd.code = IWN_SET_DIFF_GAIN;
                   2969:        /* differential gains initially set to 0 for all 3 antennas */
                   2970:        DPRINTF(("setting differential gains\n"));
                   2971:        return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
                   2972: }
                   2973:
                   2974: /*
                   2975:  * Collect noise and RSSI statistics for the first 20 beacons received
                   2976:  * after association and use them to determine connected antennas and
                   2977:  * set differential gains.
                   2978:  */
                   2979: static void
                   2980: iwn_compute_differential_gain(struct iwn_softc *sc,
                   2981:     const struct iwn_rx_general_stats *stats)
                   2982: {
                   2983:        struct iwn_calib_state *calib = &sc->calib;
                   2984:        struct iwn_phy_calib_cmd cmd;
                   2985:        int i, val;
                   2986:
                   2987:        /* accumulate RSSI and noise for all 3 antennas */
                   2988:        for (i = 0; i < 3; i++) {
                   2989:                calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
                   2990:                calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
                   2991:        }
                   2992:
                   2993:        /* we update differential gain only once after 20 beacons */
                   2994:        if (++calib->nbeacons < 20)
                   2995:                return;
                   2996:
                   2997:        /* determine antenna with highest average RSSI */
                   2998:        val = max(calib->rssi[0], calib->rssi[1]);
                   2999:        val = max(calib->rssi[2], val);
                   3000:
                   3001:        /* determine which antennas are connected */
                   3002:        sc->antmsk = 0;
                   3003:        for (i = 0; i < 3; i++)
                   3004:                if (val - calib->rssi[i] <= 15 * 20)
                   3005:                        sc->antmsk |= 1 << i;
                   3006:        /* if neither Ant A and Ant B are connected.. */
                   3007:        if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
                   3008:                sc->antmsk |= 1 << 1;   /* ..mark Ant B as connected! */
                   3009:
                   3010:        /* get minimal noise among connected antennas */
                   3011:        val = INT_MAX;  /* ok, there's at least one */
                   3012:        for (i = 0; i < 3; i++)
                   3013:                if (sc->antmsk & (1 << i))
                   3014:                        val = min(calib->noise[i], val);
                   3015:
                   3016:        memset(&cmd, 0, sizeof cmd);
                   3017:        cmd.code = IWN_SET_DIFF_GAIN;
                   3018:        /* set differential gains for connected antennas */
                   3019:        for (i = 0; i < 3; i++) {
                   3020:                if (sc->antmsk & (1 << i)) {
                   3021:                        cmd.gain[i] = (calib->noise[i] - val) / 30;
                   3022:                        /* limit differential gain to 3 */
                   3023:                        cmd.gain[i] = min(cmd.gain[i], 3);
                   3024:                        cmd.gain[i] |= IWN_GAIN_SET;
                   3025:                }
                   3026:        }
                   3027:        DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
1.2       ober     3028:                cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
1.1       ober     3029:        if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
                   3030:                calib->state = IWN_CALIB_STATE_RUN;
                   3031: }
                   3032:
                   3033: /*
                   3034:  * Tune RF Rx sensitivity based on the number of false alarms detected
                   3035:  * during the last beacon period.
                   3036:  */
                   3037: static void
                   3038: iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
                   3039: {
1.2       ober     3040: #define inc_clip(val, inc, max)                                                \
                   3041:        if ((val) < (max)) {                                            \
                   3042:                if ((val) < (max) - (inc))                              \
                   3043:                        (val) += (inc);                                 \
                   3044:                else                                                    \
                   3045:                        (val) = (max);                                  \
                   3046:                needs_update = 1;                                       \
                   3047:        }
                   3048: #define dec_clip(val, dec, min)                                                \
                   3049:        if ((val) > (min)) {                                            \
                   3050:                if ((val) > (min) + (dec))                              \
                   3051:                        (val) -= (dec);                                 \
                   3052:                else                                                    \
                   3053:                        (val) = (min);                                  \
                   3054:                needs_update = 1;                                       \
1.1       ober     3055:        }
                   3056:
                   3057:        struct iwn_calib_state *calib = &sc->calib;
                   3058:        uint32_t val, rxena, fa;
                   3059:        uint32_t energy[3], energy_min;
                   3060:        uint8_t noise[3], noise_ref;
                   3061:        int i, needs_update = 0;
                   3062:
                   3063:        /* check that we've been enabled long enough */
                   3064:        if ((rxena = le32toh(stats->general.load)) == 0)
                   3065:                return;
                   3066:
                   3067:        /* compute number of false alarms since last call for OFDM */
                   3068:        fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
                   3069:        fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
                   3070:        fa *= 200 * 1024;       /* 200TU */
                   3071:
                   3072:        /* save counters values for next call */
                   3073:        calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
                   3074:        calib->fa_ofdm = le32toh(stats->ofdm.fa);
                   3075:
                   3076:        if (fa > 50 * rxena) {
                   3077:                /* high false alarm count, decrease sensitivity */
                   3078:                DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
1.15      christos 3079:                inc_clip(calib->corr_ofdm_x1,     1, 140);
1.1       ober     3080:                inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
1.15      christos 3081:                inc_clip(calib->corr_ofdm_x4,     1, 120);
