[BACK]Return to pmap.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / sys / arch / aarch64 / aarch64

File: [cvs.NetBSD.org] / src / sys / arch / aarch64 / aarch64 / pmap.c (download)

Revision 1.24, Mon Sep 17 00:15:55 2018 UTC (5 years, 6 months ago) by ryo
Branch: MAIN
CVS Tags: pgoyette-compat-0930
Changes since 1.23: +4 -18 lines

delete debug printf and KASSERT.

/*	$NetBSD: pmap.c,v 1.24 2018/09/17 00:15:55 ryo Exp $	*/

/*
 * Copyright (c) 2017 Ryo Shimizu <ryo@nerv.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.24 2018/09/17 00:15:55 ryo Exp $");

#include "opt_arm_debug.h"
#include "opt_ddb.h"
#include "opt_uvmhist.h"
#include "opt_pmap.h"

#include <sys/param.h>
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/vmem.h>
#include <sys/atomic.h>

#include <uvm/uvm.h>

#include <aarch64/pmap.h>
#include <aarch64/pte.h>
#include <aarch64/armreg.h>
#include <aarch64/cpufunc.h>
#include <aarch64/machdep.h>

//#define PMAP_DEBUG
//#define PMAP_PV_DEBUG

#ifdef VERBOSE_INIT_ARM
#define VPRINTF(...)	printf(__VA_ARGS__)
#else
#define VPRINTF(...)	do { } while (/* CONSTCOND */ 0)
#endif

UVMHIST_DEFINE(pmaphist);
#ifdef UVMHIST

#ifndef UVMHIST_PMAPHIST_SIZE
#define UVMHIST_PMAPHIST_SIZE	(1024 * 4)
#endif

struct kern_history_ent pmaphistbuf[UVMHIST_PMAPHIST_SIZE];

static void
pmap_hist_init(void)
{
	static bool inited = false;
	if (inited == false) {
		UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
		inited = true;
	}
}
#define PMAP_HIST_INIT()	pmap_hist_init()

#else /* UVMHIST */

#define PMAP_HIST_INIT()	((void)0)

#endif /* UVMHIST */


#ifdef PMAPCOUNTERS
#define PMAP_COUNT(name)		(pmap_evcnt_##name.ev_count++ + 0)
#define PMAP_COUNTER(name, desc)					\
	struct evcnt pmap_evcnt_##name =				\
	    EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", desc);	\
	EVCNT_ATTACH_STATIC(pmap_evcnt_##name)

PMAP_COUNTER(pdp_alloc_boot, "page table page allocate (uvm_pageboot_alloc)");
PMAP_COUNTER(pdp_alloc, "page table page allocate (uvm_pagealloc)");
PMAP_COUNTER(pdp_free, "page table page free (uvm_pagefree)");

PMAP_COUNTER(pv_enter, "pv_entry allocate and link");
PMAP_COUNTER(pv_remove, "pv_entry free and unlink");
PMAP_COUNTER(pv_remove_nopv, "no pv_entry found when removing pv");

PMAP_COUNTER(activate, "pmap_activate call");
PMAP_COUNTER(deactivate, "pmap_deactivate call");
PMAP_COUNTER(create, "pmap_create call");
PMAP_COUNTER(destroy, "pmap_destroy call");

PMAP_COUNTER(page_protect, "pmap_page_protect call");
PMAP_COUNTER(protect, "pmap_protect call");
PMAP_COUNTER(protect_remove_fallback, "pmap_protect with no-read");
PMAP_COUNTER(protect_none, "pmap_protect non-exists pages");
PMAP_COUNTER(protect_managed, "pmap_protect managed pages");
PMAP_COUNTER(protect_unmanaged, "pmap_protect unmanaged pages");

PMAP_COUNTER(clear_modify, "pmap_clear_modify call");
PMAP_COUNTER(clear_modify_pages, "pmap_clear_modify pages");
PMAP_COUNTER(clear_reference, "pmap_clear_reference call");
PMAP_COUNTER(clear_reference_pages, "pmap_clear_reference pages");

PMAP_COUNTER(fixup_referenced, "page reference emulations");
PMAP_COUNTER(fixup_modified, "page modification emulations");

PMAP_COUNTER(kern_mappings_bad, "kernel pages mapped (bad color)");
PMAP_COUNTER(kern_mappings_bad_wired, "kernel pages mapped (wired bad color)");
PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color, not wired)");
PMAP_COUNTER(user_mappings_bad_wired, "user pages mapped (bad colo, wiredr)");
PMAP_COUNTER(kern_mappings, "kernel pages mapped");
PMAP_COUNTER(user_mappings, "user pages mapped");
PMAP_COUNTER(user_mappings_changed, "user mapping changed");
PMAP_COUNTER(kern_mappings_changed, "kernel mapping changed");
PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
PMAP_COUNTER(managed_mappings, "managed pages mapped");
PMAP_COUNTER(mappings, "pages mapped (including remapped)");
PMAP_COUNTER(remappings, "pages remapped");

PMAP_COUNTER(pv_entry_cannotalloc, "pv_entry allocation failure");

PMAP_COUNTER(unwire, "pmap_unwire call");
PMAP_COUNTER(unwire_failure, "pmap_unwire failure");

#else /* PMAPCOUNTERS */
#define PMAP_COUNT(name)		__nothing
#endif /* PMAPCOUNTERS */

/* saved permission bit for referenced/modified emulation */
#define LX_BLKPAG_OS_READ	LX_BLKPAG_OS_0
#define LX_BLKPAG_OS_WRITE	LX_BLKPAG_OS_1
#define LX_BLKPAG_OS_WIRED	LX_BLKPAG_OS_2
#define LX_BLKPAG_OS_RWMASK	(LX_BLKPAG_OS_WRITE|LX_BLKPAG_OS_READ)

/* memory attributes are configured MAIR_EL1 in locore */
#define LX_BLKPAG_ATTR_NORMAL_WB	__SHIFTIN(0, LX_BLKPAG_ATTR_INDX)
#define LX_BLKPAG_ATTR_NORMAL_NC	__SHIFTIN(1, LX_BLKPAG_ATTR_INDX)
#define LX_BLKPAG_ATTR_NORMAL_WT	__SHIFTIN(2, LX_BLKPAG_ATTR_INDX)
#define LX_BLKPAG_ATTR_DEVICE_MEM	__SHIFTIN(3, LX_BLKPAG_ATTR_INDX)
#define LX_BLKPAG_ATTR_MASK		LX_BLKPAG_ATTR_INDX

/*
 * invalidate TLB entry for ASID and VA.
 * `ll' invalidates only the Last Level (usually L3) of TLB entry
 */
#define AARCH64_TLBI_BY_ASID_VA(asid, va, ll)				\
	do {								\
		if ((ll)) {						\
			if ((asid) == 0)				\
				aarch64_tlbi_by_va_ll((va));		\
			else						\
				aarch64_tlbi_by_asid_va_ll((asid), (va)); \
		} else {						\
			if ((asid) == 0)				\
				aarch64_tlbi_by_va((va));		\
			else						\
				aarch64_tlbi_by_asid_va((asid), (va));	\
		}							\
	} while (0/*CONSTCOND*/)

/*
 * aarch64 require write permission in pte to invalidate instruction cache.
 * changing pte to writable temporarly before cpu_icache_sync_range().
 * this macro modifies PTE (*ptep). need to update PTE after this.
 */
#define PTE_ICACHE_SYNC_PAGE(pte, ptep, pm, va, ll)			\
	do {								\
		pt_entry_t tpte;					\
		tpte = (pte) & ~(LX_BLKPAG_AF|LX_BLKPAG_AP);		\
		tpte |= (LX_BLKPAG_AF|LX_BLKPAG_AP_RW);			\
		tpte |= (LX_BLKPAG_UXN|LX_BLKPAG_PXN);			\
		atomic_swap_64((ptep), tpte);				\
		AARCH64_TLBI_BY_ASID_VA((pm)->pm_asid, (va), (ll));	\
		cpu_icache_sync_range((va), PAGE_SIZE);			\
	} while (0/*CONSTCOND*/)

struct pv_entry {
	TAILQ_ENTRY(pv_entry) pv_link;
	struct pmap *pv_pmap;
	vaddr_t pv_va;
	paddr_t pv_pa;		/* debug */
	pt_entry_t *pv_ptep;	/* for fast pte lookup */
};

static pt_entry_t *_pmap_pte_lookup(struct pmap *, vaddr_t);
static pt_entry_t _pmap_pte_adjust_prot(pt_entry_t, vm_prot_t, vm_prot_t, bool);
static pt_entry_t _pmap_pte_adjust_cacheflags(pt_entry_t, u_int);
static void _pmap_remove(struct pmap *, vaddr_t, bool);
static int _pmap_enter(struct pmap *, vaddr_t, paddr_t, vm_prot_t, u_int, bool);

static struct pmap kernel_pmap;

struct pmap * const kernel_pmap_ptr = &kernel_pmap;
static vaddr_t pmap_maxkvaddr;

