[BACK]Return to machdep.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / arch / amiga / amiga

File: [cvs.NetBSD.org] / src / sys / arch / amiga / amiga / machdep.c (download)

Revision 1.28, Sun May 29 04:49:51 1994 UTC (29 years, 10 months ago) by chopps
Branch: MAIN
Changes since 1.27: +11 -3 lines

5380 driver update from from osymh@gemini.oscs.montana.edu (Michael L. Hitch)

/*
 * Copyright (c) 1988 University of Utah.
 * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * the Systems Programming Group of the University of Utah Computer
 * Science Department.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * from: Utah $Hdr: machdep.c 1.63 91/04/24$
 *
 *	@(#)machdep.c	7.16 (Berkeley) 6/3/91
 *	$Id: machdep.c,v 1.28 1994/05/29 04:49:51 chopps Exp $
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/map.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/clist.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/user.h>
#include <sys/exec.h>            /* for PS_STRINGS */
#include <sys/exec_aout.h>
#include <sys/vnode.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
#ifdef SYSVSEM
#include <sys/sem.h>
#endif
#include <net/netisr.h>
#define	MAXMEM	64*1024*CLSIZE	/* XXX - from cmap.h */
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <machine/cpu.h>
#include <machine/reg.h>
#include <machine/psl.h>
#include <machine/pte.h>
#include <dev/cons.h>
#include <amiga/amiga/isr.h>
#include <amiga/amiga/custom.h>
#include <amiga/amiga/cia.h>
#include <amiga/amiga/cc.h>
#include <amiga/amiga/memlist.h>
#include <amiga/dev/ztwobusvar.h>
/* 
 * most of these can be killed by adding a server chain for 
 * int2 (PORTS)
 */
#include "ite.h"
#include "le.h"
#include "fd.h"
#include "ahsc.h"
#include "atzsc.h"
#include "gtsc.h"
#include "zssc.h"
#include "mgnsc.h"
#include "wesc.h"
#include "otgsc.h"
#include "wstsc.h"
#include "ivsc.h"
#include "ser.h"
#include "idesc.h"

/* vm_map_t buffer_map; */
extern vm_offset_t avail_end;

/*
 * Declare these as initialized data so we can patch them.
 */
int	nswbuf = 0;
#ifdef	NBUF
int	nbuf = NBUF;
#else
int	nbuf = 0;
#endif
#ifdef	BUFPAGES
int	bufpages = BUFPAGES;
#else
int	bufpages = 0;
#endif
int	msgbufmapped;		/* set when safe to use msgbuf */
int	maxmem;			/* max memory per process */
int	physmem = MAXMEM;	/* max supported memory, changes to actual */
/*
 * safepri is a safe priority for sleep to set for a spin-wait
 * during autoconfiguration or after a panic.
 */
int	safepri = PSL_LOWIPL;
extern  int   freebufspace;
extern	u_int lowram;

/* used in init_main.c */
char *cpu_type = "m68k";
/* the following is used externally (sysctl_hw) */
char machine[] = "amiga";
 
extern struct Mem_List *mem_list;

#ifdef COMPAT_SUNOS
void sun_sendsig ();
#endif

 /*
 * Console initialization: called early on from main,
 * before vm init or startup.  Do enough configuration
 * to choose and initialize a console.
 */
void
consinit()
{

	/*
	 * Set cpuspeed immediately since cninit() called routines
	 * might use delay.
	 */

	if (cpu040)
		cpuspeed = MHZ_33;		/* MLH - PPI Zeus */
	else
		cpuspeed = MHZ_25;		/* XXX */

	/* initialize custom chip interface */
	custom_chips_init();
		
	/*
	 * Initialize the console before we print anything out.
	 */
	cninit();

#if defined (DDB)
        ddb_init();
        if (boothowto & RB_KDB)
                Debugger();
#endif
}

/*
 * cpu_startup: allocate memory for variable-sized tables,
 * initialize cpu, and do autoconfiguration.
 */
void
cpu_startup()
{
	register unsigned i;
	register caddr_t v, firstaddr;
	int base, residual;
	extern long Usrptsize;
	extern struct map *useriomap;
#ifdef DEBUG
	extern int pmapdebug;
	int opmapdebug = pmapdebug;
#endif
	vm_offset_t minaddr, maxaddr;
	vm_size_t size;

	/*
	 * Initialize error message buffer (at end of core).
	 */
#ifdef DEBUG
	pmapdebug = 0;
#endif
	/* avail_end was pre-decremented in pmap_bootstrap to compensate */
	for (i = 0; i < btoc(sizeof (struct msgbuf)); i++)
		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp, 
		    avail_end + i * NBPG, VM_PROT_ALL, TRUE);
	msgbufmapped = 1;

	/*
	 * Good {morning,afternoon,evening,night}.
	 */
	printf(version);
	identifycpu();
	printf("real  mem = %d (%d pages)\n", ctob(physmem), ctob(physmem)/NBPG);

	/*
	 * Allocate space for system data structures.
	 * The first available real memory address is in "firstaddr".
	 * The first available kernel virtual address is in "v".
	 * As pages of kernel virtual memory are allocated, "v" is incremented.
	 * As pages of memory are allocated and cleared,
	 * "firstaddr" is incremented.
	 * An index into the kernel page table corresponding to the
	 * virtual memory address maintained in "v" is kept in "mapaddr".
	 */
	/*
	 * Make two passes.  The first pass calculates how much memory is
	 * needed and allocates it.  The second pass assigns virtual
	 * addresses to the various data structures.
	 */
	firstaddr = 0;
again:
	v = (caddr_t)firstaddr;