1.1       ober     3082:                inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
                   3083:
                   3084:        } else if (fa < 5 * rxena) {
                   3085:                /* low false alarm count, increase sensitivity */
                   3086:                DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
1.15      christos 3087:                dec_clip(calib->corr_ofdm_x1,     1, 105);
1.1       ober     3088:                dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
1.15      christos 3089:                dec_clip(calib->corr_ofdm_x4,     1,  85);
1.1       ober     3090:                dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
                   3091:        }
                   3092:
                   3093:        /* compute maximum noise among 3 antennas */
                   3094:        for (i = 0; i < 3; i++)
                   3095:                noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
                   3096:        val = max(noise[0], noise[1]);
                   3097:        val = max(noise[2], val);
                   3098:        /* insert it into our samples table */
                   3099:        calib->noise_samples[calib->cur_noise_sample] = val;
                   3100:        calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
                   3101:
                   3102:        /* compute maximum noise among last 20 samples */
                   3103:        noise_ref = calib->noise_samples[0];
                   3104:        for (i = 1; i < 20; i++)
                   3105:                noise_ref = max(noise_ref, calib->noise_samples[i]);
                   3106:
                   3107:        /* compute maximum energy among 3 antennas */
                   3108:        for (i = 0; i < 3; i++)
                   3109:                energy[i] = le32toh(stats->general.energy[i]);
                   3110:        val = min(energy[0], energy[1]);
                   3111:        val = min(energy[2], val);
                   3112:        /* insert it into our samples table */
                   3113:        calib->energy_samples[calib->cur_energy_sample] = val;
                   3114:        calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
                   3115:
                   3116:        /* compute minimum energy among last 10 samples */
                   3117:        energy_min = calib->energy_samples[0];
                   3118:        for (i = 1; i < 10; i++)
                   3119:                energy_min = max(energy_min, calib->energy_samples[i]);
                   3120:        energy_min += 6;
                   3121:
                   3122:        /* compute number of false alarms since last call for CCK */
                   3123:        fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
                   3124:        fa += le32toh(stats->cck.fa) - calib->fa_cck;
                   3125:        fa *= 200 * 1024;       /* 200TU */
                   3126:
                   3127:        /* save counters values for next call */
                   3128:        calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
                   3129:        calib->fa_cck = le32toh(stats->cck.fa);
                   3130:
                   3131:        if (fa > 50 * rxena) {
                   3132:                /* high false alarm count, decrease sensitivity */
                   3133:                DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
                   3134:                calib->cck_state = IWN_CCK_STATE_HIFA;
                   3135:                calib->low_fa = 0;
                   3136:
                   3137:                if (calib->corr_cck_x4 > 160) {
                   3138:                        calib->noise_ref = noise_ref;
                   3139:                        if (calib->energy_cck > 2)
                   3140:                                dec_clip(calib->energy_cck, 2, energy_min);
                   3141:                }
                   3142:                if (calib->corr_cck_x4 < 160) {
                   3143:                        calib->corr_cck_x4 = 161;
                   3144:                        needs_update = 1;
                   3145:                } else
                   3146:                        inc_clip(calib->corr_cck_x4, 3, 200);
                   3147:
                   3148:                inc_clip(calib->corr_cck_mrc_x4, 3, 400);
                   3149:
                   3150:        } else if (fa < 5 * rxena) {
                   3151:                /* low false alarm count, increase sensitivity */
                   3152:                DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
                   3153:                calib->cck_state = IWN_CCK_STATE_LOFA;
                   3154:                calib->low_fa++;
                   3155:
                   3156:                if (calib->cck_state != 0 &&
                   3157:                    ((calib->noise_ref - noise_ref) > 2 ||
1.2       ober     3158:                        calib->low_fa > 100)) {
1.15      christos 3159:                        inc_clip(calib->energy_cck,      2,  97);
                   3160:                        dec_clip(calib->corr_cck_x4,     3, 125);
1.1       ober     3161:                        dec_clip(calib->corr_cck_mrc_x4, 3, 200);
                   3162:                }
                   3163:        } else {
                   3164:                /* not worth to increase or decrease sensitivity */
                   3165:                DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
                   3166:                calib->low_fa = 0;
                   3167:                calib->noise_ref = noise_ref;
                   3168:
                   3169:                if (calib->cck_state == IWN_CCK_STATE_HIFA) {
                   3170:                        /* previous interval had many false alarms */
                   3171:                        dec_clip(calib->energy_cck, 8, energy_min);
                   3172:                }
                   3173:                calib->cck_state = IWN_CCK_STATE_INIT;
                   3174:        }
                   3175:
                   3176:        if (needs_update)
                   3177:                (void)iwn_send_sensitivity(sc);
                   3178: #undef dec_clip
                   3179: #undef inc_clip
                   3180: }
                   3181:
                   3182: static int
                   3183: iwn_send_sensitivity(struct iwn_softc *sc)
                   3184: {
                   3185:        struct iwn_calib_state *calib = &sc->calib;
                   3186:        struct iwn_sensitivity_cmd cmd;
                   3187:
                   3188:        memset(&cmd, 0, sizeof cmd);
                   3189:        cmd.which = IWN_SENSITIVITY_WORKTBL;
                   3190:        /* OFDM modulation */
                   3191:        cmd.corr_ofdm_x1     = le16toh(calib->corr_ofdm_x1);
                   3192:        cmd.corr_ofdm_mrc_x1 = le16toh(calib->corr_ofdm_mrc_x1);
                   3193:        cmd.corr_ofdm_x4     = le16toh(calib->corr_ofdm_x4);
                   3194:        cmd.corr_ofdm_mrc_x4 = le16toh(calib->corr_ofdm_mrc_x4);
1.15      christos 3195:        cmd.energy_ofdm      = le16toh(100);
1.1       ober     3196:        cmd.energy_ofdm_th   = le16toh(62);
                   3197:        /* CCK modulation */