vaddr_t virtual_avail, virtual_end;
vaddr_t virtual_devmap_addr;

static struct pool_cache _pmap_cache;
static struct pool_cache _pmap_pv_pool;


static inline void
pmap_pv_lock(struct vm_page_md *md)
{

	mutex_enter(&md->mdpg_pvlock);
}

static inline void
pmap_pv_unlock(struct vm_page_md *md)
{

	mutex_exit(&md->mdpg_pvlock);
}


static inline void
pm_lock(struct pmap *pm)
{
	mutex_enter(&pm->pm_lock);
}

static inline void
pm_unlock(struct pmap *pm)
{
	mutex_exit(&pm->pm_lock);
}

static void __unused
pm_addr_check(struct pmap *pm, vaddr_t va, const char *prefix)
{
	if (pm == pmap_kernel()) {
		if (VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS) {
			// ok
		} else {
			printf("%s: kernel pm %p:"
			    " va=%016lx is not kernel address\n",
			    prefix, pm, va);
			panic("pm_addr_check");
		}
	} else {
		if (VM_MIN_ADDRESS <= va && va <= VM_MAX_ADDRESS) {
			// ok
		} else {
			printf(
			    "%s: user pm %p: va=%016lx is not kernel address\n",
			    prefix, pm, va);
			panic("pm_addr_check");
		}
	}
}
#define PM_ADDR_CHECK(pm, va)		pm_addr_check(pm, va, __func__)
#define IN_KSEG_ADDR(va)	\
	((AARCH64_KSEG_START <= (va)) && ((va) < AARCH64_KSEG_END))


static const struct pmap_devmap *pmap_devmap_table;

/* XXX: for now, only support for devmap */
static vsize_t
_pmap_map_chunk(pd_entry_t *l2, vaddr_t va, paddr_t pa, vsize_t size,
    vm_prot_t prot, u_int flags)
{
	pd_entry_t oldpte __debugused;
	pt_entry_t attr;
	vsize_t resid;

	oldpte = l2[l2pde_index(va)];
	KDASSERT(!l2pde_valid(oldpte));

	attr = _pmap_pte_adjust_prot(L2_BLOCK, prot, VM_PROT_ALL, false);
	attr = _pmap_pte_adjust_cacheflags(attr, flags | PMAP_DEV);
#ifdef MULTIPROCESSOR
	attr |= LX_BLKPAG_SH_IS;
#endif
	/* user cannot execute, and kernel follows the prot */
	attr |= (LX_BLKPAG_UXN|LX_BLKPAG_PXN);
	if (prot & VM_PROT_EXECUTE)
		attr &= ~LX_BLKPAG_PXN;

	resid = (size + (L2_SIZE - 1)) & ~(L2_SIZE - 1);
	size = resid;

	while (resid > 0) {
		pt_entry_t pte;

		pte = pa | attr;

		if (prot & VM_PROT_EXECUTE) {
			pt_entry_t tpte;
			/* need write permission to invalidate icache */
			tpte = pte & ~(LX_BLKPAG_AF|LX_BLKPAG_AP);
			tpte |= (LX_BLKPAG_AF|LX_BLKPAG_AP_RW);
			tpte |= (LX_BLKPAG_UXN|LX_BLKPAG_PXN);
			atomic_swap_64(&l2[l2pde_index(va)], tpte);
			aarch64_tlbi_by_va(va);
			cpu_icache_sync_range(va, L2_SIZE);
		}
		atomic_swap_64(&l2[l2pde_index(va)], pte);
		aarch64_tlbi_by_va(va);

		va += L2_SIZE;
		pa += L2_SIZE;
		resid -= L2_SIZE;
	}

	return size;
}

void
pmap_devmap_register(const struct pmap_devmap *table)
{
	pmap_devmap_table = table;
}

void
pmap_devmap_bootstrap(const struct pmap_devmap *table)
{
	pd_entry_t *l0, *l1, *l2;
	vaddr_t va;
	int i;

	pmap_devmap_register(table);

	l0 = (void *)AARCH64_PA_TO_KVA(reg_ttbr1_el1_read());

	VPRINTF("%s:\n", __func__);
	for (i = 0; table[i].pd_size != 0; i++) {
		VPRINTF(" devmap: pa %08lx-%08lx = va %016lx\n",
		    table[i].pd_pa,
		    table[i].pd_pa + table[i].pd_size - 1,
		    table[i].pd_va);
		va = table[i].pd_va;

		/* update and check virtual_devmap_addr */
		if ((virtual_devmap_addr == 0) ||
		    (virtual_devmap_addr > va)) {
			virtual_devmap_addr = va;

			/* XXX: only one L2 table is allocated for devmap  */
			if ((VM_MAX_KERNEL_ADDRESS - virtual_devmap_addr) >
			    (L2_SIZE * Ln_ENTRIES)) {
				panic("devmap va:%016lx out of range."
				    " available devmap range is %016lx-%016lx",
				    va,
				    VM_MAX_KERNEL_ADDRESS -
				    (L2_SIZE * Ln_ENTRIES),
				    VM_MAX_KERNEL_ADDRESS);
			}
		}

		l1 = (void *)l0pde_pa(l0[l0pde_index(va)]);
		KASSERT(l1 != NULL);
		l1 = (void *)AARCH64_PA_TO_KVA((paddr_t)l1);

		l2 = (void *)l1pde_pa(l1[l1pde_index(va)]);
		if (l2 == NULL)
			panic("L2 table for devmap is not allocated");

		l2 = (void *)AARCH64_PA_TO_KVA((paddr_t)l2);

		_pmap_map_chunk(l2,
		    table[i].pd_va,
		    table[i].pd_pa,
		    table[i].pd_size,
		    table[i].pd_prot,
		    table[i].pd_flags);
	}
}

const struct pmap_devmap *
pmap_devmap_find_va(vaddr_t va, vsize_t size)
{
	paddr_t endva;
	int i;

	if (pmap_devmap_table == NULL)
		return NULL;

	endva = va + size;
	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
		if ((va >= pmap_devmap_table[i].pd_va) &&
		    (endva <= pmap_devmap_table[i].pd_va +
		              pmap_devmap_table[i].pd_size))
			return &pmap_devmap_table[i];
	}
	return NULL;
}

const struct pmap_devmap *
pmap_devmap_find_pa(paddr_t pa, psize_t size)
{
	paddr_t endpa;
	int i;

	if (pmap_devmap_table == NULL)
		return NULL;

	endpa = pa + size;
	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
		if (pa >= pmap_devmap_table[i].pd_pa &&
		    (endpa <= pmap_devmap_table[i].pd_pa +
		             pmap_devmap_table[i].pd_size))
			return (&pmap_devmap_table[i]);
	}
	return NULL;
}

vaddr_t
pmap_devmap_phystov(paddr_t pa)
{
	const struct pmap_devmap *table;
	paddr_t offset;

	table = pmap_devmap_find_pa(pa, 0);
	if (table == NULL)
		return 0;

	offset = pa - table->pd_pa;
	return table->pd_va + offset;
}

vaddr_t
pmap_devmap_vtophys(paddr_t va)
{
	const struct pmap_devmap *table;
	vaddr_t offset;

	table = pmap_devmap_find_va(va, 0);
	if (table == NULL)
		return 0;

	offset = va - table->pd_va;
	return table->pd_pa + offset;
}

void
pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
{
	struct pmap *kpm;
	pd_entry_t *l0;
	paddr_t l0pa;

	PMAP_HIST_INIT();	/* init once */

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

#if 0
	/* uvmexp.ncolors = icachesize / icacheways / PAGE_SIZE; */
	uvmexp.ncolors = aarch64_cache_vindexsize / PAGE_SIZE;
#endif

	/* devmap already uses last of va? */
	if ((virtual_devmap_addr != 0) && (virtual_devmap_addr < vend))
		vend = virtual_devmap_addr;

	virtual_avail = vstart;
	virtual_end = vend;
	pmap_maxkvaddr = vstart;

	aarch64_tlbi_all();

	l0pa = reg_ttbr1_el1_read();
	l0 = (void *)AARCH64_PA_TO_KVA(l0pa);

	memset(&kernel_pmap, 0, sizeof(kernel_pmap));
	kpm = pmap_kernel();
	kpm->pm_asid = 0;
	kpm->pm_refcnt = 1;
	kpm->pm_l0table = l0;
	kpm->pm_l0table_pa = l0pa;
	kpm->pm_activated = true;
	SLIST_INIT(&kpm->pm_vmlist);
	mutex_init(&kpm->pm_lock, MUTEX_DEFAULT, IPL_VM);
}

inline static int
_pmap_color(vaddr_t addr)	/* or paddr_t */
{
	return (addr >> PGSHIFT) & (uvmexp.ncolors - 1);
}

static int
_pmap_pmap_ctor(void *arg, void *v, int flags)
{
	memset(v, 0, sizeof(struct pmap));
	return 0;
}

static int
_pmap_pv_ctor(void *arg, void *v, int flags)
{
	memset(v, 0, sizeof(struct pv_entry));
	return 0;
}

void
pmap_init(void)
{
	struct vm_page *pg;
	struct vm_page_md *md;
	uvm_physseg_t i;
	paddr_t pfn;

	pool_cache_bootstrap(&_pmap_cache, sizeof(struct pmap),
	    0, 0, 0, "pmappl", NULL, IPL_NONE, _pmap_pmap_ctor, NULL, NULL);
	pool_cache_bootstrap(&_pmap_pv_pool, sizeof(struct pv_entry),
	    0, 0, 0, "pvpl", NULL, IPL_VM, _pmap_pv_ctor, NULL, NULL);

