[BACK]Return to e_j1f.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / lib / libm / src

File: [cvs.NetBSD.org] / src / lib / libm / src / e_j1f.c (download)

Revision 1.11, Mon Aug 20 16:01:38 2007 UTC (7 years, 4 months ago) by drochner
Branch: MAIN
CVS Tags: yamt-pf42-baseX, yamt-pf42-base4, yamt-pf42-base3, yamt-pf42-base2, yamt-pf42-base, yamt-pf42, yamt-pagecache-tag8, yamt-pagecache-base9, yamt-pagecache-base8, yamt-pagecache-base7, yamt-pagecache-base6, yamt-pagecache-base5, yamt-pagecache-base4, yamt-pagecache-base3, yamt-pagecache-base2, yamt-pagecache-base, yamt-pagecache, wrstuden-revivesa-base-3, wrstuden-revivesa-base-2, wrstuden-revivesa-base-1, wrstuden-revivesa-base, wrstuden-revivesa, tls-maxphys-base, tls-maxphys, tls-earlyentropy-base, tls-earlyentropy, riastradh-xf86-video-intel-2-7-1-pre-2-21-15, riastradh-drm2-base3, riastradh-drm2-base2, riastradh-drm2-base1, riastradh-drm2-base, riastradh-drm2, netbsd-7-base, netbsd-7, netbsd-6-base, netbsd-6-1-RELEASE, netbsd-6-1-RC4, netbsd-6-1-RC3, netbsd-6-1-RC2, netbsd-6-1-RC1, netbsd-6-1-5-RELEASE, netbsd-6-1-4-RELEASE, netbsd-6-1-3-RELEASE, netbsd-6-1-2-RELEASE, netbsd-6-1-1-RELEASE, netbsd-6-1, netbsd-6-0-RELEASE, netbsd-6-0-RC2, netbsd-6-0-RC1, netbsd-6-0-6-RELEASE, netbsd-6-0-5-RELEASE, netbsd-6-0-4-RELEASE, netbsd-6-0-3-RELEASE, netbsd-6-0-2-RELEASE, netbsd-6-0-1-RELEASE, netbsd-6-0, netbsd-6, netbsd-5-base, netbsd-5-2-RELEASE, netbsd-5-2-RC1, netbsd-5-2-3-RELEASE, netbsd-5-2-2-RELEASE, netbsd-5-2-1-RELEASE, netbsd-5-2, netbsd-5-1-RELEASE, netbsd-5-1-RC4, netbsd-5-1-RC3, netbsd-5-1-RC2, netbsd-5-1-RC1, netbsd-5-1-5-RELEASE, netbsd-5-1-4-RELEASE, netbsd-5-1-3-RELEASE, netbsd-5-1-2-RELEASE, netbsd-5-1-1-RELEASE, netbsd-5-1, netbsd-5-0-RELEASE, netbsd-5-0-RC4, netbsd-5-0-RC3, netbsd-5-0-RC2, netbsd-5-0-RC1, netbsd-5-0-2-RELEASE, netbsd-5-0-1-RELEASE, netbsd-5-0, netbsd-5, mjf-devfs2-base, mjf-devfs2, matt-premerge-20091211, matt-nb6-plus-nbase, matt-nb6-plus-base, matt-nb6-plus, matt-nb5-pq3-base, matt-nb5-pq3, matt-nb5-mips64-u2-k2-k4-k7-k8-k9, matt-nb5-mips64-u1-k1-k5, matt-nb5-mips64-premerge-20101231, matt-nb5-mips64-premerge-20091211, matt-nb5-mips64-k15, matt-nb5-mips64, matt-nb4-mips64-k7-u2a-k9b, matt-mips64-premerge-20101231, matt-mips64-base2, matt-armv6-prevmlocking, matt-armv6-nbase, matt-armv6-base, matt-armv6, keiichi-mipv6-base, keiichi-mipv6, jym-xensuspend-nbase, jym-xensuspend-base, jym-xensuspend, hpcarm-cleanup-nbase, hpcarm-cleanup-base, cube-autoconf-base, cube-autoconf, cherry-xenmp-base, cherry-xenmp, bouyer-quota2-nbase, bouyer-quota2-base, bouyer-quota2, agc-symver-base, agc-symver, HEAD
Changes since 1.10: +2 -1 lines

Add C99 complex support, for double and float.
Most complex function implementations are from the "c9x-complex" library,
originating from the "cephes" math library, see
http://www.netlib.org/cephes/, from Stephen L. Moshier, incorporated and
redistributed with the NetBSD license by permission of the author.