1.15      christos 3198:        cmd.corr_cck_x4      = le16toh(calib->corr_cck_x4);
1.1       ober     3199:        cmd.corr_cck_mrc_x4  = le16toh(calib->corr_cck_mrc_x4);
1.15      christos 3200:        cmd.energy_cck       = le16toh(calib->energy_cck);
1.1       ober     3201:        /* Barker modulation: use default values */
1.15      christos 3202:        cmd.corr_barker      = le16toh(190);
1.1       ober     3203:        cmd.corr_barker_mrc  = le16toh(390);
                   3204:
                   3205:        DPRINTFN(2, ("setting sensitivity\n"));
                   3206:        return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
                   3207: }
                   3208:
                   3209: static int
1.11      blymn    3210: iwn_add_node(struct iwn_softc *sc, struct ieee80211_node *ni, bool broadcast,
1.20      blymn    3211:             bool async, uint32_t htflags)
1.11      blymn    3212: {
                   3213:        struct iwn_node_info node;
                   3214:        int error;
                   3215:
                   3216:        error = 0;
                   3217:
                   3218:        memset(&node, 0, sizeof node);
                   3219:        if (broadcast == true) {
                   3220:                IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
                   3221:                node.id = IWN_ID_BROADCAST;
                   3222:                DPRINTF(("adding broadcast node\n"));
                   3223:        } else {
                   3224:                IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
                   3225:                node.id = IWN_ID_BSS;
1.20      blymn    3226:                node.htflags = htole32(htflags);
1.11      blymn    3227:                DPRINTF(("adding BSS node\n"));
                   3228:        }
                   3229:
                   3230:        error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, async);
                   3231:        if (error != 0) {
                   3232:                aprint_error_dev(sc->sc_dev, "could not add %s node\n",
                   3233:                                 (broadcast == 1)? "broadcast" : "BSS");
                   3234:                return error;
                   3235:        }
                   3236:        DPRINTF(("setting MRR for node %d\n", node.id));
                   3237:        if ((error = iwn_setup_node_mrr(sc, node.id, async)) != 0) {
                   3238:                aprint_error_dev(sc->sc_dev,
                   3239:                                 "could not setup MRR for %s node\n",
                   3240:                                 (broadcast == 1)? "broadcast" : "BSS");
                   3241:                return error;
                   3242:        }
                   3243:
                   3244:        return error;
                   3245: }
                   3246:
                   3247: static int
1.1       ober     3248: iwn_auth(struct iwn_softc *sc)
                   3249: {
                   3250:        struct ieee80211com *ic = &sc->sc_ic;
                   3251:        struct ieee80211_node *ni = ic->ic_bss;
                   3252:        int error;
                   3253:
1.20      blymn    3254:        sc->calib.state = IWN_CALIB_STATE_INIT;
                   3255:
1.1       ober     3256:        /* update adapter's configuration */
1.20      blymn    3257:        sc->config.associd = 0;
1.1       ober     3258:        IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
1.22.2.1! skrll    3259:        sc->config.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
1.1       ober     3260:        sc->config.flags = htole32(IWN_CONFIG_TSF);
                   3261:        if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
                   3262:                sc->config.flags |= htole32(IWN_CONFIG_AUTO |
                   3263:                    IWN_CONFIG_24GHZ);
                   3264:        }
1.22.2.1! skrll    3265:        if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
1.1       ober     3266:                sc->config.cck_mask  = 0;
                   3267:                sc->config.ofdm_mask = 0x15;
1.22.2.1! skrll    3268:        } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
1.1       ober     3269:                sc->config.cck_mask  = 0x03;
                   3270:                sc->config.ofdm_mask = 0;
1.22.2.1! skrll    3271:        } else {
        !          3272:                /* assume 802.11b/g */
1.1       ober     3273:                sc->config.cck_mask  = 0xf;
                   3274:                sc->config.ofdm_mask = 0x15;
                   3275:        }
1.20      blymn    3276:
                   3277:        if (ic->ic_flags & IEEE80211_F_SHSLOT)
                   3278:                sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
                   3279:        if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
                   3280:                sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
                   3281:        sc->config.filter &= ~htole32(IWN_FILTER_BSS);
                   3282:
1.1       ober     3283:        DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
1.2       ober     3284:                sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
1.1       ober     3285:        error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
                   3286:            sizeof (struct iwn_config), 1);
                   3287:        if (error != 0) {
                   3288:                aprint_error_dev(sc->sc_dev, "could not configure\n");
                   3289:                return error;
                   3290:        }
                   3291:
                   3292:        /* configuration has changed, set Tx power accordingly */
                   3293:        if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
1.8       blymn    3294:                aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
1.1       ober     3295:                return error;
                   3296:        }
                   3297:
                   3298:        /*
                   3299:         * Reconfiguring clears the adapter's nodes table so we must
                   3300:         * add the broadcast node again.
                   3301:         */
1.20      blymn    3302:        if ((error = iwn_add_node(sc, ni, true, true, 0)) != 0)
1.11      blymn    3303:                return error;
                   3304:
                   3305:        /* add BSS node */
1.20      blymn    3306:        if ((error = iwn_add_node(sc, ni, false, true, 0)) != 0)
1.1       ober     3307:                return error;
1.11      blymn    3308:
                   3309:        if (ic->ic_opmode == IEEE80211_M_STA) {
                   3310:                /* fake a join to init the tx rate */
                   3311:                iwn_newassoc(ni, 1);
1.1       ober     3312:        }
1.11      blymn    3313:
                   3314:        if ((error = iwn_init_sensitivity(sc)) != 0) {
                   3315:                aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
1.1       ober     3316:                return error;
                   3317:        }
                   3318:
1.11      blymn    3319:
1.1       ober     3320:        return 0;
                   3321: }
                   3322:
                   3323: /*
                   3324:  * Configure the adapter for associated state.