#define	valloc(name, type, num) \
	    (name) = (type *)v; v = (caddr_t)((name)+(num))
#define	valloclim(name, type, num, lim) \
	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
/*	valloc(cfree, struct cblock, nclist); */
	valloc(callout, struct callout, ncallout);
	valloc(swapmap, struct map, nswapmap = maxproc * 2);
#ifdef SYSVSHM
	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
#endif
#ifdef SYSVSEM
	valloc(sema, struct semid_ds, seminfo.semmni);
	valloc(sem, struct sem, seminfo.semmns);
	/* This is pretty disgusting! */
	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
#endif
#ifdef SYSVMSG
	valloc(msgpool, char, msginfo.msgmax);
	valloc(msgmaps, struct msgmap, msginfo.msgseg);
	valloc(msghdrs, struct msg, msginfo.msgtql);
	valloc(msqids, struct msqid_ds, msginfo.msgmni);
#endif
	/*
	 * Determine how many buffers to allocate.
	 * Since HPs tend to be long on memory and short on disk speed,
	 * we allocate more buffer space than the BSD standard of
	 * use 10% of memory for the first 2 Meg, 5% of remaining.
	 * We just allocate a flat 10%.  Insure a minimum of 16 buffers.
	 * We allocate 1/2 as many swap buffer headers as file i/o buffers.
	 */
  	if (bufpages == 0)
		if (physmem < btoc(2 * 1024 * 1024))
			bufpages = physmem / (10 * CLSIZE);
		else
			bufpages = (btoc(2 * 1024 * 1024) + physmem) /
			    (20 * CLSIZE);

	if (nbuf == 0) {
		nbuf = bufpages;
		if (nbuf < 16)
			nbuf = 16;
	}

	if (nswbuf == 0) {
		nswbuf = (nbuf / 2) &~ 1;	/* force even */
		if (nswbuf > 256)
			nswbuf = 256;		/* sanity */
	}
	valloc(swbuf, struct buf, nswbuf);
	valloc(buf, struct buf, nbuf);
	/*
	 * End of first pass, size has been calculated so allocate memory
	 */
	if (firstaddr == 0) {
		size = (vm_size_t)(v - firstaddr);
		firstaddr = (caddr_t) kmem_alloc(kernel_map, round_page(size));
		if (firstaddr == 0)
			panic("startup: no room for tables");
		goto again;
	}
	/*
	 * End of second pass, addresses have been assigned
	 */
	if ((vm_size_t)(v - firstaddr) != size)
		panic("startup: table size inconsistency");

	/*
	 * Now allocate buffers proper.  They are different than the above
	 * in that they usually occupy more virtual memory than physical.
	 */
	size = MAXBSIZE * nbuf;
	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
				   &maxaddr, size, TRUE);
	minaddr = (vm_offset_t)buffers;
	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
			&minaddr, size, FALSE) != KERN_SUCCESS)
		panic("startup: cannot allocate buffers");
	if ((bufpages / nbuf) >= btoc(MAXBSIZE)) {
		/* don't want to alloc more physical mem than needed */
		bufpages = btoc(MAXBSIZE) * nbuf;
	}
	base = bufpages / nbuf;
	residual = bufpages % nbuf;
	for (i = 0; i < nbuf; i++) {
		vm_size_t curbufsize;
		vm_offset_t curbuf;

		/*
		 * First <residual> buffers get (base+1) physical pages
		 * allocated for them.  The rest get (base) physical pages.
		 *
		 * The rest of each buffer occupies virtual space,
		 * but has no physical memory allocated for it.
		 */
		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
		curbufsize = CLBYTES * (i < residual ? base+1 : base);
		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
		vm_map_simplify(buffer_map, curbuf);
	}

	/*
	 * Allocate a submap for exec arguments.  This map effectively
	 * limits the number of processes exec'ing at any time.
	 */
	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
				 16*NCARGS, TRUE);

	/*
	 * Allocate a submap for physio
	 */
	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
				 VM_PHYS_SIZE, TRUE);

	/*
	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
	 * we use the more space efficient malloc in place of kmem_alloc.
	 */
	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
				   M_MBUF, M_NOWAIT);
	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
			       VM_MBUF_SIZE, FALSE);

	/*
	 * Initialize callouts
	 */
	callfree = callout;
	for (i = 1; i < ncallout; i++)
		callout[i-1].c_next = &callout[i];

#ifdef DEBUG
	pmapdebug = opmapdebug;
#endif
	printf("avail mem = %d (%d pages)\n", ptoa(cnt.v_free_count),
	    ptoa(cnt.v_free_count)/NBPG);
	printf("using %d buffers containing %d bytes of memory\n",
		nbuf, bufpages * CLBYTES);
	
	/* display memory configuration passed from loadbsd */
	if (mem_list->num_mem > 0 && mem_list->num_mem < 16)
		for (i = 0; i < mem_list->num_mem; i++)
			printf ("memory segment %d at %08lx size %08lx\n", i,
				mem_list->mem_seg[i].mem_start,
				mem_list->mem_seg[i].mem_size);
	/*
	 * Set up CPU-specific registers, cache, etc.
	 */
	initcpu();

	/*
	 * Set up buffers, so they can be used to read disk labels.
	 */
	bufinit();

	/*
	 * Configure the system.
	 */
	configure();
}

/*
 * Set registers on exec.
 * XXX Should clear registers except sp, pc,
 * but would break init; should be fixed soon.
 */
void
setregs(p, entry, stack, retval)
	register struct proc *p;
	u_long entry;
	u_long stack;
	int retval[2];
{
	struct frame *frame = (struct frame *)p->p_md.md_regs;
	
	frame->f_pc = entry & ~1;
	frame->f_regs[SP] = stack;

#ifdef FPCOPROC
	/* restore a null state frame */
	p->p_addr->u_pcb.pcb_fpregs.fpf_null = 0;
	m68881_restore(&p->p_addr->u_pcb.pcb_fpregs);
#endif
}

/*
 * Info for CTL_HW
 */
char cpu_model[120];
extern char version[];
 
identifycpu()
{
        /* there's alot of XXX in here... */
	char *mach, *mmu, *fpu;

	if (is_a4000())
		mach = "Amiga 4000";
	else if (is_a3000())
		mach = "Amiga 3000";
	else
		mach = "Amiga 500/2000";

	if (machineid & AMIGA_68040) {
		cpu_type = "m68040";
		mmu = "/MMU";
		fpu = "/FPU";
	} else if (machineid & AMIGA_68030) {
		cpu_type = "m68030";	/* XXX */
		mmu = "/MMU";
	} else {
		cpu_type = "m68020";
		mmu = " m68851 MMU";
	}
	if (machineid & (AMIGA_68030 | AMIGA_68020)) {
		if (machineid & AMIGA_68882)
			fpu = " m68882 FPU";
		else if (machineid & AMIGA_68881)
			fpu = " m68881 FPU";
		else
			fpu = " no FPU";
	}
	sprintf(cpu_model, "%s (%s CPU%s%s)", mach, cpu_type, mmu, fpu);
	printf("%s\n", cpu_model);
}