	/*
	 * initialize vm_page_md:mdpg_pvlock at this time.
	 * When LOCKDEBUG, mutex_init() calls km_alloc,
	 * but VM_MDPAGE_INIT() is called before initialized kmem_vm_arena.
	 */
	for (i = uvm_physseg_get_first();
	     uvm_physseg_valid_p(i);
	     i = uvm_physseg_get_next(i)) {
		for (pfn = uvm_physseg_get_start(i);
		     pfn < uvm_physseg_get_end(i);
		     pfn++) {
			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
			md = VM_PAGE_TO_MD(pg);
			mutex_init(&md->mdpg_pvlock, MUTEX_SPIN, IPL_VM);
		}
	}
}

void
pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
{
	*vstartp = virtual_avail;
	*vendp = virtual_end;
}

vaddr_t
pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
{
	int npage;
	paddr_t pa;
	vaddr_t va;
	psize_t bank_npage;
	uvm_physseg_t bank;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "size=%llu, *vstartp=%llx, *vendp=%llx",
	    size, *vstartp, *vendp, 0);

	size = round_page(size);
	npage = atop(size);

	for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
	    bank = uvm_physseg_get_next(bank)) {

		bank_npage = uvm_physseg_get_avail_end(bank) -
		    uvm_physseg_get_avail_start(bank);
		if (npage <= bank_npage)
			break;
	}

	if (!uvm_physseg_valid_p(bank)) {
		panic("%s: no memory", __func__);
	}

	/* Steal pages */
	pa = ptoa(uvm_physseg_get_avail_start(bank));
	va = AARCH64_PA_TO_KVA(pa);
	uvm_physseg_unplug(atop(pa), npage);

	for (; npage > 0; npage--, pa += PAGE_SIZE)
		pmap_zero_page(pa);

	return va;
}

void
pmap_reference(struct pmap *pm)
{
	atomic_inc_uint(&pm->pm_refcnt);
}

pd_entry_t *
pmap_alloc_pdp(struct pmap *pm, paddr_t *pap)
{
	paddr_t pa;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	if (uvm.page_init_done) {
		struct vm_page *pg;

		pg = uvm_pagealloc(NULL, 0, NULL,
		    UVM_PGA_USERESERVE | UVM_PGA_ZERO);
		if (pg == NULL)
			panic("%s: cannot allocate L3 table", __func__);
		pa = VM_PAGE_TO_PHYS(pg);

		SLIST_INSERT_HEAD(&pm->pm_vmlist, pg, mdpage.mdpg_vmlist);
		PMAP_COUNT(pdp_alloc);

	} else {
		/* uvm_pageboot_alloc() returns AARCH64 KSEG address */
		pa = AARCH64_KVA_TO_PA(
		    uvm_pageboot_alloc(Ln_TABLE_SIZE));
		PMAP_COUNT(pdp_alloc_boot);
	}
	if (pap != NULL)
		*pap = pa;

	UVMHIST_LOG(pmaphist, "pa=%llx, va=%llx",
	    pa, AARCH64_PA_TO_KVA(pa), 0, 0);

	return (void *)AARCH64_PA_TO_KVA(pa);
}

static void
_pmap_free_pdp_all(struct pmap *pm)
{
	struct vm_page *pg, *tmp;

	SLIST_FOREACH_SAFE(pg, &pm->pm_vmlist, mdpage.mdpg_vmlist, tmp) {
		uvm_pagefree(pg);
		PMAP_COUNT(pdp_free);
	}
}

vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)
{
	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "maxkvaddr=%llx, pmap_maxkvaddr=%llx",
	    maxkvaddr, pmap_maxkvaddr, 0, 0);

	pmap_maxkvaddr = maxkvaddr;

	return maxkvaddr;
}

bool
pmap_extract_coherency(struct pmap *pm, vaddr_t va, paddr_t *pap,
    bool *coherencyp)
{
	if (coherencyp)
		*coherencyp = false;

	return pmap_extract(pm, va, pap);
}

bool
pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
{
	static pt_entry_t *ptep;
	paddr_t pa;
	bool found;

#if 0
	PM_ADDR_CHECK(pm, va);
#else
	if (((pm == pmap_kernel()) &&
	    !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS) &&
	    !(AARCH64_KSEG_START <= va && va < AARCH64_KSEG_END)) ||
	    ((pm != pmap_kernel()) &&
	    !(VM_MIN_ADDRESS <= va && va <= VM_MAX_ADDRESS)))
		return false;
#endif

	extern char __kernel_text[];
	extern char _end[];
	if ((vaddr_t)__kernel_text <= va && va < (vaddr_t)_end) {
		pa = KERN_VTOPHYS(va);
		found = true;
	} else if (AARCH64_KSEG_START <= va && va < AARCH64_KSEG_END) {
		pa = AARCH64_KVA_TO_PA(va);
		found = true;
	} else {
		pt_entry_t pte;

		ptep = _pmap_pte_lookup(pm, va);
		if (ptep == NULL) {
			pd_entry_t pde, *l1, *l2, *l3;

			/*
			 * traverse L0 -> L1 -> L2 -> L3 table
			 * with considering block
			 */
			pde = pm->pm_l0table[l0pde_index(va)];
			if (!l0pde_valid(pde)) {
				found = false;
				goto done;
			}

			l1 = (void *)AARCH64_PA_TO_KVA(l0pde_pa(pde));
			pde = l1[l1pde_index(va)];
			if (!l1pde_valid(pde)) {
				found = false;
				goto done;
			}
			if (l1pde_is_block(pde)) {
				pa = l1pde_pa(pde) + (va & L1_OFFSET);
				found = true;
				goto done;
			}

			KASSERT(l1pde_is_table(pde));

			l2 = (void *)AARCH64_PA_TO_KVA(l1pde_pa(pde));
			pde = l2[l2pde_index(va)];
			if (!l2pde_valid(pde)) {
				found = false;
				goto done;
			}
			if (l2pde_is_block(pde)) {
				pa = l2pde_pa(pde) + (va & L2_OFFSET);
				found = true;
				goto done;
			}

			KASSERT(l2pde_is_table(pde));

			l3 = (void *)AARCH64_PA_TO_KVA(l2pde_pa(pde));
			pte = l3[l3pte_index(va)];

		} else {
			pte = *ptep;
		}
		if (!l3pte_valid(pte) || !l3pte_is_page(pte)) {
			found = false;
			goto done;
		}

		KASSERT(l3pte_is_page(pte));
		pa = l3pte_pa(pte) + (va & L3_OFFSET);
		found = true;
	}
 done:
	if (found && (pap != NULL))
		*pap = pa;
	return found;
}

paddr_t
vtophys(vaddr_t va)
{
	struct pmap *pm;
	paddr_t pa;

	if (VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS) {
		if (pmap_extract(pmap_kernel(), va, &pa) == false) {
			return VTOPHYS_FAILED;
		}
	} else if (IN_KSEG_ADDR(va)) {
		pa = AARCH64_KVA_TO_PA(va);
	} else if (VM_MIN_ADDRESS <= va && va <= VM_MAX_ADDRESS) {
		if (curlwp->l_proc == NULL)
			return VTOPHYS_FAILED;
		pm = curlwp->l_proc->p_vmspace->vm_map.pmap;
		if (pmap_extract(pm, va, &pa) == false) {
			return VTOPHYS_FAILED;
		}
	} else {
		return VTOPHYS_FAILED;
	}
	return pa;
}

static pt_entry_t *
_pmap_pte_lookup(struct pmap *pm, vaddr_t va)
{
	if (AARCH64_KSEG_START <= va && va < AARCH64_KSEG_END) {
		panic("page entry is mapped in KSEG");
	} else {
		pd_entry_t *l0, *l1, *l2, *l3;
		pd_entry_t pde;
		pt_entry_t *ptep;
		unsigned int idx;