                   3325:  */
                   3326: static int
                   3327: iwn_run(struct iwn_softc *sc)
                   3328: {
                   3329:        struct ieee80211com *ic = &sc->sc_ic;
                   3330:        struct ieee80211_node *ni = ic->ic_bss;
                   3331:        int error;
                   3332:
                   3333:        if (ic->ic_opmode == IEEE80211_M_MONITOR) {
                   3334:                /* link LED blinks while monitoring */
                   3335:                iwn_set_led(sc, IWN_LED_LINK, 5, 5);
                   3336:                return 0;
                   3337:        }
                   3338:
                   3339:        iwn_enable_tsf(sc, ni);
                   3340:
                   3341:        /* update adapter's configuration */
                   3342:        sc->config.associd = htole16(ni->ni_associd & ~0xc000);
                   3343:        /* short preamble/slot time are negotiated when associating */
                   3344:        sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE |
                   3345:            IWN_CONFIG_SHSLOT);
                   3346:        if (ic->ic_flags & IEEE80211_F_SHSLOT)
                   3347:                sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
                   3348:        if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
                   3349:                sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
                   3350:        sc->config.filter |= htole32(IWN_FILTER_BSS);
                   3351:
                   3352:        DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1.2       ober     3353:                sc->config.flags));
1.1       ober     3354:        error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
                   3355:            sizeof (struct iwn_config), 1);
                   3356:        if (error != 0) {
1.11      blymn    3357:                aprint_error_dev(sc->sc_dev,
                   3358:                        "could not update configuration\n");
1.1       ober     3359:                return error;
                   3360:        }
                   3361:
                   3362:        /* configuration has changed, set Tx power accordingly */
                   3363:        if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
                   3364:                aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
                   3365:                return error;
                   3366:        }
                   3367:
                   3368:        /* add BSS node */
1.20      blymn    3369:        iwn_add_node(sc, ni, false, true,
                   3370:                     (3 << IWN_AMDPU_SIZE_FACTOR_SHIFT |
                   3371:                      5 << IWN_AMDPU_DENSITY_SHIFT));
1.1       ober     3372:
                   3373:        if (ic->ic_opmode == IEEE80211_M_STA) {
                   3374:                /* fake a join to init the tx rate */
1.2       ober     3375:                iwn_newassoc(ni, 1);
1.1       ober     3376:        }
                   3377:
                   3378:        if ((error = iwn_init_sensitivity(sc)) != 0) {
                   3379:                aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
                   3380:                return error;
                   3381:        }
                   3382:
                   3383:        /* start periodic calibration timer */
1.8       blymn    3384:        sc->calib.state = IWN_CALIB_STATE_ASSOC;
1.1       ober     3385:        sc->calib_cnt = 0;
                   3386:        callout_schedule(&sc->calib_to, hz / 2);
                   3387:
1.11      blymn    3388:        if (0 == 1) { /* XXX don't do the beacon - we get a firmware error
1.15      christos 3389:                         XXX when we try. Something is wrong with the
                   3390:                         XXX setup of the frame. Just don't ever call
1.11      blymn    3391:                         XXX the function but reference it to keep gcc happy
                   3392:                      */
                   3393:                /* now we are associated set up the beacon frame */
                   3394:                if ((error = iwn_setup_beacon(sc, ni))) {
                   3395:                        aprint_error_dev(sc->sc_dev,
                   3396:                                         "could not setup beacon frame\n");
                   3397:                        return error;
                   3398:                }
                   3399:        }
                   3400:
                   3401:
1.1       ober     3402:        /* link LED always on while associated */
                   3403:        iwn_set_led(sc, IWN_LED_LINK, 0, 1);
                   3404:
                   3405:        return 0;
                   3406: }
                   3407:
                   3408: /*
1.15      christos 3409:  * Send a scan request to the firmware. Since this command is huge, we map it
1.20      blymn    3410:  * into a mbuf instead of using the pre-allocated set of commands. this function
                   3411:  * implemented as iwl4965_bg_request_scan in the linux driver.
1.1       ober     3412:  */
                   3413: static int
                   3414: iwn_scan(struct iwn_softc *sc, uint16_t flags)
                   3415: {
                   3416:        struct ieee80211com *ic = &sc->sc_ic;
                   3417:        struct iwn_tx_ring *ring = &sc->txq[4];
                   3418:        struct iwn_tx_desc *desc;
                   3419:        struct iwn_tx_data *data;
                   3420:        struct iwn_tx_cmd *cmd;
                   3421:        struct iwn_cmd_data *tx;
                   3422:        struct iwn_scan_hdr *hdr;
                   3423:        struct iwn_scan_chan *chan;
                   3424:        struct ieee80211_frame *wh;
                   3425:        struct ieee80211_rateset *rs;
                   3426:        struct ieee80211_channel *c;
                   3427:        enum ieee80211_phymode mode;
                   3428:        uint8_t *frm;
                   3429:        int pktlen, error, nrates;
                   3430:
                   3431:        desc = &ring->desc[ring->cur];
                   3432:        data = &ring->data[ring->cur];
                   3433:
1.20      blymn    3434:        /*
                   3435:         * allocate an mbuf and initialize it so that it contains a packet
                   3436:         * header. M_DONTWAIT can fail and MT_DATA means it is dynamically
                   3437:         * allocated.
                   3438:         */
1.1       ober     3439:        MGETHDR(data->m, M_DONTWAIT, MT_DATA);
                   3440:        if (data->m == NULL) {
                   3441:                aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
                   3442:                return ENOMEM;
                   3443:        }
1.20      blymn    3444:
                   3445:        /*
                   3446:         * allocates and adds an mbuf cluster to a normal mbuf m. the how
                   3447:         * is M_DONTWAIT and the flag M_EXT is set upon success.
                   3448:         */
1.1       ober     3449:        MCLGET(data->m, M_DONTWAIT);
                   3450:        if (!(data->m->m_flags & M_EXT)) {
                   3451:                m_freem(data->m);
                   3452:                data->m = NULL;
                   3453:                aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
                   3454:                return ENOMEM;
                   3455:        }
                   3456:
1.20      blymn    3457:        /*
                   3458:         * returns a pointer to the data contained in the specified mbuf.
                   3459:         * in this case it is our iwn_tx_cmd. we initialize the basic
                   3460:         * members of the command here with exception to data[136].
