[BACK]Return to dwarf_reader.cc CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / external / gpl3 / binutils.old / dist / gold

Annotation of src/external/gpl3/binutils.old/dist/gold/dwarf_reader.cc, Revision 1.1.1.5

1.1       christos    1: // dwarf_reader.cc -- parse dwarf2/3 debug information
                      2:
1.1.1.5 ! christos    3: // Copyright (C) 2007-2020 Free Software Foundation, Inc.
1.1       christos    4: // Written by Ian Lance Taylor <iant@google.com>.
                      5:
                      6: // This file is part of gold.
                      7:
                      8: // This program is free software; you can redistribute it and/or modify
                      9: // it under the terms of the GNU General Public License as published by
                     10: // the Free Software Foundation; either version 3 of the License, or
                     11: // (at your option) any later version.
                     12:
                     13: // This program is distributed in the hope that it will be useful,
                     14: // but WITHOUT ANY WARRANTY; without even the implied warranty of
                     15: // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                     16: // GNU General Public License for more details.
                     17:
                     18: // You should have received a copy of the GNU General Public License
                     19: // along with this program; if not, write to the Free Software
                     20: // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
                     21: // MA 02110-1301, USA.
                     22:
                     23: #include "gold.h"
                     24:
                     25: #include <algorithm>
1.1.1.2   christos   26: #include <utility>
1.1       christos   27: #include <vector>
                     28:
                     29: #include "elfcpp_swap.h"
                     30: #include "dwarf.h"
                     31: #include "object.h"
                     32: #include "reloc.h"
                     33: #include "dwarf_reader.h"
                     34: #include "int_encoding.h"
                     35: #include "compressed_output.h"
                     36:
                     37: namespace gold {
                     38:
                     39: // Class Sized_elf_reloc_mapper
                     40:
                     41: // Initialize the relocation tracker for section RELOC_SHNDX.
                     42:
                     43: template<int size, bool big_endian>
                     44: bool
                     45: Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
                     46:     unsigned int reloc_shndx, unsigned int reloc_type)
                     47: {
                     48:   this->reloc_type_ = reloc_type;
                     49:   return this->track_relocs_.initialize(this->object_, reloc_shndx,
                     50:                                        reloc_type);
                     51: }
                     52:
                     53: // Looks in the symtab to see what section a symbol is in.
                     54:
                     55: template<int size, bool big_endian>
                     56: unsigned int
                     57: Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
                     58:     unsigned int symndx, Address* value, bool* is_ordinary)
                     59: {
                     60:   const int symsize = elfcpp::Elf_sizes<size>::sym_size;
                     61:   gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
                     62:   elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
                     63:   *value = elfsym.get_st_value();
                     64:   return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
                     65:                                         is_ordinary);
                     66: }
                     67:
                     68: // Return the section index and offset within the section of
                     69: // the target of the relocation for RELOC_OFFSET.
                     70:
                     71: template<int size, bool big_endian>
                     72: unsigned int
                     73: Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
                     74:     off_t reloc_offset, off_t* target_offset)
                     75: {
                     76:   this->track_relocs_.advance(reloc_offset);
                     77:   if (reloc_offset != this->track_relocs_.next_offset())
                     78:     return 0;
                     79:   unsigned int symndx = this->track_relocs_.next_symndx();
                     80:   typename elfcpp::Elf_types<size>::Elf_Addr value;
                     81:   bool is_ordinary;
                     82:   unsigned int target_shndx = this->symbol_section(symndx, &value,
                     83:                                                   &is_ordinary);
                     84:   if (!is_ordinary)
                     85:     return 0;
                     86:   if (this->reloc_type_ == elfcpp::SHT_RELA)
                     87:     value += this->track_relocs_.next_addend();
                     88:   *target_offset = value;
                     89:   return target_shndx;
                     90: }
                     91:
                     92: static inline Elf_reloc_mapper*
1.1.1.2   christos   93: make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
1.1       christos   94:                      off_t symtab_size)
                     95: {
1.1.1.2   christos   96:   if (object->elfsize() == 32)
1.1       christos   97:     {
1.1.1.2   christos   98:       if (object->is_big_endian())
                     99:         {
1.1       christos  100: #ifdef HAVE_TARGET_32_BIG
1.1.1.2   christos  101:          return new Sized_elf_reloc_mapper<32, true>(object, symtab,
                    102:                                                      symtab_size);
                    103: #else
                    104:          gold_unreachable();
1.1       christos  105: #endif
1.1.1.2   christos  106:         }
                    107:       else
                    108:         {
                    109: #ifdef HAVE_TARGET_32_LITTLE
                    110:          return new Sized_elf_reloc_mapper<32, false>(object, symtab,
                    111:                                                       symtab_size);
                    112: #else
                    113:          gold_unreachable();
1.1       christos  114: #endif
1.1.1.2   christos  115:         }
                    116:     }
                    117:   else if (object->elfsize() == 64)
                    118:     {
                    119:       if (object->is_big_endian())
                    120:         {
1.1       christos  121: #ifdef HAVE_TARGET_64_BIG
1.1.1.2   christos  122:          return new Sized_elf_reloc_mapper<64, true>(object, symtab,
                    123:                                                      symtab_size);
                    124: #else
                    125:          gold_unreachable();
1.1       christos  126: #endif
1.1.1.2   christos  127:         }
                    128:       else
                    129:         {
                    130: #ifdef HAVE_TARGET_64_LITTLE
                    131:          return new Sized_elf_reloc_mapper<64, false>(object, symtab,
                    132:                                                       symtab_size);
                    133: #else
                    134:          gold_unreachable();
                    135: #endif
                    136:         }
1.1       christos  137:     }
1.1.1.2   christos  138:   else
                    139:     gold_unreachable();
1.1       christos  140: }
                    141:
                    142: // class Dwarf_abbrev_table
                    143:
                    144: void
                    145: Dwarf_abbrev_table::clear_abbrev_codes()
                    146: {
                    147:   for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
                    148:     {
                    149:       if (this->low_abbrev_codes_[code] != NULL)
                    150:        {
                    151:          delete this->low_abbrev_codes_[code];
                    152:          this->low_abbrev_codes_[code] = NULL;
                    153:        }
                    154:     }
                    155:   for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
                    156:        it != this->high_abbrev_codes_.end();
                    157:        ++it)
                    158:     {
                    159:       if (it->second != NULL)
                    160:        delete it->second;
                    161:     }
                    162:   this->high_abbrev_codes_.clear();
                    163: }
                    164:
                    165: // Read the abbrev table from an object file.