		/*
		 * traverse L0 -> L1 -> L2 -> L3 table
		 */
		l0 = pm->pm_l0table;

		idx = l0pde_index(va);
		pde = l0[idx];
		if (!l0pde_valid(pde))
			return NULL;

		l1 = (void *)AARCH64_PA_TO_KVA(l0pde_pa(pde));
		idx = l1pde_index(va);
		pde = l1[idx];
		if (!l1pde_valid(pde))
			return NULL;

		if (l1pde_is_block(pde))
			return NULL;

		l2 = (void *)AARCH64_PA_TO_KVA(l1pde_pa(pde));
		idx = l2pde_index(va);
		pde = l2[idx];
		if (!l2pde_valid(pde))
			return NULL;
		if (l2pde_is_block(pde))
			return NULL;

		l3 = (void *)AARCH64_PA_TO_KVA(l2pde_pa(pde));
		idx = l3pte_index(va);
		ptep = &l3[idx];	/* as PTE */

		return ptep;
	}

	return NULL;
}

static pt_entry_t
_pmap_pte_adjust_prot(pt_entry_t pte, vm_prot_t prot, vm_prot_t protmask,
    bool user)
{
	vm_prot_t masked;
	pt_entry_t xn;

	masked = prot & protmask;
	pte &= ~(LX_BLKPAG_OS_RWMASK|LX_BLKPAG_AF|LX_BLKPAG_AP);

	/* keep prot for ref/mod emulation */
	switch (prot & (VM_PROT_READ|VM_PROT_WRITE)) {
	case 0:
	default:
		break;
	case VM_PROT_READ:
		pte |= LX_BLKPAG_OS_READ;
		break;
	case VM_PROT_WRITE:
	case VM_PROT_READ|VM_PROT_WRITE:
		pte |= (LX_BLKPAG_OS_READ|LX_BLKPAG_OS_WRITE);
		break;
	}

	switch (masked & (VM_PROT_READ|VM_PROT_WRITE)) {
	case 0:
	default:
		/* cannot access due to No LX_BLKPAG_AF */
		pte |= LX_BLKPAG_AP_RO;
		break;
	case VM_PROT_READ:
		/* actual permission of pte */
		pte |= LX_BLKPAG_AF;
		pte |= LX_BLKPAG_AP_RO;
		break;
	case VM_PROT_WRITE:
	case VM_PROT_READ|VM_PROT_WRITE:
		/* actual permission of pte */
		pte |= LX_BLKPAG_AF;
		pte |= LX_BLKPAG_AP_RW;
		break;
	}

	/* executable for kernel or user? first set never exec both */
	pte |= (LX_BLKPAG_UXN|LX_BLKPAG_PXN);
	/* and either to executable */
	xn = user ? LX_BLKPAG_UXN : LX_BLKPAG_PXN;
	if (prot & VM_PROT_EXECUTE)
		pte &= ~xn;			

	return pte;
}

static pt_entry_t
_pmap_pte_adjust_cacheflags(pt_entry_t pte, u_int flags)
{

	pte &= ~LX_BLKPAG_ATTR_MASK;

	switch (flags & (PMAP_CACHE_MASK|PMAP_DEV)) {
	case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
		pte |= LX_BLKPAG_ATTR_DEVICE_MEM;	/* nGnRnE */
		break;
	case PMAP_NOCACHE:
	case PMAP_NOCACHE_OVR:
	case PMAP_WRITE_COMBINE:
		pte |= LX_BLKPAG_ATTR_NORMAL_NC;	/* only no-cache */
		break;
	case PMAP_WRITE_BACK:
	case 0:
	default:
		pte |= LX_BLKPAG_ATTR_NORMAL_WB;
		break;
	}

	return pte;
}

static struct pv_entry *
_pmap_remove_pv(struct vm_page *pg, struct pmap *pm, vaddr_t va, pt_entry_t pte)
{
	struct vm_page_md *md;
	struct pv_entry *pv;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pg=%p, pm=%p, va=%llx, pte=%llx",
	    pg, pm, va, pte);

	md = VM_PAGE_TO_MD(pg);

	pmap_pv_lock(md);

	TAILQ_FOREACH(pv, &md->mdpg_pvhead, pv_link) {
		if ((pm == pv->pv_pmap) && (va == pv->pv_va)) {
			TAILQ_REMOVE(&md->mdpg_pvhead, pv, pv_link);
			PMAP_COUNT(pv_remove);
			break;
		}
	}
#ifdef PMAPCOUNTERS
	if (pv == NULL) {
		PMAP_COUNT(pv_remove_nopv);
	}
#endif

	pmap_pv_unlock(md);

	return pv;
}

#if defined(PMAP_PV_DEBUG) || defined(DDB)

static char *
str_vmflags(uint32_t flags)
{
	static int idx = 0;
	static char buf[4][32];	/* XXX */
	char *p;

	p = buf[idx];
	idx = (idx + 1) & 3;

	p[0] = (flags & VM_PROT_READ) ? 'R' : '-';
	p[1] = (flags & VM_PROT_WRITE) ? 'W' : '-';
	p[2] = (flags & VM_PROT_EXECUTE) ? 'X' : '-';
	if (flags & PMAP_WIRED)
		memcpy(&p[3], ",WIRED\0", 7);
	else
		p[3] = '\0';

	return p;
}

static void
pg_dump(struct vm_page *pg, void (*pr)(const char *, ...))
{
	pr("pg=%p\n", pg);
	pr(" pg->uanon   = %p\n", pg->uanon);
	pr(" pg->uobject = %p\n", pg->uobject);
	pr(" pg->offset  = %zu\n", pg->offset);
	pr(" pg->flags      = %u\n", pg->flags);
	pr(" pg->loan_count = %u\n", pg->loan_count);
	pr(" pg->wire_count = %u\n", pg->wire_count);
	pr(" pg->pqflags    = %u\n", pg->pqflags);
	pr(" pg->phys_addr  = %016lx\n", pg->phys_addr);
}

static void
pv_dump(struct vm_page_md *md, void (*pr)(const char *, ...))
{
	struct pv_entry *pv;
	int i;

	i = 0;

	pr("md=%p\n", md);
	pr(" md->mdpg_flags=%08x %s\n", md->mdpg_flags,
	    str_vmflags(md->mdpg_flags));

	TAILQ_FOREACH(pv, &md->mdpg_pvhead, pv_link) {
		pr("  pv[%d] pv=%p\n",
		    i, pv);
		pr("    pv[%d].pv_pmap =%p (asid=%d)\n",
		    i, pv->pv_pmap, pv->pv_pmap->pm_asid);
		pr("    pv[%d].pv_va   =%016lx (color=%d)\n",
		    i, pv->pv_va, _pmap_color(pv->pv_va));
		pr("    pv[%d].pv_pa   =%016lx (color=%d)\n",
		    i, pv->pv_pa, _pmap_color(pv->pv_pa));
		i++;
	}
}
#endif /* PMAP_PV_DEBUG & DDB */

static int
_pmap_enter_pv(struct vm_page *pg, struct pmap *pm, struct pv_entry **pvp, vaddr_t va,
    pt_entry_t *ptep, paddr_t pa, u_int flags)
{
	struct vm_page_md *md;
	struct pv_entry *pv;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pg=%p, pm=%p, va=%llx, pa=%llx", pg, pm, va, pa);
	UVMHIST_LOG(pmaphist, "ptep=%p, flags=%08x", ptep, flags, 0, 0);

	md = VM_PAGE_TO_MD(pg);

	pmap_pv_lock(md);

	/* pv is already registered? */
	TAILQ_FOREACH(pv, &md->mdpg_pvhead, pv_link) {
		if ((pm == pv->pv_pmap) && (va == pv->pv_va)) {
			break;
		}
	}

	if (pv == NULL) {
		pmap_pv_unlock(md);

		/*
		 * create and link new pv.
		 * pv is already allocated at beginning of _pmap_enter().
		 */
		pv = *pvp;
		if (pv == NULL)
			return ENOMEM;
		*pvp = NULL;

		pv->pv_pmap = pm;
		pv->pv_va = va;
		pv->pv_pa = pa;
		pv->pv_ptep = ptep;

		pmap_pv_lock(md);
		TAILQ_INSERT_HEAD(&md->mdpg_pvhead, pv, pv_link);
		PMAP_COUNT(pv_enter);

#ifdef PMAP_PV_DEBUG
		if (!TAILQ_EMPTY(&md->mdpg_pvhead)){
			printf("pv %p alias added va=%016lx -> pa=%016lx\n",
			    pv, va, pa);
			pv_dump(md, printf);
		}
#endif
	}
	pmap_pv_unlock(md);
	return 0;
}

void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
{
	int s;

	s = splvm();
	_pmap_enter(pmap_kernel(), va, pa, prot, flags | PMAP_WIRED, true);
	splx(s);
}

void
pmap_kremove(vaddr_t va, vsize_t size)
{
	struct pmap *kpm = pmap_kernel();
	vaddr_t eva;
	int s;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "va=%llx, size=%llx", va, size, 0, 0);

	KDASSERT((va & PGOFSET) == 0);
	KDASSERT((size & PGOFSET) == 0);

	KASSERT(!IN_KSEG_ADDR(va));

	eva = va + size;
	KDASSERT(VM_MIN_KERNEL_ADDRESS <= va && eva < VM_MAX_KERNEL_ADDRESS);

	s = splvm();
	for (; va < eva; va += PAGE_SIZE) {
		_pmap_remove(kpm, va, true);
	}
	splx(s);
}

static void
_pmap_protect_pv(struct vm_page *pg, struct pv_entry *pv, vm_prot_t prot)
{
	pt_entry_t *ptep, pte;
	vm_prot_t pteprot;
	uint32_t mdattr;
	const bool user = (pv->pv_pmap != pmap_kernel());