                   3461:         */
1.1       ober     3462:        cmd = mtod(data->m, struct iwn_tx_cmd *);
                   3463:        cmd->code = IWN_CMD_SCAN;
                   3464:        cmd->flags = 0;
                   3465:        cmd->qid = ring->qid;
                   3466:        cmd->idx = ring->cur;
                   3467:
                   3468:        hdr = (struct iwn_scan_hdr *)cmd->data;
                   3469:        memset(hdr, 0, sizeof (struct iwn_scan_hdr));
                   3470:        /*
                   3471:         * Move to the next channel if no packets are received within 5 msecs
                   3472:         * after sending the probe request (this helps to reduce the duration
                   3473:         * of active scans).
                   3474:         */
                   3475:        hdr->quiet = htole16(5);        /* timeout in milliseconds */
                   3476:        hdr->plcp_threshold = htole16(1);       /* min # of packets */
                   3477:
                   3478:        /* select Ant B and Ant C for scanning */
                   3479:        hdr->rxchain = htole16(0x3e1 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
                   3480:
1.22.2.1! skrll    3481:        tx = &(hdr->tx_cmd);
1.20      blymn    3482:        /*
                   3483:         * linux
                   3484:         * flags = IWN_TX_AUTO_SEQ
                   3485:         *         0x200 is rate selection?
                   3486:         * id = ???
                   3487:         * lifetime = IWN_LIFETIME_INFINITE
                   3488:         *
                   3489:         */
1.1       ober     3490:        tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); // XXX
                   3491:        tx->id = IWN_ID_BROADCAST;
                   3492:        tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
                   3493:        tx->rflags = IWN_RFLAG_ANT_B;
                   3494:
                   3495:        if (flags & IEEE80211_CHAN_A) {
                   3496:                hdr->crc_threshold = htole16(1);
                   3497:                /* send probe requests at 6Mbps */
                   3498:                tx->rate = iwn_ridx_to_plcp[IWN_OFDM6];
                   3499:        } else {
                   3500:                hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
                   3501:                /* send probe requests at 1Mbps */
                   3502:                tx->rate = iwn_ridx_to_plcp[IWN_CCK1];
                   3503:                tx->rflags |= IWN_RFLAG_CCK;
                   3504:        }
                   3505:
1.22.2.1! skrll    3506:        hdr->scan_essid[0].id  = IEEE80211_ELEMID_SSID;
        !          3507:        hdr->scan_essid[0].len = ic->ic_des_esslen;
        !          3508:        memcpy(hdr->scan_essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
1.1       ober     3509:
                   3510:        /*
1.15      christos 3511:         * Build a probe request frame.  Most of the following code is a
1.1       ober     3512:         * copy & paste of what is done in net80211.
                   3513:         */
1.22.2.1! skrll    3514:        wh = &(hdr->wh);
1.1       ober     3515:        wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
                   3516:            IEEE80211_FC0_SUBTYPE_PROBE_REQ;
                   3517:        wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
                   3518:        IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
                   3519:        IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
                   3520:        IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
                   3521:        *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
                   3522:        *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
                   3523:
1.22.2.1! skrll    3524:        frm = &(hdr->data[0]);
1.1       ober     3525:
1.22.2.1! skrll    3526:        /* add empty SSID IE */
1.1       ober     3527:        *frm++ = IEEE80211_ELEMID_SSID;
1.22.2.1! skrll    3528:        *frm++ = ic->ic_des_esslen;
        !          3529:        memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen);
        !          3530:        frm += ic->ic_des_esslen;
1.1       ober     3531:
                   3532:        mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
                   3533:        rs = &ic->ic_sup_rates[mode];
                   3534:
                   3535:        /* add supported rates IE */
                   3536:
                   3537:        *frm++ = IEEE80211_ELEMID_RATES;
                   3538:        nrates = rs->rs_nrates;
                   3539:        if (nrates > IEEE80211_RATE_SIZE)
                   3540:                nrates = IEEE80211_RATE_SIZE;
                   3541:        *frm++ = nrates;
                   3542:        memcpy(frm, rs->rs_rates, nrates);
                   3543:        frm += nrates;
                   3544:
                   3545:        /* add supported xrates IE */
                   3546:
                   3547:        if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
                   3548:                nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
                   3549:                *frm++ = IEEE80211_ELEMID_XRATES;
                   3550:                *frm++ = nrates;
                   3551:                memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
                   3552:                frm += nrates;
                   3553:        }
                   3554:
                   3555:        /* setup length of probe request */
                   3556:        tx->len = htole16(frm - (uint8_t *)wh);
                   3557:
                   3558:        chan = (struct iwn_scan_chan *)frm;
1.15      christos 3559:        for (c  = &ic->ic_channels[1];
1.1       ober     3560:             c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
                   3561:                if ((c->ic_flags & flags) != flags)
                   3562:                        continue;
                   3563:
                   3564:                chan->chan = ieee80211_chan2ieee(ic, c);
                   3565:                chan->flags = 0;
                   3566:                if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
                   3567:                        chan->flags |= IWN_CHAN_ACTIVE;
                   3568:                        if (ic->ic_des_esslen != 0)
                   3569:                                chan->flags |= IWN_CHAN_DIRECT;
                   3570:                }
                   3571:                chan->dsp_gain = 0x6e;
                   3572:                if (IEEE80211_IS_CHAN_5GHZ(c)) {
                   3573:                        chan->rf_gain = 0x3b;
                   3574:                        chan->active  = htole16(10);
                   3575:                        chan->passive = htole16(110);
                   3576:                } else {
                   3577:                        chan->rf_gain = 0x28;
                   3578:                        chan->active  = htole16(20);
                   3579:                        chan->passive = htole16(120);
                   3580:                }
                   3581:                hdr->nchan++;
                   3582:                chan++;
                   3583:
                   3584:                frm += sizeof (struct iwn_scan_chan);
                   3585:        }
                   3586:
                   3587:        hdr->len = htole16(frm - (uint8_t *)hdr);