Error behaviour and other boundary conditions (branch cuts)
need to be looked at.

For namespace sanity, I've done the rename/weak alias procedure to
most of the exported functions which are also used internally.
Didn't do so for sin/cos(f) yet because assembler implementations use
them directly, and renaming functions shared between the main libm
and the machine specific "overlay" might raise binary compatibility
issues.

/* e_j1f.c -- float version of e_j1.c.
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#include <sys/cdefs.h>
#if defined(LIBM_SCCS) && !defined(lint)
__RCSID("$NetBSD: e_j1f.c,v 1.11 2007/08/20 16:01:38 drochner Exp $");
#endif

#include "namespace.h"
#include "math.h"
#include "math_private.h"

static float ponef(float), qonef(float);

static const float
huge    = 1e30,
one	= 1.0,
invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
tpi      =  6.3661974669e-01, /* 0x3f22f983 */
	/* R0/S0 on [0,2] */
r00  = -6.2500000000e-02, /* 0xbd800000 */
r01  =  1.4070566976e-03, /* 0x3ab86cfd */
r02  = -1.5995563444e-05, /* 0xb7862e36 */
r03  =  4.9672799207e-08, /* 0x335557d2 */
s01  =  1.9153760746e-02, /* 0x3c9ce859 */
s02  =  1.8594678841e-04, /* 0x3942fab6 */
s03  =  1.1771846857e-06, /* 0x359dffc2 */
s04  =  5.0463624390e-09, /* 0x31ad6446 */
s05  =  1.2354227016e-11; /* 0x2d59567e */

static const float zero    = 0.0;

float
__ieee754_j1f(float x)
{
	float z, s,c,ss,cc,r,u,v,y;
	int32_t hx,ix;

	GET_FLOAT_WORD(hx,x);
	ix = hx&0x7fffffff;
	if(ix>=0x7f800000) return one/x;
	y = fabsf(x);
	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
		s = sinf(y);
		c = cosf(y);
		ss = -s-c;
		cc = s-c;
		if(ix<0x7f000000) {  /* make sure y+y not overflow */
		    z = cosf(y+y);
		    if ((s*c)>zero) cc = z/ss;
		    else 	    ss = z/cc;
		}
	/*
	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
	 */
#ifdef DEAD_CODE
		if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
		else
#endif
		{
		    u = ponef(y); v = qonef(y);
		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
		}
		if(hx<0) return -z;
		else  	 return  z;
	}
	if(ix<0x32000000) {	/* |x|<2**-27 */
	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
	}
	z = x*x;
	r =  z*(r00+z*(r01+z*(r02+z*r03)));
	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
	r *= x;
	return(x*(float)0.5+r/s);
}

static const float U0[5] = {
 -1.9605709612e-01, /* 0xbe48c331 */
  5.0443872809e-02, /* 0x3d4e9e3c */
 -1.9125689287e-03, /* 0xbafaaf2a */
  2.3525259166e-05, /* 0x37c5581c */
 -9.1909917899e-08, /* 0xb3c56003 */
};
static const float V0[5] = {
  1.9916731864e-02, /* 0x3ca3286a */
  2.0255257550e-04, /* 0x3954644b */
  1.3560879779e-06, /* 0x35b602d4 */
  6.2274145840e-09, /* 0x31d5f8eb */
  1.6655924903e-11, /* 0x2d9281cf */
};

float
__ieee754_y1f(float x)
{
	float z, s,c,ss,cc,u,v;
	int32_t hx,ix;