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pg=%p, pv=%p, prot=%08x", pg, pv, prot, 0);

	/* get prot mask from referenced/modified */
	mdattr = VM_PAGE_TO_MD(pg)->mdpg_flags &
	    (VM_PROT_READ | VM_PROT_WRITE);

	pm_lock(pv->pv_pmap);

	ptep = pv->pv_ptep;
	pte = *ptep;

	/* get prot mask from pte */
	pteprot = 0;
	if (pte & LX_BLKPAG_AF)
		pteprot |= VM_PROT_READ;
	if ((pte & LX_BLKPAG_AP) == LX_BLKPAG_AP_RW)
		pteprot |= VM_PROT_WRITE;
	if (l3pte_executable(pte, user))
		pteprot |= VM_PROT_EXECUTE;

	/* new prot = prot & pteprot & mdattr */
	pte = _pmap_pte_adjust_prot(pte, prot & pteprot, mdattr, user);
	atomic_swap_64(ptep, pte);
	AARCH64_TLBI_BY_ASID_VA(pv->pv_pmap->pm_asid, pv->pv_va, true);

	pm_unlock(pv->pv_pmap);
}

void
pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
{
	vaddr_t va;
	const bool user = (pm != pmap_kernel());

	KASSERT((prot & VM_PROT_READ) || !(prot & VM_PROT_WRITE));

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pm=%p, sva=%016lx, eva=%016lx, prot=%08x",
	    pm, sva, eva, prot);

	PM_ADDR_CHECK(pm, sva);

	KASSERT(!IN_KSEG_ADDR(sva));

	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
		PMAP_COUNT(protect_remove_fallback);
		pmap_remove(pm, sva, eva);
		return;
	}
	PMAP_COUNT(protect);

	KDASSERT((sva & PAGE_MASK) == 0);
	KDASSERT((eva & PAGE_MASK) == 0);

	pm_lock(pm);

	for (va = sva; va < eva; va += PAGE_SIZE) {
		pt_entry_t *ptep, pte;
#ifdef UVMHIST
		pt_entry_t opte;
#endif
		struct vm_page *pg;
		paddr_t pa;
		uint32_t mdattr;
		bool executable;

		ptep = _pmap_pte_lookup(pm, va);
		if (ptep == NULL) {
			PMAP_COUNT(protect_none);
			continue;
		}

		pte = *ptep;

		if (!l3pte_valid(pte)) {
			PMAP_COUNT(protect_none);
			continue;
		}

		pa = l3pte_pa(pte);
		pg = PHYS_TO_VM_PAGE(pa);

		if (pg != NULL) {
			/* get prot mask from referenced/modified */
			mdattr = VM_PAGE_TO_MD(pg)->mdpg_flags &
			    (VM_PROT_READ | VM_PROT_WRITE);
			PMAP_COUNT(protect_managed);
		} else {
			/* unmanaged page */
			mdattr = VM_PROT_ALL;
			PMAP_COUNT(protect_unmanaged);
		}

		pte = *ptep;
#ifdef UVMHIST
		opte = pte;
#endif
		executable = l3pte_executable(pte, user);
		pte = _pmap_pte_adjust_prot(pte, prot, mdattr, user);

		if (!executable && (prot & VM_PROT_EXECUTE)) {
			/* non-exec -> exec */
			UVMHIST_LOG(pmaphist, "icache_sync: "
			    "pm=%p, va=%016lx, pte: %016lx -> %016lx",
			    pm, va, opte, pte);
			if (!l3pte_writable(pte)) {
				PTE_ICACHE_SYNC_PAGE(pte, ptep, pm, va, true);
				atomic_swap_64(ptep, pte);
				AARCH64_TLBI_BY_ASID_VA(pm->pm_asid, va, true);
			} else {
				atomic_swap_64(ptep, pte);
				AARCH64_TLBI_BY_ASID_VA(pm->pm_asid, va, true);
				cpu_icache_sync_range(va, PAGE_SIZE);
			}
		} else {
			atomic_swap_64(ptep, pte);
			AARCH64_TLBI_BY_ASID_VA(pm->pm_asid, va, true);
		}
	}

	pm_unlock(pm);
}

void
pmap_activate(struct lwp *l)
{
	struct pmap *pm = l->l_proc->p_vmspace->vm_map.pmap;
	uint64_t ttbr0;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	if (pm == pmap_kernel())
		return;
	if (l != curlwp)
		return;

	KASSERT(pm->pm_l0table != NULL);

	UVMHIST_LOG(pmaphist, "lwp=%p (pid=%d)", l, l->l_proc->p_pid, 0, 0);

	/* XXX */
	CTASSERT(PID_MAX <= 65535);	/* 16bit ASID */
	if (pm->pm_asid == -1)
		pm->pm_asid = l->l_proc->p_pid;

	ttbr0 = ((uint64_t)pm->pm_asid << 48) | pm->pm_l0table_pa;
	aarch64_set_ttbr0(ttbr0);

	pm->pm_activated = true;

	PMAP_COUNT(activate);
}

void
pmap_deactivate(struct lwp *l)
{
	struct pmap *pm = l->l_proc->p_vmspace->vm_map.pmap;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	if (pm == pmap_kernel())
		return;

	UVMHIST_LOG(pmaphist, "lwp=%p, asid=%d", l, pm->pm_asid, 0, 0);

	/* XXX */
	pm->pm_activated = false;

	PMAP_COUNT(deactivate);
}

struct pmap *
pmap_create(void)
{
	struct pmap *pm;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	pm = pool_cache_get(&_pmap_cache, PR_WAITOK);
	memset(pm, 0, sizeof(*pm));
	pm->pm_refcnt = 1;
	pm->pm_asid = -1;
	SLIST_INIT(&pm->pm_vmlist);
	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
	pm->pm_l0table = pmap_alloc_pdp(pm, &pm->pm_l0table_pa);
	KASSERT(((vaddr_t)pm->pm_l0table & (PAGE_SIZE - 1)) == 0);

	UVMHIST_LOG(pmaphist, "pm=%p, pm_l0table=%016lx, pm_l0table_pa=%016lx",
	    pm, pm->pm_l0table, pm->pm_l0table_pa, 0);

	PMAP_COUNT(create);
	return pm;
}

void
pmap_destroy(struct pmap *pm)
{
	unsigned int refcnt;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist,
	    "pm=%p, pm_l0table=%016lx, pm_l0table_pa=%016lx, refcnt=%d",
	    pm, pm->pm_l0table, pm->pm_l0table_pa, pm->pm_refcnt);

	if (pm == NULL)
		return;

	if (pm == pmap_kernel())
		panic("cannot destroy kernel pmap");

	refcnt = atomic_dec_uint_nv(&pm->pm_refcnt);
	if (refcnt > 0)
		return;

	aarch64_tlbi_by_asid(pm->pm_asid);

	_pmap_free_pdp_all(pm);
	mutex_destroy(&pm->pm_lock);
	pool_cache_put(&_pmap_cache, pm);

	PMAP_COUNT(destroy);
}

static int
_pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
    u_int flags, bool kenter)
{
	struct vm_page *pg;
	struct pv_entry *spv, *opv = NULL;
	pd_entry_t pde;
	pt_entry_t attr, pte, *ptep;
#ifdef UVMHIST
	pt_entry_t opte;
#endif
	pd_entry_t *l0, *l1, *l2, *l3;
	paddr_t pdppa;
	uint32_t mdattr;
	unsigned int idx;
	int error = 0;
	const bool user = (pm != pmap_kernel());
	bool executable;
	bool l3only = true;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pm=%p, kentermode=%d", pm, kenter, 0, 0);
	UVMHIST_LOG(pmaphist, "va=%016lx, pa=%016lx, prot=%08x, flags=%08x",
	    va, pa, prot, flags);

	PM_ADDR_CHECK(pm, va);

#ifdef PMAPCOUNTERS
	PMAP_COUNT(mappings);
	if (_pmap_color(va) == _pmap_color(pa)) {
		if (user) {
			PMAP_COUNT(user_mappings);
		} else {
			PMAP_COUNT(kern_mappings);
		}
	} else if (flags & PMAP_WIRED) {
		if (user) {
			PMAP_COUNT(user_mappings_bad_wired);
		} else {
			PMAP_COUNT(kern_mappings_bad_wired);
		}
	} else {
		if (user) {
			PMAP_COUNT(user_mappings_bad);
		} else {
			PMAP_COUNT(kern_mappings_bad);
		}
	}
#endif

	if (kenter)
		pg = NULL;
	else
		pg = PHYS_TO_VM_PAGE(pa);

	if (pg != NULL) {
		PMAP_COUNT(managed_mappings);
		/*
		 * allocate pv in advance of pm_lock() to avoid locking myself.
		 * pool_cache_get() may call pmap_kenter() internally.
		 */
		spv = pool_cache_get(&_pmap_pv_pool, PR_NOWAIT);
	} else {
		PMAP_COUNT(unmanaged_mappings);
		spv = NULL;
	}

	pm_lock(pm);