                   3588:        pktlen = frm - (uint8_t *)cmd;
                   3589:
                   3590:        error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
                   3591:            BUS_DMA_NOWAIT);
                   3592:        if (error) {
                   3593:                aprint_error_dev(sc->sc_dev, "could not map scan command\n");
                   3594:                m_freem(data->m);
                   3595:                data->m = NULL;
                   3596:                return error;
                   3597:        }
                   3598:
                   3599:        IWN_SET_DESC_NSEGS(desc, 1);
                   3600:        IWN_SET_DESC_SEG(desc, 0, data->map->dm_segs[0].ds_addr,
                   3601:            data->map->dm_segs[0].ds_len);
                   3602:        sc->shared->len[ring->qid][ring->cur] = htole16(8);
                   3603:        if (ring->cur < IWN_TX_WINDOW) {
                   3604:                sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
                   3605:                    htole16(8);
                   3606:        }
                   3607:
1.20      blymn    3608:        bus_dmamap_sync(sc->sc_dmat, data->map, 0,
                   3609:            data->map->dm_segs[0].ds_len, BUS_DMASYNC_PREWRITE);
                   3610:
1.1       ober     3611:        /* kick cmd ring */
                   3612:        ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
                   3613:        IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
                   3614:
                   3615:        return 0;       /* will be notified async. of failure/success */
                   3616: }
                   3617:
                   3618: static int
                   3619: iwn_config(struct iwn_softc *sc)
                   3620: {
                   3621:        struct ieee80211com *ic = &sc->sc_ic;
                   3622:        struct ifnet *ifp = ic->ic_ifp;
                   3623:        struct iwn_power power;
                   3624:        struct iwn_bluetooth bluetooth;
                   3625:        int error;
                   3626:
                   3627:        /* set power mode */
                   3628:        memset(&power, 0, sizeof power);
                   3629:        power.flags = htole16(IWN_POWER_CAM | 0x8);
                   3630:        DPRINTF(("setting power mode\n"));
                   3631:        error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
                   3632:        if (error != 0) {
                   3633:                aprint_error_dev(sc->sc_dev, "could not set power mode\n");
                   3634:                return error;
                   3635:        }
                   3636:
                   3637:        /* configure bluetooth coexistence */
                   3638:        memset(&bluetooth, 0, sizeof bluetooth);
                   3639:        bluetooth.flags = 3;
                   3640:        bluetooth.lead = 0xaa;
                   3641:        bluetooth.kill = 1;
                   3642:        DPRINTF(("configuring bluetooth coexistence\n"));
                   3643:        error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
                   3644:            0);
                   3645:        if (error != 0) {
                   3646:                aprint_error_dev(sc->sc_dev, "could not configure bluetooth coexistence\n");
                   3647:                return error;
                   3648:        }
                   3649:
                   3650:        /* configure adapter */
                   3651:        memset(&sc->config, 0, sizeof (struct iwn_config));
                   3652:        IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
                   3653:        IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
                   3654:        IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
                   3655:        /* set default channel */
1.22.2.1! skrll    3656:        sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
1.1       ober     3657:        sc->config.flags = htole32(IWN_CONFIG_TSF);
                   3658:        if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
                   3659:                sc->config.flags |= htole32(IWN_CONFIG_AUTO |
                   3660:                    IWN_CONFIG_24GHZ);
                   3661:        }
                   3662:        sc->config.filter = 0;
                   3663:        switch (ic->ic_opmode) {
                   3664:        case IEEE80211_M_STA:
                   3665:                sc->config.mode = IWN_MODE_STA;
                   3666:                sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
                   3667:                break;
                   3668:        case IEEE80211_M_IBSS:
                   3669:        case IEEE80211_M_AHDEMO:
                   3670:                sc->config.mode = IWN_MODE_IBSS;
                   3671:                break;
                   3672:        case IEEE80211_M_HOSTAP:
                   3673:                sc->config.mode = IWN_MODE_HOSTAP;
                   3674:                break;
                   3675:        case IEEE80211_M_MONITOR:
                   3676:                sc->config.mode = IWN_MODE_MONITOR;
                   3677:                sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
                   3678:                    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
                   3679:                break;
                   3680:        }
                   3681:        sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
                   3682:        sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
                   3683:        sc->config.ht_single_mask = 0xff;
                   3684:        sc->config.ht_dual_mask = 0xff;
                   3685:        sc->config.rxchain = htole16(0x2800 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
                   3686:        DPRINTF(("setting configuration\n"));
                   3687:        error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
                   3688:            sizeof (struct iwn_config), 0);
                   3689:        if (error != 0) {
                   3690:                aprint_error_dev(sc->sc_dev, "configure command failed\n");
                   3691:                return error;
                   3692:        }
                   3693:
                   3694:        /* configuration has changed, set Tx power accordingly */
                   3695:        if ((error = iwn_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
                   3696:                aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
                   3697:                return error;
                   3698:        }
                   3699:
                   3700:        /* add broadcast node */
1.20      blymn    3701:        if ((error = iwn_add_node(sc, NULL, true, false, 0)) != 0)
1.1       ober     3702:                return error;
                   3703:
                   3704:        if ((error = iwn_set_critical_temp(sc)) != 0) {
                   3705:                aprint_error_dev(sc->sc_dev, "could not set critical temperature\n");
                   3706:                return error;
                   3707:        }
                   3708:
                   3709:        return 0;
                   3710: }
                   3711:
                   3712: /*
                   3713:  * Do post-alive initialization of the NIC (after firmware upload).