	GET_FLOAT_WORD(hx,x);
        ix = 0x7fffffff&hx;
    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
	if(ix>=0x7f800000) return  one/(x+x*x);
        if(ix==0) return -one/zero;
        if(hx<0) return zero/zero;
        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
                s = sinf(x);
                c = cosf(x);
                ss = -s-c;
                cc = s-c;
                if(ix<0x7f000000) {  /* make sure x+x not overflow */
                    z = cosf(x+x);
                    if ((s*c)>zero) cc = z/ss;
                    else            ss = z/cc;
                }
        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
         * where x0 = x-3pi/4
         *      Better formula:
         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
         *                      =  1/sqrt(2) * (sin(x) - cos(x))
         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
         *                      = -1/sqrt(2) * (cos(x) + sin(x))
         * To avoid cancellation, use
         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
         * to compute the worse one.
         */
                if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
                else {
                    u = ponef(x); v = qonef(x);
                    z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
                }
                return z;
        }
        if(ix<=0x24800000) {    /* x < 2**-54 */
            return(-tpi/x);
        }
        z = x*x;
        u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
        v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
        return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
}

/* For x >= 8, the asymptotic expansions of pone is
 *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
 * We approximate pone by
 * 	pone(x) = 1 + (R/S)
 * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
 * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
 * and
 *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
 */

static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  0.0000000000e+00, /* 0x00000000 */
  1.1718750000e-01, /* 0x3df00000 */
  1.3239480972e+01, /* 0x4153d4ea */
  4.1205184937e+02, /* 0x43ce06a3 */
  3.8747453613e+03, /* 0x45722bed */
  7.9144794922e+03, /* 0x45f753d6 */
};
static const float ps8[5] = {
  1.1420736694e+02, /* 0x42e46a2c */
  3.6509309082e+03, /* 0x45642ee5 */
  3.6956207031e+04, /* 0x47105c35 */
  9.7602796875e+04, /* 0x47bea166 */
  3.0804271484e+04, /* 0x46f0a88b */
};

static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  1.3199052094e-11, /* 0x2d68333f */
  1.1718749255e-01, /* 0x3defffff */
  6.8027510643e+00, /* 0x40d9b023 */
  1.0830818176e+02, /* 0x42d89dca */
  5.1763616943e+02, /* 0x440168b7 */
  5.2871520996e+02, /* 0x44042dc6 */
};
static const float ps5[5] = {
  5.9280597687e+01, /* 0x426d1f55 */
  9.9140142822e+02, /* 0x4477d9b1 */
  5.3532670898e+03, /* 0x45a74a23 */
  7.8446904297e+03, /* 0x45f52586 */
  1.5040468750e+03, /* 0x44bc0180 */
};

static const float pr3[6] = {
  3.0250391081e-09, /* 0x314fe10d */
  1.1718686670e-01, /* 0x3defffab */
  3.9329774380e+00, /* 0x407bb5e7 */
  3.5119403839e+01, /* 0x420c7a45 */
  9.1055007935e+01, /* 0x42b61c2a */
  4.8559066772e+01, /* 0x42423c7c */
};
static const float ps3[5] = {
  3.4791309357e+01, /* 0x420b2a4d */
  3.3676245117e+02, /* 0x43a86198 */
  1.0468714600e+03, /* 0x4482dbe3 */
  8.9081134033e+02, /* 0x445eb3ed */
  1.0378793335e+02, /* 0x42cf936c */
};

static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  1.0771083225e-07, /* 0x33e74ea8 */
  1.1717621982e-01, /* 0x3deffa16 */
  2.3685150146e+00, /* 0x401795c0 */
  1.2242610931e+01, /* 0x4143e1bc */
  1.7693971634e+01, /* 0x418d8d41 */
  5.0735230446e+00, /* 0x40a25a4d */
};
static const float ps2[5] = {
  2.1436485291e+01, /* 0x41ab7dec */
  1.2529022980e+02, /* 0x42fa9499 */
  2.3227647400e+02, /* 0x436846c7 */
  1.1767937469e+02, /* 0x42eb5bd7 */
  8.3646392822e+00, /* 0x4105d590 */
};

static float
ponef(float x)
{
	const float *p,*q;
	float z,r,s;
        int32_t ix;

	p = q = 0;
	GET_FLOAT_WORD(ix,x);
	ix &= 0x7fffffff;
        if(ix>=0x41000000)     {p = pr8; q= ps8;}
        else if(ix>=0x40f71c58){p = pr5; q= ps5;}
        else if(ix>=0x4036db68){p = pr3; q= ps3;}
        else if(ix>=0x40000000){p = pr2; q= ps2;}
        z = one/(x*x);
        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
        return one+ r/s;
}