	/*
	 * traverse L0 -> L1 -> L2 -> L3 table with growing pdp if needed.
	 */
	l0 = pm->pm_l0table;

	idx = l0pde_index(va);
	pde = l0[idx];
	if (!l0pde_valid(pde)) {
		pmap_alloc_pdp(pm, &pdppa);
		KASSERT(pdppa != POOL_PADDR_INVALID);
		atomic_swap_64(&l0[idx], pdppa | L0_TABLE);
		l3only = false;
	} else {
		pdppa = l0pde_pa(pde);
	}
	l1 = (void *)AARCH64_PA_TO_KVA(pdppa);

	idx = l1pde_index(va);
	pde = l1[idx];
	if (!l1pde_valid(pde)) {
		pmap_alloc_pdp(pm, &pdppa);
		KASSERT(pdppa != POOL_PADDR_INVALID);
		atomic_swap_64(&l1[idx], pdppa | L1_TABLE);
		l3only = false;
	} else {
		pdppa = l1pde_pa(pde);
	}
	l2 = (void *)AARCH64_PA_TO_KVA(pdppa);

	idx = l2pde_index(va);
	pde = l2[idx];
	if (!l2pde_valid(pde)) {
		pmap_alloc_pdp(pm, &pdppa);
		KASSERT(pdppa != POOL_PADDR_INVALID);
		atomic_swap_64(&l2[idx], pdppa | L2_TABLE);
		l3only = false;
	} else {
		pdppa = l2pde_pa(pde);
	}
	l3 = (void *)AARCH64_PA_TO_KVA(pdppa);

	idx = l3pte_index(va);
	ptep = &l3[idx];	/* as PTE */

	pte = *ptep;
#ifdef UVMHIST
	opte = pte;
#endif
	executable = l3pte_executable(pte, user);

	if (l3pte_valid(pte)) {
		KASSERT(!kenter);	/* pmap_kenter_pa() cannot override */

		PMAP_COUNT(remappings);

		/* pte is Already mapped */
		if (l3pte_pa(pte) != pa) {
			struct vm_page *opg;

#ifdef PMAPCOUNTERS
			if (user) {
				PMAP_COUNT(user_mappings_changed);
			} else {
				PMAP_COUNT(kern_mappings_changed);
			}
#endif

			UVMHIST_LOG(pmaphist,
			    "va=%016lx has already mapped."
			    " old-pa=%016lx new-pa=%016lx, pte=%016llx\n",
			    va, l3pte_pa(pte), pa, pte);

			opg = PHYS_TO_VM_PAGE(l3pte_pa(pte));
			if (opg != NULL)
				opv = _pmap_remove_pv(opg, pm, va, pte);
		}

		if (pte & LX_BLKPAG_OS_WIRED)
			pm->pm_stats.wired_count--;
		pm->pm_stats.resident_count--;
	}

	/*
	 * read permission is treated as an access permission internally.
	 * require to add PROT_READ even if only PROT_WRITE or PROT_EXEC
	 * for wired mapping.
	 */
	if ((flags & PMAP_WIRED) && (prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)))
		prot |= VM_PROT_READ;

	mdattr = VM_PROT_READ | VM_PROT_WRITE;
	if (pg != NULL) {
		error = _pmap_enter_pv(pg, pm, &spv, va, ptep, pa, flags);

		if (error != 0) {
			/*
			 * If pmap_enter() fails,
			 * it must not leave behind an existing pmap entry.
			 */
			if (!kenter && ((pte & LX_BLKPAG_OS_WIRED) == 0))
				atomic_swap_64(ptep, 0);

			PMAP_COUNT(pv_entry_cannotalloc);
			if (flags & PMAP_CANFAIL)
				goto done;
			panic("pmap_enter: failed to allocate pv_entry");
		}

		/* update referenced/modified flags */
		VM_PAGE_TO_MD(pg)->mdpg_flags |=
		    (flags & (VM_PROT_READ | VM_PROT_WRITE));
		mdattr &= VM_PAGE_TO_MD(pg)->mdpg_flags;
	}

#ifdef PMAPCOUNTERS
	switch (flags & PMAP_CACHE_MASK) {
	case PMAP_NOCACHE:
	case PMAP_NOCACHE_OVR:
		PMAP_COUNT(uncached_mappings);
		break;
	}
#endif

	attr = _pmap_pte_adjust_prot(L3_PAGE, prot, mdattr, user);
	attr = _pmap_pte_adjust_cacheflags(attr, flags);
	if (VM_MAXUSER_ADDRESS > va)
		attr |= LX_BLKPAG_APUSER;
	if (flags & PMAP_WIRED)
		attr |= LX_BLKPAG_OS_WIRED;
#ifdef MULTIPROCESSOR
	attr |= LX_BLKPAG_SH_IS;
#endif

	pte = pa | attr;

	if (!executable && (prot & VM_PROT_EXECUTE)) {
		/* non-exec -> exec */
		UVMHIST_LOG(pmaphist,
		    "icache_sync: pm=%p, va=%016lx, pte: %016lx -> %016lx",
		    pm, va, opte, pte);
		if (!l3pte_writable(pte)) {
			PTE_ICACHE_SYNC_PAGE(pte, ptep, pm, va, l3only);
			atomic_swap_64(ptep, pte);
			AARCH64_TLBI_BY_ASID_VA(pm->pm_asid, va ,true);
		} else {
			atomic_swap_64(ptep, pte);
			AARCH64_TLBI_BY_ASID_VA(pm->pm_asid, va, l3only);
			cpu_icache_sync_range(va, PAGE_SIZE);
		}
	} else {
		atomic_swap_64(ptep, pte);
		AARCH64_TLBI_BY_ASID_VA(pm->pm_asid, va, l3only);
	}

	if (pte & LX_BLKPAG_OS_WIRED)
		pm->pm_stats.wired_count++;
	pm->pm_stats.resident_count++;

 done:
	pm_unlock(pm);

	/* spare pv was not used. discard */
	if (spv != NULL)
		pool_cache_put(&_pmap_pv_pool, spv);

	if (opv != NULL)
		pool_cache_put(&_pmap_pv_pool, opv);

	return error;
}

int
pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
{
	KASSERT((prot & VM_PROT_READ) || !(prot & VM_PROT_WRITE));

	return _pmap_enter(pm, va, pa, prot, flags, false);
}

void
pmap_remove_all(struct pmap *pm)
{
	/* nothing to do */
}

static void
_pmap_remove(struct pmap *pm, vaddr_t va, bool kremove)
{
	pt_entry_t pte, *ptep;
	struct vm_page *pg;
	struct pv_entry *opv = NULL;
	paddr_t pa;


	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pm=%p, va=%016lx, kremovemode=%d",
	    pm, va, kremove, 0);

	pm_lock(pm);

	ptep = _pmap_pte_lookup(pm, va);
	if (ptep != NULL) {
		pte = *ptep;
		if (!l3pte_valid(pte))
			goto done;

		pa = l3pte_pa(pte);

		if (kremove)
			pg = NULL;
		else
			pg = PHYS_TO_VM_PAGE(pa);

		if (pg != NULL)
			opv = _pmap_remove_pv(pg, pm, va, pte);

		atomic_swap_64(ptep, 0);
		AARCH64_TLBI_BY_ASID_VA(pm->pm_asid, va, true);

		if ((pte & LX_BLKPAG_OS_WIRED) != 0)
			pm->pm_stats.wired_count--;
		pm->pm_stats.resident_count--;
	}
 done:
	pm_unlock(pm);

	if (opv != NULL)
		pool_cache_put(&_pmap_pv_pool, opv);
}

void
pmap_remove(struct pmap *pm, vaddr_t sva, vaddr_t eva)
{
	vaddr_t va;

	PM_ADDR_CHECK(pm, sva);

	KASSERT(!IN_KSEG_ADDR(sva));

	for (va = sva; va < eva; va += PAGE_SIZE)
		_pmap_remove(pm, va, false);
}

void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
	struct pv_entry *pv, *pvtmp;
	pt_entry_t opte;

	KASSERT((prot & VM_PROT_READ) || !(prot & VM_PROT_WRITE));

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pg=%p, md=%p, pa=%016lx, prot=%08x",
	    pg, md, VM_PAGE_TO_PHYS(pg), prot);


	if ((prot & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
	    VM_PROT_NONE) {

		/* remove all pages reference to this physical page */
		pmap_pv_lock(md);
		TAILQ_FOREACH_SAFE(pv, &md->mdpg_pvhead, pv_link, pvtmp) {

			opte = atomic_swap_64(pv->pv_ptep, 0);
			AARCH64_TLBI_BY_ASID_VA(pv->pv_pmap->pm_asid,
			    pv->pv_va, true);

			if ((opte & LX_BLKPAG_OS_WIRED) != 0)
				pv->pv_pmap->pm_stats.wired_count--;
			pv->pv_pmap->pm_stats.resident_count--;