/*
 * machine dependent system variables.
 */
cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
	int *name;
	u_int namelen;
	void *oldp;
	size_t *oldlenp;
	void *newp;
	size_t newlen;
	struct proc *p;
{
	dev_t consdev;

	/* all sysctl names at this level are terminal */
	if (namelen != 1)
		return(ENOTDIR);               /* overloaded */

	switch (name[0]) {
	case CPU_CONSDEV:
		if (cn_tab != NULL)
			consdev = cn_tab->cn_dev;
		else
			consdev = NODEV;
		return(sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
		    sizeof(consdev)));
	default:
		return(EOPNOTSUPP);
	}
	/* NOTREACHED */
}

#define SS_RTEFRAME	1
#define SS_FPSTATE	2
#define SS_USERREGS	4

struct sigstate {
	int	ss_flags;		/* which of the following are valid */
	struct	frame ss_frame;		/* original exception frame */
	struct	fpframe ss_fpstate;	/* 68881/68882 state info */
};

/*
 * WARNING: code in locore.s assumes the layout shown for sf_signum
 * thru sf_handler so... don't screw with them!
 */
struct sigframe {
	int	sf_signum;		/* signo for handler */
	int	sf_code;		/* additional info for handler */
	struct	sigcontext *sf_scp;	/* context ptr for handler */
	sig_t	sf_handler;		/* handler addr for u_sigc */
	struct	sigstate sf_state;	/* state of the hardware */
	struct	sigcontext sf_sc;	/* actual context */
};

#ifdef COMPAT_SUNOS
/* sigh.. I guess it's too late to change now, but "our" sigcontext
   is plain vax, not very 68000 (ap, for example..) */
struct sun_sigcontext {
	int 	sc_onstack;		/* sigstack state to restore */
	int	sc_mask;		/* signal mask to restore */
	int	sc_sp;			/* sp to restore */
	int	sc_pc;			/* pc to restore */
	int	sc_ps;			/* psl to restore */
};
struct sun_sigframe {
	int	ssf_signum;		/* signo for handler */
	int	ssf_code;		/* additional info for handler */
	struct sun_sigcontext *ssf_scp;	/* context pointer for handler */
	u_int	ssf_addr;		/* even more info for handler */
	struct sun_sigcontext ssf_sc;	/* I don't know if that's what 
					   comes here */
};
#endif	
 
#ifdef DEBUG
int sigdebug = 0x0;
int sigpid = 0;
#define SDB_FOLLOW	0x01
#define SDB_KSTACK	0x02
#define SDB_FPSTATE	0x04
#endif

/*
 * Send an interrupt to process.
 */
void
sendsig(catcher, sig, mask, code)
	sig_t catcher;
	int sig, mask;
	unsigned code;
{
	register struct proc *p = curproc;
	register struct sigframe *fp, *kfp;
	register struct frame *frame;
	register struct sigacts *psp = p->p_sigacts;
	register short ft;
	int oonstack;
	extern short exframesize[];
	extern char sigcode[], esigcode[];


/*printf("sendsig %d %d %x %x %x\n", p->p_pid, sig, mask, code, catcher);*/

	frame = (struct frame *)p->p_md.md_regs;
	ft = frame->f_format;
	oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;