/* For x >= 8, the asymptotic expansions of qone is
 *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
 * We approximate pone by
 * 	qone(x) = s*(0.375 + (R/S))
 * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
 * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
 * and
 *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
 */

static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  0.0000000000e+00, /* 0x00000000 */
 -1.0253906250e-01, /* 0xbdd20000 */
 -1.6271753311e+01, /* 0xc1822c8d */
 -7.5960174561e+02, /* 0xc43de683 */
 -1.1849806641e+04, /* 0xc639273a */
 -4.8438511719e+04, /* 0xc73d3683 */
};
static const float qs8[6] = {
  1.6139537048e+02, /* 0x43216537 */
  7.8253862305e+03, /* 0x45f48b17 */
  1.3387534375e+05, /* 0x4802bcd6 */
  7.1965775000e+05, /* 0x492fb29c */
  6.6660125000e+05, /* 0x4922be94 */
 -2.9449025000e+05, /* 0xc88fcb48 */
};

static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
 -2.0897993405e-11, /* 0xadb7d219 */
 -1.0253904760e-01, /* 0xbdd1fffe */
 -8.0564479828e+00, /* 0xc100e736 */
 -1.8366960144e+02, /* 0xc337ab6b */
 -1.3731937256e+03, /* 0xc4aba633 */
 -2.6124443359e+03, /* 0xc523471c */
};
static const float qs5[6] = {
  8.1276550293e+01, /* 0x42a28d98 */
  1.9917987061e+03, /* 0x44f8f98f */
  1.7468484375e+04, /* 0x468878f8 */
  4.9851425781e+04, /* 0x4742bb6d */
  2.7948074219e+04, /* 0x46da5826 */
 -4.7191835938e+03, /* 0xc5937978 */
};

static const float qr3[6] = { /* for x in [4.5454,2.8570]=1/[0.22001,0.3499] */
 -5.0783124372e-09, /* 0xb1ae7d4f */
 -1.0253783315e-01, /* 0xbdd1ff5b */
 -4.6101160049e+00, /* 0xc0938612 */
 -5.7847221375e+01, /* 0xc267638e */
 -2.2824453735e+02, /* 0xc3643e9a */
 -2.1921012878e+02, /* 0xc35b35cb */
};
static const float qs3[6] = {
  4.7665153503e+01, /* 0x423ea91e */
  6.7386511230e+02, /* 0x4428775e */
  3.3801528320e+03, /* 0x45534272 */
  5.5477290039e+03, /* 0x45ad5dd5 */
  1.9031191406e+03, /* 0x44ede3d0 */
 -1.3520118713e+02, /* 0xc3073381 */
};

static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
 -1.7838172539e-07, /* 0xb43f8932 */
 -1.0251704603e-01, /* 0xbdd1f475 */
 -2.7522056103e+00, /* 0xc0302423 */
 -1.9663616180e+01, /* 0xc19d4f16 */
 -4.2325313568e+01, /* 0xc2294d1f */
 -2.1371921539e+01, /* 0xc1aaf9b2 */
};
static const float qs2[6] = {
  2.9533363342e+01, /* 0x41ec4454 */
  2.5298155212e+02, /* 0x437cfb47 */
  7.5750280762e+02, /* 0x443d602e */
  7.3939318848e+02, /* 0x4438d92a */
  1.5594900513e+02, /* 0x431bf2f2 */
 -4.9594988823e+00, /* 0xc09eb437 */
};

static float
qonef(float x)
{
	const float *p,*q;
	float  s,r,z;
	int32_t ix;

	p = q = 0;
	GET_FLOAT_WORD(ix,x);
	ix &= 0x7fffffff;
	/* [inf, 8]		(8      41000000) */
	if(ix>=0x41000000)     {p = qr8; q= qs8;}
	/* [8, 4.5454]		(4.5454 409173eb) */
	else if(ix>=0x409173eb){p = qr5; q= qs5;}
	/* [4.5454, 2.8570] 	(2.8570	4036d917) */
	else if(ix>=0x4036d917){p = qr3; q= qs3;}
	/* [2.8570, 2]		(2 	40000000) */
	else if(ix>=0x40000000){p = qr2; q= qs2;}
	z = one/(x*x);
	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
	return ((float).375 + r/s)/x;
}