			TAILQ_REMOVE(&md->mdpg_pvhead, pv, pv_link);
			PMAP_COUNT(pv_remove);
			pool_cache_put(&_pmap_pv_pool, pv);
		}
		pmap_pv_unlock(md);

	} else {
		pmap_pv_lock(md);
		TAILQ_FOREACH(pv, &md->mdpg_pvhead, pv_link) {
			_pmap_protect_pv(pg, pv, prot);
		}
		pmap_pv_unlock(md);
	}
}

void
pmap_unwire(struct pmap *pm, vaddr_t va)
{
	pt_entry_t pte, *ptep;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pm=%p, va=%016lx", pm, va, 0, 0);

	PMAP_COUNT(unwire);

	PM_ADDR_CHECK(pm, va);

	pm_lock(pm);
	ptep = _pmap_pte_lookup(pm, va);
	if (ptep != NULL) {
		pte = *ptep;
		if (!l3pte_valid(pte) ||
		    ((pte & LX_BLKPAG_OS_WIRED) == 0)) {
			/* invalid pte, or pte is not wired */
			PMAP_COUNT(unwire_failure);
			pm_unlock(pm);
			return;
		}

		pte &= ~LX_BLKPAG_OS_WIRED;
		atomic_swap_64(ptep, pte);

		pm->pm_stats.wired_count--;
	}
	pm_unlock(pm);
}

bool
pmap_fault_fixup(struct pmap *pm, vaddr_t va, vm_prot_t accessprot, bool user)
{
	struct vm_page *pg;
	struct vm_page_md *md;
	pt_entry_t *ptep, pte;
	vm_prot_t pmap_prot;
	paddr_t pa;
	bool fixed = false;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pm=%p, va=%016lx, accessprot=%08x",
	    pm, va, accessprot, 0);


#if 0
	PM_ADDR_CHECK(pm, va);
#else
	if (((pm == pmap_kernel()) &&
	    !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS)) ||
	    ((pm != pmap_kernel()) &&
	    !(VM_MIN_ADDRESS <= va && va <= VM_MAX_ADDRESS))) {

		UVMHIST_LOG(pmaphist,
		    "pmap space and va mismatch: pm=%s, va=%016lx",
		    (pm == pmap_kernel()) ? "kernel" : "user", va, 0, 0);
		return false;
	}
#endif

	pm_lock(pm);

	ptep = _pmap_pte_lookup(pm, va);
	if (ptep == NULL) {
		UVMHIST_LOG(pmaphist, "pte_lookup failure: va=%016lx",
		    va, 0, 0, 0);
		goto done;
	}

	pte = *ptep;
	if (!l3pte_valid(pte)) {
		UVMHIST_LOG(pmaphist, "invalid pte: %016llx: va=%016lx",
		    pte, va, 0, 0);
		goto done;
	}

	pa = l3pte_pa(*ptep);
	pg = PHYS_TO_VM_PAGE(pa);
	if (pg == NULL) {
		UVMHIST_LOG(pmaphist, "pg not found: va=%016lx", va, 0, 0, 0);
		goto done;
	}
	md = VM_PAGE_TO_MD(pg);

	/* get prot by pmap_enter() (stored in software use bit in pte) */
	switch (pte & (LX_BLKPAG_OS_READ|LX_BLKPAG_OS_WRITE)) {
	case 0:
	default:
		pmap_prot = 0;
		break;
	case LX_BLKPAG_OS_READ:
		pmap_prot = VM_PROT_READ;
		break;
	case LX_BLKPAG_OS_WRITE:
	case LX_BLKPAG_OS_READ|LX_BLKPAG_OS_WRITE:
		pmap_prot = (VM_PROT_READ|VM_PROT_WRITE);
		break;
	}
	if (l3pte_executable(pte, pm != pmap_kernel()))
		pmap_prot |= VM_PROT_EXECUTE;

	UVMHIST_LOG(pmaphist, "va=%016lx, pmapprot=%08x, accessprot=%08x",
	    va, pmap_prot, accessprot, 0);

	/* ignore except read/write */
	accessprot &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);

	/* no permission to read/write/execute for this page */
	if ((pmap_prot & accessprot) != accessprot) {
		UVMHIST_LOG(pmaphist, "no permission to access", 0, 0, 0, 0);
		goto done;
	}

	/* pte is readable and writable, but occured fault? probably copy(9) */
	if ((pte & LX_BLKPAG_AF) && ((pte & LX_BLKPAG_AP) == LX_BLKPAG_AP_RW))
		goto done;

	pmap_pv_lock(md);
	if ((pte & LX_BLKPAG_AF) == 0) {
		/* pte has no AF bit, set referenced and AF bit */
		UVMHIST_LOG(pmaphist,
		    "REFERENCED:"
		    " va=%016lx, pa=%016lx, pte_prot=%08x, accessprot=%08x",
		    va, pa, pmap_prot, accessprot);
		md->mdpg_flags |= VM_PROT_READ;		/* set referenced */
		pte |= LX_BLKPAG_AF;

		PMAP_COUNT(fixup_referenced);
	}
	if ((accessprot & VM_PROT_WRITE) &&
	    ((pte & LX_BLKPAG_AP) == LX_BLKPAG_AP_RO)) {
		/* pte is not RW. set modified and RW */

		UVMHIST_LOG(pmaphist, "MODIFIED:"
		    " va=%016lx, pa=%016lx, pte_prot=%08x, accessprot=%08x",
		    va, pa, pmap_prot, accessprot);
		md->mdpg_flags |= VM_PROT_WRITE;	/* set modified */
		pte &= ~LX_BLKPAG_AP;
		pte |= LX_BLKPAG_AP_RW;

		PMAP_COUNT(fixup_modified);
	}
	pmap_pv_unlock(md);

	atomic_swap_64(ptep, pte);
	AARCH64_TLBI_BY_ASID_VA(pm->pm_asid, va, true);

	fixed = true;

 done:
	pm_unlock(pm);
	return fixed;
}

bool
pmap_clear_modify(struct vm_page *pg)
{
	struct pv_entry *pv;
	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
	pt_entry_t *ptep, pte, opte;
	vaddr_t va;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pg=%p, mdpg_flags=%08x",
	    pg, md->mdpg_flags, 0, 0);

	pmap_pv_lock(md);

	if ((md->mdpg_flags & VM_PROT_WRITE) == 0) {
		pmap_pv_unlock(md);
		return false;
	}

	md->mdpg_flags &= ~VM_PROT_WRITE;

	PMAP_COUNT(clear_modify);
	TAILQ_FOREACH(pv, &md->mdpg_pvhead, pv_link) {
		PMAP_COUNT(clear_modify_pages);

		va = pv->pv_va;

		ptep = pv->pv_ptep;
		opte = pte = *ptep;
 tryagain:
		if (!l3pte_valid(pte))
			continue;

		/* clear write permission */
		pte &= ~LX_BLKPAG_AP;
		pte |= LX_BLKPAG_AP_RO;

		/* XXX: possible deadlock if using PM_LOCK(). this is racy */
		if ((pte = atomic_cas_64(ptep, opte, pte)) != opte) {
			opte = pte;
			goto tryagain;
		}

		AARCH64_TLBI_BY_ASID_VA(pv->pv_pmap->pm_asid, va, true);

		UVMHIST_LOG(pmaphist,
		    "va=%016llx, ptep=%p, pa=%016lx, RW -> RO",
		    va, ptep, l3pte_pa(pte), 0);
	}

	pmap_pv_unlock(md);

	return true;
}

bool
pmap_clear_reference(struct vm_page *pg)
{
	struct pv_entry *pv;
	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
	pt_entry_t *ptep, pte, opte;
	vaddr_t va;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLED(pmaphist);

	UVMHIST_LOG(pmaphist, "pg=%p, mdpg_flags=%08x",
	    pg, md->mdpg_flags, 0, 0);

	pmap_pv_lock(md);

	if ((md->mdpg_flags & VM_PROT_READ) == 0) {
		pmap_pv_unlock(md);
		return false;
	}
	md->mdpg_flags &= ~VM_PROT_READ;

	PMAP_COUNT(clear_reference);
	TAILQ_FOREACH(pv, &md->mdpg_pvhead, pv_link) {
		PMAP_COUNT(clear_reference_pages);

		va = pv->pv_va;

		ptep = pv->pv_ptep;
		opte = pte = *ptep;
 tryagain:
		if (!l3pte_valid(pte))
			continue;

		/* clear access permission */
		pte &= ~LX_BLKPAG_AF;

		/* XXX: possible deadlock if using PM_LOCK(). this is racy */
		if ((pte = atomic_cas_64(ptep, opte, pte)) != opte) {
			opte = pte;
			goto tryagain;
		}

		AARCH64_TLBI_BY_ASID_VA(pv->pv_pmap->pm_asid, va, true);