#ifdef COMPAT_SUNOS
	if (p->p_emul == EMUL_SUNOS) {
		/*
		 * build the short SunOS frame instead
		 */
		sun_sendsig(catcher, sig, mask, code);
		return;
	}
#endif
	/*
	 * Allocate and validate space for the signal handler
	 * context. Note that if the stack is in P0 space, the
	 * call to grow() is a nop, and the useracc() check
	 * will fail if the process has not already allocated
	 * the space with a `brk'.
	 */
	if ((psp->ps_flags & SAS_ALTSTACK) && oonstack == 0 &&
	    (psp->ps_sigonstack & sigmask(sig))) {
		fp = (struct sigframe *)(psp->ps_sigstk.ss_base +
		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
		psp->ps_sigstk.ss_flags |= SA_ONSTACK;
	} else
		fp = (struct sigframe *)frame->f_regs[SP] - 1;
	if ((unsigned)fp <= USRSTACK - ctob(p->p_vmspace->vm_ssize)) 
		(void)grow(p, (unsigned)fp);
#ifdef DEBUG
	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
		printf("sendsig(%d): sig %d ssp %x usp %x scp %x ft %d\n",
		       p->p_pid, sig, &oonstack, fp, &fp->sf_sc, ft);
#endif
	if (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == 0) {
#ifdef DEBUG
		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
			printf("sendsig(%d): useracc failed on sig %d\n",
			       p->p_pid, sig);
#endif
		/*
		 * Process has trashed its stack; give it an illegal
		 * instruction to halt it in its tracks.
		 */
		SIGACTION(p, SIGILL) = SIG_DFL;
		sig = sigmask(SIGILL);
		p->p_sigignore &= ~sig;
		p->p_sigcatch &= ~sig;
		p->p_sigmask &= ~sig;
		psignal(p, SIGILL);
		return;
	}
	kfp = malloc(sizeof(struct sigframe), M_TEMP, M_WAITOK);
	/* 
	 * Build the argument list for the signal handler.
	 */
	kfp->sf_signum = sig;
	kfp->sf_code = code;
	kfp->sf_scp = &fp->sf_sc;
	kfp->sf_handler = catcher;
	/*
	 * Save necessary hardware state.  Currently this includes:
	 *	- general registers
	 *	- original exception frame (if not a "normal" frame)
	 *	- FP coprocessor state
	 */
	kfp->sf_state.ss_flags = SS_USERREGS;
	bcopy((caddr_t)frame->f_regs,
	      (caddr_t)kfp->sf_state.ss_frame.f_regs, sizeof frame->f_regs);
	if (ft >= FMT9) {
#ifdef DEBUG
		if (ft != FMT9 && ft != FMTA && ft != FMTB)
			panic("sendsig: bogus frame type");
#endif
		kfp->sf_state.ss_flags |= SS_RTEFRAME;
		kfp->sf_state.ss_frame.f_format = frame->f_format;
		kfp->sf_state.ss_frame.f_vector = frame->f_vector;
		bcopy((caddr_t)&frame->F_u,
		      (caddr_t)&kfp->sf_state.ss_frame.F_u, exframesize[ft]);
		/*
		 * Leave an indicator that we need to clean up the kernel
		 * stack.  We do this by setting the "pad word" above the
		 * hardware stack frame to the amount the stack must be
		 * adjusted by.
		 *
		 * N.B. we increment rather than just set f_stackadj in
		 * case we are called from syscall when processing a
		 * sigreturn.  In that case, f_stackadj may be non-zero.
		 */
		frame->f_stackadj += exframesize[ft];
		frame->f_format = frame->f_vector = 0;
#ifdef DEBUG
		if (sigdebug & SDB_FOLLOW)
			printf("sendsig(%d): copy out %d of frame %d\n",
			       p->p_pid, exframesize[ft], ft);
#endif
	}
#ifdef FPCOPROC
	kfp->sf_state.ss_flags |= SS_FPSTATE;
	m68881_save(&kfp->sf_state.ss_fpstate);
#ifdef DEBUG
	if ((sigdebug & SDB_FPSTATE) && *(char *)&kfp->sf_state.ss_fpstate)
		printf("sendsig(%d): copy out FP state (%x) to %x\n",
		       p->p_pid, *(u_int *)&kfp->sf_state.ss_fpstate,
		       &kfp->sf_state.ss_fpstate);
#endif
#endif
	/*
	 * Build the signal context to be used by sigreturn.
	 */
	kfp->sf_sc.sc_onstack = oonstack;
	kfp->sf_sc.sc_mask = mask;
	kfp->sf_sc.sc_sp = frame->f_regs[SP];
	kfp->sf_sc.sc_fp = frame->f_regs[A6];
	kfp->sf_sc.sc_ap = (int)&fp->sf_state;
	kfp->sf_sc.sc_pc = frame->f_pc;
	kfp->sf_sc.sc_ps = frame->f_sr;
	(void) copyout((caddr_t)kfp, (caddr_t)fp, sizeof(struct sigframe));
	frame->f_regs[SP] = (int)fp;
#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
		printf("sendsig(%d): sig %d scp %x fp %x sc_sp %x sc_ap %x\n",
		       p->p_pid, sig, kfp->sf_scp, fp,
		       kfp->sf_sc.sc_sp, kfp->sf_sc.sc_ap);
#endif
	/*
	 * Signal trampoline code is at base of user stack.
	 */
	frame->f_pc = (int)(((char *)PS_STRINGS) - (esigcode - sigcode));
#ifdef DEBUG
	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
		printf("sendsig(%d): sig %d returns\n",
		       p->p_pid, sig);
#endif
	free((caddr_t)kfp, M_TEMP);
}

#ifdef COMPAT_SUNOS
/* much simpler sendsig() for SunOS processes, as SunOS does the whole
   context-saving in usermode. For now, no hardware information (ie.
   frames for buserror etc) is saved. This could be fatal, so I take 
   SIG_DFL for "dangerous" signals. */

void
sun_sendsig(catcher, sig, mask, code)
	sig_t catcher;
	int sig, mask;
	unsigned code;
{
	register struct proc *p = curproc;
	register struct sun_sigframe *fp;
	struct sun_sigframe kfp;
	register struct frame *frame;
	register struct sigacts *psp = p->p_sigacts;
	register short ft;
	int oonstack, fsize;

	frame = (struct frame *)p->p_md.md_regs;
	ft = frame->f_format;
	oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
	/*
	 * Allocate and validate space for the signal handler
	 * context. Note that if the stack is in P0 space, the
	 * call to grow() is a nop, and the useracc() check
	 * will fail if the process has not already allocated
	 * the space with a `brk'.
	 */
	fsize = sizeof(struct sun_sigframe);
	if ((psp->ps_flags & SAS_ALTSTACK) && oonstack == 0 &&
	    (psp->ps_sigonstack & sigmask(sig))) {
		fp = (struct sun_sigframe *)(psp->ps_sigstk.ss_base +
		    psp->ps_sigstk.ss_size - sizeof(struct sun_sigframe));
		psp->ps_sigstk.ss_flags |= SA_ONSTACK;
	} else
		fp = (struct sun_sigframe *)frame->f_regs[SP] - 1;
	if ((unsigned)fp <= USRSTACK - ctob(p->p_vmspace->vm_ssize)) 
		(void)grow(p, (unsigned)fp);
#ifdef DEBUG
	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
		printf("sun_sendsig(%d): sig %d ssp %x usp %x scp %x ft %d\n",
		       p->p_pid, sig, &oonstack, fp, &fp->ssf_sc, ft);
#endif
	if (useracc((caddr_t)fp, fsize, B_WRITE) == 0) {
#ifdef DEBUG
		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
			printf("sun_sendsig(%d): useracc failed on sig %d\n",
			       p->p_pid, sig);
#endif
		/*
		 * Process has trashed its stack; give it an illegal
		 * instruction to halt it in its tracks.
		 */
		SIGACTION(p, SIGILL) = SIG_DFL;
		sig = sigmask(SIGILL);
		p->p_sigignore &= ~sig;
		p->p_sigcatch &= ~sig;
		p->p_sigmask &= ~sig;
		psignal(p, SIGILL);
		return;
	}
	/* 
	 * Build the argument list for the signal handler.
	 */
	kfp.ssf_signum = sig;
	kfp.ssf_code = code;
	kfp.ssf_scp = &fp->ssf_sc;
	kfp.ssf_addr = ~0;		/* means: not computable */