                   3714:  */
                   3715: static void
                   3716: iwn_post_alive(struct iwn_softc *sc)
                   3717: {
                   3718:        uint32_t base;
                   3719:        uint16_t offset;
                   3720:        int qid;
                   3721:
                   3722:        iwn_mem_lock(sc);
                   3723:
                   3724:        /* clear SRAM */
                   3725:        base = iwn_mem_read(sc, IWN_SRAM_BASE);
                   3726:        for (offset = 0x380; offset < 0x520; offset += 4) {
                   3727:                IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
                   3728:                IWN_WRITE(sc, IWN_MEM_WDATA, 0);
                   3729:        }
                   3730:
                   3731:        /* shared area is aligned on a 1K boundary */
                   3732:        iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
                   3733:        iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
                   3734:
                   3735:        for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
                   3736:                iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
                   3737:                IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
                   3738:
                   3739:                /* set sched. window size */
                   3740:                IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
                   3741:                IWN_WRITE(sc, IWN_MEM_WDATA, 64);
                   3742:                /* set sched. frame limit */
                   3743:                IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
                   3744:                IWN_WRITE(sc, IWN_MEM_WDATA, 64 << 16);
                   3745:        }
                   3746:
                   3747:        /* enable interrupts for all 16 queues */
                   3748:        iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
                   3749:
                   3750:        /* identify active Tx rings (0-7) */
                   3751:        iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
                   3752:
                   3753:        /* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
                   3754:        for (qid = 0; qid < 7; qid++) {
                   3755:                iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
                   3756:                    IWN_TXQ_STATUS_ACTIVE | qid << 1);
                   3757:        }
                   3758:
                   3759:        iwn_mem_unlock(sc);
                   3760: }
                   3761:
                   3762: static void
                   3763: iwn_stop_master(struct iwn_softc *sc)
                   3764: {
                   3765:        uint32_t tmp;
                   3766:        int ntries;
                   3767:
                   3768:        tmp = IWN_READ(sc, IWN_RESET);
                   3769:        IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
                   3770:
                   3771:        tmp = IWN_READ(sc, IWN_GPIO_CTL);
                   3772:        if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
1.15      christos 3773:                return; /* already asleep */
1.1       ober     3774:
                   3775:        for (ntries = 0; ntries < 100; ntries++) {
                   3776:                if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
                   3777:                        break;
                   3778:                DELAY(10);
                   3779:        }
                   3780:        if (ntries == 100) {
                   3781:                aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
                   3782:        }
                   3783: }
                   3784:
                   3785: static int
                   3786: iwn_reset(struct iwn_softc *sc)
                   3787: {
                   3788:        uint32_t tmp;
                   3789:        int ntries;
                   3790:
                   3791:        /* clear any pending interrupts */
                   3792:        IWN_WRITE(sc, IWN_INTR, 0xffffffff);
                   3793:
                   3794:        tmp = IWN_READ(sc, IWN_CHICKEN);
                   3795:        IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
                   3796:
                   3797:        tmp = IWN_READ(sc, IWN_GPIO_CTL);
                   3798:        IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
                   3799:
                   3800:        /* wait for clock stabilization */
                   3801:        for (ntries = 0; ntries < 1000; ntries++) {
                   3802:                if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
                   3803:                        break;
                   3804:                DELAY(10);
                   3805:        }
                   3806:        if (ntries == 1000) {
                   3807:                aprint_error_dev(sc->sc_dev, "timeout waiting for clock stabilization\n");
                   3808:                return ETIMEDOUT;
                   3809:        }
                   3810:        return 0;
                   3811: }
                   3812:
                   3813: static void
                   3814: iwn_hw_config(struct iwn_softc *sc)
                   3815: {
                   3816:        uint32_t tmp, hw;
                   3817:
                   3818:        /* enable interrupts mitigation */
                   3819:        IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
                   3820:
                   3821:        /* voodoo from the reference driver */
                   3822:        tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
                   3823:        tmp = PCI_REVISION(tmp);
                   3824:        if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
                   3825:                /* enable "no snoop" field */
                   3826:                tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xe8);
                   3827:                tmp &= ~IWN_DIS_NOSNOOP;
                   3828:                pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xe8, tmp);
                   3829:        }
                   3830:
                   3831:        /* disable L1 entry to work around a hardware bug */
                   3832:        tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xf0);
                   3833:        tmp &= ~IWN_ENA_L1;
                   3834:        pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xf0, tmp);
                   3835:
                   3836:        hw = IWN_READ(sc, IWN_HWCONFIG);
                   3837:        IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
                   3838:
                   3839:        iwn_mem_lock(sc);
                   3840:        tmp = iwn_mem_read(sc, IWN_MEM_POWER);
                   3841:        iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
                   3842:        DELAY(5);
                   3843:        tmp = iwn_mem_read(sc, IWN_MEM_POWER);
                   3844:        iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
                   3845:        iwn_mem_unlock(sc);
                   3846: }
                   3847:
                   3848: static int
                   3849: iwn_init(struct ifnet *ifp)
                   3850: {
                   3851:        struct iwn_softc *sc = ifp->if_softc;
                   3852:        struct ieee80211com *ic = &sc->sc_ic;
                   3853:        uint32_t tmp;
                   3854:        int error, qid;
                   3855:
                   3856:        iwn_stop(ifp, 1);
                   3857:        if ((error = iwn_reset(sc)) != 0) {
                   3858:                aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
                   3859:                goto fail1;
                   3860:        }
                   3861:
                   3862:        iwn_mem_lock(sc);
                   3863:        iwn_mem_read(sc, IWN_CLOCK_CTL);
                   3864:        iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
                   3865:        iwn_mem_read(sc, IWN_CLOCK_CTL);
                   3866:        iwn_mem_unlock(sc);
                   3867:
                   3868:        DELAY(20);
                   3869:
                   3870:        iwn_mem_lock(sc);
                   3871:        tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
                   3872:        iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
                   3873:        iwn_mem_unlock(sc);
                   3874:
                   3875:        iwn_mem_lock(sc);
                   3876:        tmp = iwn_mem_read(sc, IWN_MEM_POWER);
                   3877:        iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
                   3878:        iwn_mem_unlock(sc);
                   3879:
                   3880:        iwn_hw_config(sc);
                   3881:
                   3882:        /* init Rx ring */
                   3883:        iwn_mem_lock(sc);
                   3884:        IWN_WRITE(sc, IWN_RX_CONFIG, 0);
                   3885:        IWN_WRITE(sc, IWN_RX_WIDX, 0);
                   3886:        /* Rx ring is aligned on a 256-byte boundary */
                   3887:        IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
                   3888:        /* shared area is aligned on a 16-byte boundary */
                   3889:        IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
1.2       ober     3890:                offsetof(struct iwn_shared, closed_count)) >> 4);
1.1       ober     3891:        IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
                   3892:        iwn_mem_unlock(sc);
                   3893:
                   3894:        IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
                   3895:
                   3896:        iwn_mem_lock(sc);
                   3897:        iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
                   3898:
                   3899:        /* set physical address of "keep warm" page */
                   3900:        IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
                   3901:
                   3902:        /* init Tx rings */
                   3903:        for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
                   3904:                struct iwn_tx_ring *txq = &sc->txq[qid];
                   3905:                IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
                   3906:                IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
                   3907:        }
                   3908:        iwn_mem_unlock(sc);
                   3909:
                   3910:        /* clear "radio off" and "disable command" bits (reversed logic) */
                   3911:        IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
                   3912:        IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
                   3913:
                   3914:        /* clear any pending interrupts */
                   3915:        IWN_WRITE(sc, IWN_INTR, 0xffffffff);
                   3916:        /* enable interrupts */
                   3917:        IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
                   3918:
                   3919:        /* not sure why/if this is necessary... */
                   3920:        IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
                   3921:        IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
                   3922:
                   3923:        /* check that the radio is not disabled by RF switch */
                   3924:        if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
                   3925:                aprint_error_dev(sc->sc_dev, "radio is disabled by hardware switch\n");
1.22.2.1! skrll    3926:                sc->sc_radio = false;
1.1       ober     3927:                error = EBUSY;  /* XXX ;-) */
                   3928:                goto fail1;
                   3929:        }
                   3930:
1.22.2.1! skrll    3931:        sc->sc_radio = true;
        !          3932:
1.1       ober     3933:        if ((error = iwn_load_firmware(sc)) != 0) {
                   3934:                aprint_error_dev(sc->sc_dev, "could not load firmware\n");
                   3935:                goto fail1;
                   3936:        }
                   3937:
                   3938:        /* firmware has notified us that it is alive.. */
                   3939:        iwn_post_alive(sc);     /* ..do post alive initialization */
                   3940:
                   3941:        sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
                   3942:        sc->temp = iwn_get_temperature(sc);
                   3943:        DPRINTF(("temperature=%d\n", sc->temp));
1.8       blymn    3944:
1.1       ober     3945:        if ((error = iwn_config(sc)) != 0) {
                   3946:                aprint_error_dev(sc->sc_dev, "could not configure device\n");
                   3947:                goto fail1;
                   3948:        }
                   3949:
                   3950:        DPRINTF(("iwn_config end\n"));
                   3951:
                   3952:        ifp->if_flags &= ~IFF_OACTIVE;
                   3953:        ifp->if_flags |= IFF_RUNNING;
                   3954:
                   3955:        if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1.13      christos 3956:                if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1.1       ober     3957:                        ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
                   3958:        }
                   3959:        else
                   3960:                ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
                   3961:
                   3962:        DPRINTF(("iwn_init ok\n"));
                   3963:        return 0;
                   3964:
1.8       blymn    3965: fail1:
1.1       ober     3966:        DPRINTF(("iwn_init error\n"));
                   3967:        iwn_stop(ifp, 1);
                   3968:        return error;
                   3969: }
                   3970:
                   3971: static void
                   3972: iwn_stop(struct ifnet *ifp, int disable)
                   3973: {
                   3974:        struct iwn_softc *sc = ifp->if_softc;
                   3975:        struct ieee80211com *ic = &sc->sc_ic;
                   3976:        uint32_t tmp;
                   3977:        int i;
                   3978:
                   3979:        ifp->if_timer = sc->sc_tx_timer = 0;
                   3980:        ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
                   3981:
                   3982:        ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
                   3983:
                   3984:        IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
                   3985:
                   3986:        /* disable interrupts */
                   3987:        IWN_WRITE(sc, IWN_MASK, 0);
                   3988:        IWN_WRITE(sc, IWN_INTR, 0xffffffff);
                   3989:        IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
                   3990:
                   3991:        /* make sure we no longer hold the memory lock */
                   3992:        iwn_mem_unlock(sc);
                   3993:
                   3994:        /* reset all Tx rings */
                   3995:        for (i = 0; i < IWN_NTXQUEUES; i++)
                   3996:                iwn_reset_tx_ring(sc, &sc->txq[i]);
                   3997:
                   3998:        /* reset Rx ring */
                   3999:        iwn_reset_rx_ring(sc, &sc->rxq);
                   4000:
                   4001:        iwn_mem_lock(sc);
                   4002:        iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
                   4003:        iwn_mem_unlock(sc);
                   4004:
                   4005:        DELAY(5);
                   4006:
                   4007:        iwn_stop_master(sc);
                   4008:        tmp = IWN_READ(sc, IWN_RESET);
                   4009:        IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
                   4010: }
                   4011:
                   4012: static bool
1.7       taca     4013: iwn_resume(device_t dv PMF_FN_ARGS)
1.1       ober     4014: {
                   4015:        struct iwn_softc *sc = device_private(dv);
                   4016:
                   4017:        (void)iwn_reset(sc);
                   4018:
                   4019:        return true;
                   4020: }

CVSweb <webmaster@jp.NetBSD.org>