		UVMHIST_LOG(pmaphist, "va=%016llx, ptep=%p, pa=%016lx, unse AF",
		    va, ptep, l3pte_pa(pte), 0);
	}

	pmap_pv_unlock(md);

	return true;
}

bool
pmap_is_modified(struct vm_page *pg)
{
	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);

	return (md->mdpg_flags & VM_PROT_WRITE);
}

bool
pmap_is_referenced(struct vm_page *pg)
{
	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);

	return (md->mdpg_flags & VM_PROT_READ);
}

#ifdef DDB
/* get pointer to kernel segment L2 or L3 table entry */
pt_entry_t *
kvtopte(vaddr_t va)
{
	pd_entry_t *l0, *l1, *l2, *l3;
	pd_entry_t pde;
	pt_entry_t *ptep;
	unsigned int idx;

	KASSERT(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);

	/*
	 * traverse L0 -> L1 -> L2 block (or -> L3 table)
	 */
	l0 = pmap_kernel()->pm_l0table;

	idx = l0pde_index(va);
	pde = l0[idx];
	if (!l0pde_valid(pde))
		return NULL;

	l1 = (void *)AARCH64_PA_TO_KVA(l0pde_pa(pde));
	idx = l1pde_index(va);
	pde = l1[idx];
	if (!l1pde_valid(pde))
		return NULL;

	if (l1pde_is_block(pde))
		return NULL;

	l2 = (void *)AARCH64_PA_TO_KVA(l1pde_pa(pde));
	idx = l2pde_index(va);
	pde = l2[idx];
	if (!l2pde_valid(pde))
		return NULL;
	if (l2pde_is_block(pde))
		return &l2[idx];	/* kernel text/data use L2 blocks */

	l3 = (void *)AARCH64_PA_TO_KVA(l2pde_pa(pde));
	idx = l3pte_index(va);
	ptep = &l3[idx];		/* or may use L3 page? */

	return ptep;
}

/* change attribute of kernel segment */
pt_entry_t
pmap_kvattr(vaddr_t va, vm_prot_t prot)
{
	pt_entry_t *ptep, pte, opte;

	KASSERT(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);

	ptep = kvtopte(va);
	if (ptep == NULL)
		panic("%s: %016lx is not mapped\n", __func__, va);

	opte = pte = *ptep;

	pte &= ~(LX_BLKPAG_AF|LX_BLKPAG_AP);
	switch (prot & (VM_PROT_READ|VM_PROT_WRITE)) {
	case 0:
		break;
	case VM_PROT_READ:
		pte |= (LX_BLKPAG_AF|LX_BLKPAG_AP_RO);
		break;
	case VM_PROT_WRITE:
	case VM_PROT_READ|VM_PROT_WRITE:
		pte |= (LX_BLKPAG_AF|LX_BLKPAG_AP_RW);
		break;
	}

	if ((prot & VM_PROT_EXECUTE) == 0) {
		pte |= LX_BLKPAG_PXN;
	} else {
		pte |= LX_BLKPAG_AF;
		pte &= ~LX_BLKPAG_PXN;
	}

	*ptep = pte;

	return opte;
}

static void
pmap_db_pte_print(pt_entry_t pte, int level, void (*pr)(const char *, ...))
{
	if (pte == 0) {
		pr(" UNUSED\n");

	} else if (level == 0) {
		/* L0 pde */
		pr(", %s",
		    l1pde_is_table(pte) ? "TABLE" : "***ILLEGAL TYPE***");
		pr(", %s", l0pde_valid(pte) ? "VALID" : "***INVALID***");

		pr(", PA=%016lx", l0pde_pa(pte));

	} else if (((level == 1) && l1pde_is_block(pte)) ||
	    ((level == 2) && l2pde_is_block(pte)) ||
		(level == 3)) {

		if (level == 3) {
			pr(", %s",
			    l3pte_is_page(pte) ? " PAGE" : "**ILLEGAL TYPE**");
			pr(", %s",
			    l3pte_valid(pte) ? "VALID" : "**INVALID**");
		} else {
			pr(", %s", l1pde_is_table(pte) ? "TABLE" : "BLOCK");
			pr(", %s",
			    l1pde_valid(pte) ? "VALID" : "**INVALID**");
		}

		pr(", PA=%016lx", l3pte_pa(pte));

		/* L[12] block, or L3 pte */
		pr(", %s", (pte & LX_BLKPAG_UXN) ? "UXN" : "---");
		pr(", %s", (pte & LX_BLKPAG_PXN) ? "PXN" : "---");

		if (pte & LX_BLKPAG_CONTIG)
			pr(",CONTIG");

		pr(", %s", (pte & LX_BLKPAG_NG) ? "NG" : "--");
		pr(", %s", (pte & LX_BLKPAG_AF) ? "AF" : "--");

		switch (pte & LX_BLKPAG_SH) {
		case LX_BLKPAG_SH_NS:
			pr(", SH_NS");
			break;
		case LX_BLKPAG_SH_OS:
			pr(", SH_OS");
			break;
		case LX_BLKPAG_SH_IS:
			pr(", SH_IS");
			break;
		default:
			pr(", SH_??");
			break;
		}

		pr(", %s", (pte & LX_BLKPAG_AP_RO) ? "RO" : "RW");
		pr(", %s", (pte & LX_BLKPAG_APUSER) ? "EL0" : "EL1");

		switch (pte & LX_BLKPAG_ATTR_MASK) {
		case LX_BLKPAG_ATTR_NORMAL_WB:
			pr(", WRITEBACK");
			break;
		case LX_BLKPAG_ATTR_NORMAL_NC:
			pr(", NOCACHE");
			break;
		case LX_BLKPAG_ATTR_NORMAL_WT:
			pr(", WHITETHRU");
			break;
		case LX_BLKPAG_ATTR_DEVICE_MEM:
			pr(", DEVICE");
			break;
		}

		if (pte & LX_BLKPAG_OS_READ)
			pr(", pmap_read");
		if (pte & LX_BLKPAG_OS_WRITE)
			pr(", pmap_write");
		if ((pte & LX_BLKPAG_UXN) == 0)
			pr(", user-executable");
		if ((pte & LX_BLKPAG_PXN) == 0)
			pr(", kernel-executable");

	} else {
		/* L1 and L2 pde */
		pr(", %s", l1pde_is_table(pte) ? "TABLE" : "BLOCK");
		pr(", %s", l1pde_valid(pte) ? "VALID" : "**INVALID**");
		pr(", PA=%016lx", l1pde_pa(pte));
	}
	pr("\n");
}


void
pmap_db_pteinfo(vaddr_t va, void (*pr)(const char *, ...))
{
	struct pmap *pm;
	struct vm_page *pg;
	bool user;


	if (VM_MAXUSER_ADDRESS > va) {
		pm = curlwp->l_proc->p_vmspace->vm_map.pmap;
		user = true;
	} else {
		pm = pmap_kernel();
		user = false;
	}


	pd_entry_t *l0, *l1, *l2, *l3;
	pd_entry_t pde;
	pt_entry_t pte;
	struct vm_page_md *md;
	paddr_t pa;
	unsigned int idx;

	/*
	 * traverse L0 -> L1 -> L2 -> L3 table
	 */

	l0 = pm->pm_l0table;

	pr("TTBR%d=%016llx (%016llx)", user ? 0 : 1,
	    pm->pm_l0table_pa, l0);
	pr(", input-va=%016llx,"
	    " L0-index=%d, L1-index=%d, L2-index=%d, L3-index=%d\n",
	    va,
	    (va & L0_ADDR_BITS) >> L0_SHIFT,
	    (va & L1_ADDR_BITS) >> L1_SHIFT,
	    (va & L2_ADDR_BITS) >> L2_SHIFT,
	    (va & L3_ADDR_BITS) >> L3_SHIFT);

	idx = l0pde_index(va);
	pde = l0[idx];

	pr("L0[%3d]=%016llx", idx, pde);
	pmap_db_pte_print(pde, 0, pr);

	if (!l0pde_valid(pde))
		return;

	l1 = (void *)AARCH64_PA_TO_KVA(l0pde_pa(pde));
	idx = l1pde_index(va);
	pde = l1[idx];

	pr(" L1[%3d]=%016llx", idx, pde);
	pmap_db_pte_print(pde, 1, pr);

	if (!l1pde_valid(pde) || l1pde_is_block(pde))
		return;

	l2 = (void *)AARCH64_PA_TO_KVA(l1pde_pa(pde));
	idx = l2pde_index(va);
	pde = l2[idx];

	pr("  L2[%3d]=%016llx", idx, pde);
	pmap_db_pte_print(pde, 2, pr);

	if (!l2pde_valid(pde) || l2pde_is_block(pde))
		return;

	l3 = (void *)AARCH64_PA_TO_KVA(l2pde_pa(pde));
	idx = l3pte_index(va);
	pte = l3[idx];

	pr("   L3[%3d]=%016llx", idx, pte);
	pmap_db_pte_print(pte, 3, pr);

	pa = l3pte_pa(pte);
	pg = PHYS_TO_VM_PAGE(pa);
	if (pg == NULL) {
		pr("No VM_PAGE\n");
	} else {
		pg_dump(pg, pr);
		md = VM_PAGE_TO_MD(pg);
		pv_dump(md, pr);
	}
}
#endif /* DDB */