	/*
	 * Build the signal context to be used by sigreturn.
	 */
	kfp.ssf_sc.sc_onstack = oonstack;
	kfp.ssf_sc.sc_mask = mask;
	kfp.ssf_sc.sc_sp = frame->f_regs[SP];
	kfp.ssf_sc.sc_pc = frame->f_pc;
	kfp.ssf_sc.sc_ps = frame->f_sr;
	(void) copyout(&kfp, fp, fsize);
	frame->f_regs[SP] = (int)fp;
#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
		printf("sun_sendsig(%d): sig %d scp %x sc_sp %x\n",
		       p->p_pid, sig, kfp.ssf_sc.sc_sp);
#endif

	/* have the user-level trampoline code sort out what registers it
	   has to preserve. */
	frame->f_pc = (u_int) catcher;
#ifdef DEBUG
	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
		printf("sun_sendsig(%d): sig %d returns\n",
		       p->p_pid, sig);
#endif
}

#endif	/* COMPAT_SUNOS */


/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by sendsig (above).
 * Return to previous pc and psl as specified by
 * context left by sendsig. Check carefully to
 * make sure that the user has not modified the
 * psl to gain improper priviledges or to cause
 * a machine fault.
 */

struct sigreturn_args {
	struct sigcontext *sigcntxp;
};


/* ARGSUSED */
sigreturn(p, uap, retval)
	struct proc *p;
	struct sigreturn_args *uap;
	int *retval;
{
	struct sigcontext *scp, context;
	struct frame *frame;
	int rf, flags;
	struct sigstate tstate;
	extern short exframesize[];

#ifdef COMPAT_SUNOS
	if (p->p_emul == EMUL_SUNOS)
		return(sun_sigreturn(p, uap, retval));
#endif

	scp = uap->sigcntxp;
#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
		printf("sigreturn: pid %d, scp %x\n", p->p_pid, scp);
#endif
	if ((int)scp & 1)
		return(EINVAL);
	/*
	 * Test and fetch the context structure.
	 * We grab it all at once for speed.
	 */
	if (useracc((caddr_t)scp, sizeof(*scp), B_WRITE) == 0 ||
	    copyin(scp, &context, sizeof(context)))
		return(EINVAL);
	scp = &context;
	if ((scp->sc_ps & (PSL_MBZ|PSL_IPL|PSL_S)) != 0)
		return(EINVAL);
	/*
	 * Restore the user supplied information
	 */
	if (scp->sc_onstack & 1)
		p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
	else 
		p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
	p->p_sigmask = scp->sc_mask &~ sigcantmask;
	frame = (struct frame *) p->p_md.md_regs;
	frame->f_regs[SP] = scp->sc_sp;
	frame->f_regs[A6] = scp->sc_fp;
	frame->f_pc = scp->sc_pc;
	frame->f_sr = scp->sc_ps;
	/*
	 * Grab pointer to hardware state information.
	 * If zero, the user is probably doing a longjmp.
	 */
	if ((rf = scp->sc_ap) == 0)
		return (EJUSTRETURN);
	/*
	 * See if there is anything to do before we go to the
	 * expense of copying in close to 1/2K of data
	 */
	flags = fuword((caddr_t)rf);
#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
		printf("sigreturn(%d): sc_ap %x flags %x\n",
		       p->p_pid, rf, flags);
#endif
	/*
	 * fuword failed (bogus sc_ap value).
	 */
	if (flags == -1)
		return (EINVAL);
	if (flags == 0 || copyin((caddr_t)rf, (caddr_t)&tstate, sizeof tstate))
		return (EJUSTRETURN);
#ifdef DEBUG
	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
		printf("sigreturn(%d): ssp %x usp %x scp %x ft %d\n",
		       p->p_pid, &flags, scp->sc_sp, uap->sigcntxp,
		       (flags&SS_RTEFRAME) ? tstate.ss_frame.f_format : -1);
#endif
	/*
	 * Restore most of the users registers except for A6 and SP
	 * which were handled above.
	 */
	if (flags & SS_USERREGS)
		bcopy((caddr_t)tstate.ss_frame.f_regs,
		      (caddr_t)frame->f_regs, sizeof(frame->f_regs)-2*NBPW);
	/*
	 * Restore long stack frames.  Note that we do not copy
	 * back the saved SR or PC, they were picked up above from
	 * the sigcontext structure.
	 */
	if (flags & SS_RTEFRAME) {
		register int sz;
		
		/* grab frame type and validate */
		sz = tstate.ss_frame.f_format;
		if (sz > 15 || (sz = exframesize[sz]) < 0)
			return (EINVAL);
		frame->f_stackadj -= sz;
		frame->f_format = tstate.ss_frame.f_format;
		frame->f_vector = tstate.ss_frame.f_vector;
		bcopy((caddr_t)&tstate.ss_frame.F_u, (caddr_t)&frame->F_u, sz);
#ifdef DEBUG
		if (sigdebug & SDB_FOLLOW)
			printf("sigreturn(%d): copy in %d of frame type %d\n",
			       p->p_pid, sz, tstate.ss_frame.f_format);
#endif
	}
#ifdef FPCOPROC
	/*
	 * Finally we restore the original FP context
	 */
	if (flags & SS_FPSTATE)
		m68881_restore(&tstate.ss_fpstate);
#ifdef DEBUG
	if ((sigdebug & SDB_FPSTATE) && *(char *)&tstate.ss_fpstate)
		printf("sigreturn(%d): copied in FP state (%x) at %x\n",
		       p->p_pid, *(u_int *)&tstate.ss_fpstate,
		       &tstate.ss_fpstate);
#endif
#endif
#ifdef DEBUG
	if ((sigdebug & SDB_FOLLOW) ||
	    ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid))
		printf("sigreturn(%d): returns\n", p->p_pid);
#endif
	return (EJUSTRETURN);
}

#ifdef COMPAT_SUNOS
/* this is a "light weight" version of the NetBSD sigreturn, just for
   SunOS processes. We don't have to restore any hardware frames,
   registers, fpu stuff, that's all done in user space. */

struct sun_sigreturn_args {
    struct sun_sigcontext *sigcntxp;
};

int
sun_sigreturn(p, uap, retval)
	struct proc *p;
	struct sun_sigreturn_args *uap;
	int *retval;
{
	register struct sun_sigcontext *scp;
	register struct frame *frame;
	register int rf;
	struct sun_sigcontext tsigc;
	int flags;

	scp = uap->sigcntxp;
#ifdef DEBUG
	if (sigdebug & SDB_FOLLOW)
		printf("sun_sigreturn: pid %d, scp %x\n", p->p_pid, scp);
#endif
	if ((int)scp & 1)
		return (EINVAL);
	/*
	 * Test and fetch the context structure.
	 * We grab it all at once for speed.
	 */
	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
	    copyin((caddr_t)scp, (caddr_t)&tsigc, sizeof tsigc))
		return (EINVAL);
	scp = &tsigc;
	if ((scp->sc_ps & (PSL_MBZ|PSL_IPL|PSL_S)) != 0)
		return (EINVAL);
	/*
	 * Restore the user supplied information
	 */
	if (scp->sc_onstack & 1)
		p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
	else 
		p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
	p->p_sigmask = scp->sc_mask &~ sigcantmask;
	frame = (struct frame *) p->p_md.md_regs;
	frame->f_regs[SP] = scp->sc_sp;
	frame->f_pc = scp->sc_pc;
	frame->f_sr = scp->sc_ps;

	return EJUSTRETURN;
}
#endif /* COMPAT_SUNOS */

static int waittime = -1;

void
bootsync(void)
{
	if (waittime < 0) {
		register struct buf *bp;
		int iter, nbusy;

		waittime = 0;
		(void) spl0();
		printf("syncing disks... ");
		/*
		 * Release vnodes held by texts before sync.
		 */
		if (panicstr == 0)
			vnode_pager_umount(NULL);
#ifdef notdef
#include "fd.h"
#if NFD > 0
		fdshutdown();
#endif
#endif
		sync(&proc0, (void *)NULL, (int *)NULL);

		for (iter = 0; iter < 20; iter++) {
			nbusy = 0;
			for (bp = &buf[nbuf]; --bp >= buf; )
				if ((bp->b_flags & (B_BUSY|B_INVAL)) == B_BUSY)
					nbusy++;
			if (nbusy == 0)
				break;
			printf("%d ", nbusy);
			DELAY(40000 * iter);
		}
		if (nbusy)
			printf("giving up\n");
		else
			printf("done\n");
		/*
		 * If we've been adjusting the clock, the todr
		 * will be out of synch; adjust it now.
		 */
		resettodr();
	}
}

void
boot(howto)
	register int howto;
{
	/* take a snap shot before clobbering any registers */
	if (curproc)
		savectx(curproc->p_addr, 0);

	boothowto = howto;
	if ((howto&RB_NOSYNC) == 0)
		bootsync();
	splhigh();			/* extreme priority */
	if (howto&RB_HALT) {
		printf("halted\n\n");
		asm("	stop	#0x2700");
	} else {
		if (howto & RB_DUMP)
			dumpsys();
		doboot();
		/*NOTREACHED*/
	}
	/*NOTREACHED*/
}

unsigned	dumpmag = 0x8fca0101;	/* magic number for savecore */
int	dumpsize = 0;		/* also for savecore */
long	dumplo = 0;

dumpconf()
{
	int nblks;

	dumpsize = physmem;
	if (dumpdev != NODEV && bdevsw[major(dumpdev)].d_psize) {
		nblks = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
		if (dumpsize > btoc(dbtob(nblks - dumplo)))
			dumpsize = btoc(dbtob(nblks - dumplo));
		else if (dumplo == 0)
			dumplo = nblks - btodb(ctob(physmem));
	}
	/*
	 * Don't dump on the first CLBYTES (why CLBYTES?)
	 * in case the dump device includes a disk label.
	 */
	if (dumplo < btodb(CLBYTES))
		dumplo = btodb(CLBYTES);
}

/*
 * Doadump comes here after turning off memory management and
 * getting on the dump stack, either when called above, or by
 * the auto-restart code.
 */
dumpsys()
{

	msgbufmapped = 0;
	if (dumpdev == NODEV)
		return;
	/*
	 * For dumps during autoconfiguration,
	 * if dump device has already configured...
	 */
	if (dumpsize == 0)
		dumpconf();
	if (dumplo < 0)
		return;
	printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
	printf("dump ");
	switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {

	case ENXIO:
		printf("device bad\n");
		break;

	case EFAULT:
		printf("device not ready\n");
		break;

	case EINVAL:
		printf("area improper\n");
		break;

	case EIO:
		printf("i/o error\n");
		break;

	default:
		printf("succeeded\n");
		break;
	}
}

/*
 * Return the best possible estimate of the time in the timeval
 * to which tvp points.  We do this by returning the current time
 * plus the amount of time since the last clock interrupt (clock.c:clkread).
 *
 * Check that this time is no less than any previously-reported time,
 * which could happen around the time of a clock adjustment.  Just for fun,
 * we guarantee that the time will be greater than the value obtained by a
 * previous call.
 */
microtime(tvp)
	register struct timeval *tvp;
{
	int s = splhigh();
	static struct timeval lasttime;

	*tvp = time;
	tvp->tv_usec += clkread();
	while (tvp->tv_usec > 1000000) {
		tvp->tv_sec++;
		tvp->tv_usec -= 1000000;
	}
	if (tvp->tv_sec == lasttime.tv_sec &&
	    tvp->tv_usec <= lasttime.tv_usec &&
	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
		tvp->tv_sec++;
		tvp->tv_usec -= 1000000;
	}
	lasttime = *tvp;
	splx(s);
}

initcpu()
{
}

straytrap(pc, evec)
	int pc;
	u_short evec;
{
	printf("unexpected trap (vector offset %x) from %x\n",
	       evec & 0xFFF, pc);
}

int	*nofault;

badaddr(addr)
	register caddr_t addr;
{
	register int i;
	label_t	faultbuf;

#ifdef lint
	i = *addr; if (i) return(0);
#endif
	nofault = (int *) &faultbuf;
	if (setjmp((label_t *)nofault)) {
		nofault = (int *) 0;
		return(1);
	}
	i = *(volatile short *)addr;
	nofault = (int *) 0;
	return(0);
}

badbaddr(addr)
	register caddr_t addr;
{
	register int i;
	label_t	faultbuf;

#ifdef lint
	i = *addr; if (i) return(0);
#endif
	nofault = (int *) &faultbuf;
	if (setjmp((label_t *)nofault)) {
		nofault = (int *) 0;
		return(1);
	}
	i = *(volatile char *)addr;
	nofault = (int *) 0;
	return(0);
}

netintr()
{
#ifdef INET
#if 0
        if (netisr & (1 << NETISR_ARP)) {
                netisr &= ~(1 << NETISR_ARP);
                arpintr();
        }
#endif
	if (netisr & (1 << NETISR_IP)) {
		netisr &= ~(1 << NETISR_IP);
		ipintr();
	}
#endif
#ifdef NS
	if (netisr & (1 << NETISR_NS)) {
		netisr &= ~(1 << NETISR_NS);
		nsintr();
	}
#endif
#ifdef ISO
	if (netisr & (1 << NETISR_ISO)) {
		netisr &= ~(1 << NETISR_ISO);
		clnlintr();
	}
#endif
}


/* this is a handy package to have asynchronously executed
   function calls executed at very low interrupt priority.
   Example for use is keyboard repeat, where the repeat 
   handler running at splclock() triggers such a (hardware
   aided) software interrupt.

   Note: the installed functions are currently called in a
         LIFO fashion, might want to change this to FIFO
	 later. */

struct si_callback {
  struct si_callback *next;
  void (*function) __P((void *rock1, void *rock2));
  void *rock1, *rock2;
};

static struct si_callback *si_callbacks = 0;

void
add_sicallback (function, rock1, rock2)
     void (*function) __P((void *rock1, void *rock2));
     void *rock1, *rock2;
{
  struct si_callback *si;
  int s;

  /* Note: this function may be called from high-priority
           interrupt handlers. We may NOT block for 
	   memory-allocation in here!. */

  si = (struct si_callback *) malloc (sizeof (*si), M_TEMP, M_NOWAIT);

  /* bad luck really.. */
  if (! si)
    return;

  si->function = function;
  si->rock1    = rock1;
  si->rock2    = rock2;

  s = splhigh();
  si->next     = si_callbacks;
  si_callbacks = si;
  splx (s);

  /* make sure we have software ints enabled at all.. */
  custom.intena = INTF_SETCLR | INTF_SOFTINT;

  /* and cause a software interrupt (spl1). This interrupt might happen
     immediately, or after returning to a safe enough level. */
  custom.intreq = INTF_SETCLR | INTF_SOFTINT;
}


void
rem_sicallback (function)
     void (*function) __P((void *rock1, void *rock2));
{
  struct si_callback *si, *psi;
  int s;

  s = splhigh();

  for (psi = 0, si = si_callbacks; si; )
    {
      struct si_callback *nsi = si->next;

      if (si->function == function)
	{
	  free (si, M_TEMP);
	  if (psi)
	    psi->next = nsi;
	  else
	    si_callbacks = nsi;
	}
      else
	psi = si;

      si = nsi;
    }

  splx (s);

}

/* purge the list */
static void
call_sicallbacks ()
{
  int s;
  struct si_callback *si;

  do
    {
      s = splhigh ();
      if (si = si_callbacks)
	si_callbacks = si->next;
      splx (s);

      if (si)
	{
	  si->function (si->rock1, si->rock2);
	  free (si, M_TEMP);
	}
    }
  while (si);
}


intrhand(sr)
	int sr;
{
	register unsigned int ipl;
	register unsigned short ireq;

	ipl = (sr >> 8) & 7;
	ireq = custom.intreqr;

	switch (ipl) {
	case 1:
		if (ireq & INTF_TBE) {
#if NSER > 0
			ser_outintr();
#else
			custom.intreq = INTF_TBE;
#endif
		}

		if (ireq & INTF_DSKBLK) {
#if NFD > 0
			fdintr(0);
#endif
			custom.intreq = INTF_DSKBLK;
		}
		if (ireq & INTF_SOFTINT) {
			/*
			 * first call installed callbacks, 
			 * then clear the softint-bit
			 */
			call_sicallbacks();
			custom.intreq = INTF_SOFTINT;
		}
		break;

	case 2:
		/*
		 * dmaintr() also calls scsiintr() if the
		 * corresponding bit is set in the interrupt
		 * status register of the sdmac
		 */
#if NAHSC > 0
		if (ahsc_dmaintr())
			goto intports_done;
#endif
#if NATZSC > 0
		if (atzsc_dmaintr())
			goto intports_done;
#endif
#if NGTSC > 0
		if (gtsc_dmaintr())
			goto intports_done;
#endif
#if NMGNSC > 0
		if (mgnsc_dmaintr())
			goto intports_done;
#endif
#if NWESC > 0
		if (wesc_dmaintr())
			goto intports_done;
#endif
#if NWSTSC > 0
		if (wstsc_intr())
			goto intports_done;
#endif
#if NOTGSSC > 0
		if (otgssc_intr())
			goto intports_done;
#endif
#if NIVSC > 0
		if (ivsc_intr())
			goto intports_done;
#endif
#if NLE > 0
		if (leintr (0))
			goto intports_done;
#endif
#if NIDESC > 0
		if (idesc_intr ())
			goto intports_done;
#endif
		ciaa_intr ();
	intports_done:
		custom.intreq = INTF_PORTS;
		break;
    case 3: 
      /* VBL */
		if (custom.intreqr& INTF_BLIT)  
			blitter_handler();
		if (custom.intreqr & INTF_COPER)  
			copper_handler();
		if (custom.intreqr & INTF_VERTB) 
			vbl_handler();
		break;
#if 0
/* now dealt with in locore.s for speed reasons */
	case 5:
		/* check RS232 RBF */
		serintr (0);

		custom.intreq = INTF_DSKSYNC;
		break;
#endif

	case 4:
		audio_handler();
		break;
	default:
		printf("intrhand: unexpected sr 0x%x, intreq = 0x%x\n",
		    sr, ireq);
		break;
	}
}

#if defined(DEBUG) && !defined(PANICBUTTON)
#define PANICBUTTON
#endif

#ifdef PANICBUTTON
int panicbutton = 1;	/* non-zero if panic buttons are enabled */
int crashandburn = 0;
int candbdelay = 50;	/* give em half a second */

candbtimer()
{
	crashandburn = 0;
}
#endif

#if 0
/*
 * Level 7 interrupts can be caused by the keyboard or parity errors.
 */
nmihand(frame)
	struct frame frame;
{
	if (kbdnmi()) {
#ifdef PANICBUTTON
		static int innmihand = 0;

		/*
		 * Attempt to reduce the window of vulnerability for recursive
		 * NMIs (e.g. someone holding down the keyboard reset button).
		 */
		if (innmihand == 0) {
			innmihand = 1;
			printf("Got a keyboard NMI\n");
			innmihand = 0;
		}
		if (panicbutton) {
			if (crashandburn) {
				crashandburn = 0;
				panic(panicstr ?
				      "forced crash, nosync" : "forced crash");
			}
			crashandburn++;
			timeout(candbtimer, (caddr_t)0, candbdelay);
		}
#endif
		return;
	}
	if (parityerror(&frame))
		return;
	/* panic?? */
	printf("unexpected level 7 interrupt ignored\n");
}
#endif


regdump(rp, sbytes)
  int *rp; /* must not be register */
  int sbytes;
{
	static int doingdump = 0;
	register int i;
	int s;
	extern char *hexstr();

	if (doingdump)
		return;
	s = splhigh();
	doingdump = 1;
	printf("pid = %d, pc = %s, ", curproc->p_pid, hexstr(rp[PC], 8));
	printf("ps = %s, ", hexstr(rp[PS], 4));
	printf("sfc = %s, ", hexstr(getsfc(), 4));
	printf("dfc = %s\n", hexstr(getdfc(), 4));
	printf("Registers:\n     ");
	for (i = 0; i < 8; i++)
		printf("        %d", i);
	printf("\ndreg:");
	for (i = 0; i < 8; i++)
		printf(" %s", hexstr(rp[i], 8));
	printf("\nareg:");
	for (i = 0; i < 8; i++)
		printf(" %s", hexstr(rp[i+8], 8));
	if (sbytes > 0) {
		if (rp[PS] & PSL_S) {
			printf("\n\nKernel stack (%s):",
			       hexstr((int)(((int *)&rp)-1), 8));
			dumpmem(((int *)&rp)-1, sbytes, 0);
		} else {
			printf("\n\nUser stack (%s):", hexstr(rp[SP], 8));
			dumpmem((int *)rp[SP], sbytes, 1);
		}
	}
	doingdump = 0;
	splx(s);
}

extern char kstack[];
#define KSADDR	((int *)&(kstack[(UPAGES-1)*NBPG]))

dumpmem(ptr, sz, ustack)
	register int *ptr;
	int sz;
{
	register int i, val;
	extern char *hexstr();

	for (i = 0; i < sz; i++) {
		if ((i & 7) == 0)
			printf("\n%s: ", hexstr((int)ptr, 6));
		else
			printf(" ");
		if (ustack == 1) {
			if ((val = fuword(ptr++)) == -1)
				break;
		} else {
			if (ustack == 0 &&
			    (ptr < KSADDR || ptr > KSADDR+(NBPG/4-1)))
				break;
			val = *ptr++;
		}
		printf("%s", hexstr(val, 8));
	}
	printf("\n");
}

char *
hexstr(val, len)
	register int val;
{
	static char nbuf[9];
	register int x, i;

	if (len > 8)
		return("");
	nbuf[len] = '\0';
	for (i = len-1; i >= 0; --i) {
		x = val & 0xF;
		if (x > 9)
			nbuf[i] = x - 10 + 'A';
		else
			nbuf[i] = x + '0';
		val >>= 4;
	}
	return(nbuf);
}


physstrat(bp, strat, prio)
	struct buf *bp;
	int (*strat)(), prio;
{
	register int s;
#if thats_history
	caddr_t baddr;

	/*
	 * vmapbuf clobbers b_addr so we must remember it so that it
	 * can be restored after vunmapbuf.  This is truely rude, we
	 * should really be storing this in a field in the buf struct
	 * but none are available and I didn't want to add one at
	 * this time.  Note that b_addr for dirty page pushes is 
	 * restored in vunmapbuf. (ugh!)
	 */
	baddr = bp->b_un.b_addr;
#endif
	vmapbuf(bp);
	(*strat)(bp);
	/* pageout daemon doesn't wait for pushed pages */
	if (bp->b_flags & B_DIRTY)
		return;
	s = splbio();
	while ((bp->b_flags & B_DONE) == 0)
		sleep((caddr_t)bp, prio);
	splx(s);
	vunmapbuf(bp);
#if thats_history
	bp->b_un.b_addr = baddr;
#endif
}

/* should only get here, if no standard executable. This can currently
   only mean, we're reading an old ZMAGIC file without MID, but since Amiga
   ZMAGIC always worked the `right' way (;-)) just ignore the missing
   MID and proceed to new zmagic code ;-) */

cpu_exec_aout_makecmds(p, epp)
    struct proc *p;
    struct exec_package *epp;
{
  int error = ENOEXEC;
  struct exec *execp = epp->ep_hdr;

#ifdef COMPAT_NOMID
  if (! ((execp->a_midmag >> 16) & 0x0fff)
      && execp->a_midmag == ZMAGIC)
    return exec_aout_prep_zmagic (p, epp);
#endif

#ifdef COMPAT_SUNOS
  {
    extern sun_exec_aout_makecmds __P((struct proc *, struct exec_package *));
    if ((error = sun_exec_aout_makecmds(p, epp)) == 0)
      return 0;
  }
#endif

  return error;
}