                    166:
                    167: bool
                    168: Dwarf_abbrev_table::do_read_abbrevs(
                    169:     Relobj* object,
                    170:     unsigned int abbrev_shndx,
                    171:     off_t abbrev_offset)
                    172: {
                    173:   this->clear_abbrev_codes();
                    174:
                    175:   // If we don't have relocations, abbrev_shndx will be 0, and
                    176:   // we'll have to hunt for the .debug_abbrev section.
                    177:   if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
                    178:     abbrev_shndx = this->abbrev_shndx_;
                    179:   else if (abbrev_shndx == 0)
                    180:     {
                    181:       for (unsigned int i = 1; i < object->shnum(); ++i)
                    182:        {
                    183:          std::string name = object->section_name(i);
1.1.1.2   christos  184:          if (name == ".debug_abbrev" || name == ".zdebug_abbrev")
1.1       christos  185:            {
                    186:              abbrev_shndx = i;
                    187:              // Correct the offset.  For incremental update links, we have a
                    188:              // relocated offset that is relative to the output section, but
                    189:              // here we need an offset relative to the input section.
                    190:              abbrev_offset -= object->output_section_offset(i);
                    191:              break;
                    192:            }
                    193:        }
                    194:       if (abbrev_shndx == 0)
                    195:        return false;
                    196:     }
                    197:
                    198:   // Get the section contents and decompress if necessary.
                    199:   if (abbrev_shndx != this->abbrev_shndx_)
                    200:     {
                    201:       if (this->owns_buffer_ && this->buffer_ != NULL)
                    202:         {
                    203:          delete[] this->buffer_;
                    204:          this->owns_buffer_ = false;
                    205:         }
                    206:
                    207:       section_size_type buffer_size;
                    208:       this->buffer_ =
                    209:          object->decompressed_section_contents(abbrev_shndx,
                    210:                                                &buffer_size,
                    211:                                                &this->owns_buffer_);
                    212:       this->buffer_end_ = this->buffer_ + buffer_size;
                    213:       this->abbrev_shndx_ = abbrev_shndx;
                    214:     }
                    215:
                    216:   this->buffer_pos_ = this->buffer_ + abbrev_offset;
                    217:   return true;
                    218: }
                    219:
                    220: // Lookup the abbrev code entry for CODE.  This function is called
                    221: // only when the abbrev code is not in the direct lookup table.
                    222: // It may be in the hash table, it may not have been read yet,
                    223: // or it may not exist in the abbrev table.
                    224:
                    225: const Dwarf_abbrev_table::Abbrev_code*
                    226: Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
                    227: {
                    228:   // See if the abbrev code is already in the hash table.
                    229:   Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
                    230:   if (it != this->high_abbrev_codes_.end())
                    231:     return it->second;
                    232:
                    233:   // Read and store abbrev code definitions until we find the
                    234:   // one we're looking for.
                    235:   for (;;)
                    236:     {
                    237:       // Read the abbrev code.  A zero here indicates the end of the
                    238:       // abbrev table.
                    239:       size_t len;
                    240:       if (this->buffer_pos_ >= this->buffer_end_)
                    241:        return NULL;
                    242:       uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
                    243:       if (nextcode == 0)
                    244:        {
                    245:          this->buffer_pos_ = this->buffer_end_;
                    246:          return NULL;
                    247:        }
                    248:       this->buffer_pos_ += len;
                    249:
                    250:       // Read the tag.
                    251:       if (this->buffer_pos_ >= this->buffer_end_)
                    252:        return NULL;
                    253:       uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
                    254:       this->buffer_pos_ += len;
                    255:
                    256:       // Read the has_children flag.
                    257:       if (this->buffer_pos_ >= this->buffer_end_)
                    258:        return NULL;
                    259:       bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
                    260:       this->buffer_pos_ += 1;
                    261:
                    262:       // Read the list of (attribute, form) pairs.
                    263:       Abbrev_code* entry = new Abbrev_code(tag, has_children);
                    264:       for (;;)
                    265:        {
                    266:          // Read the attribute.
                    267:          if (this->buffer_pos_ >= this->buffer_end_)
                    268:            return NULL;
                    269:          uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
                    270:          this->buffer_pos_ += len;
                    271:
                    272:          // Read the form.
                    273:          if (this->buffer_pos_ >= this->buffer_end_)
                    274:            return NULL;
                    275:          uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
                    276:          this->buffer_pos_ += len;
                    277:
                    278:          // A (0,0) pair terminates the list.
                    279:          if (attr == 0 && form == 0)
                    280:            break;
                    281:
                    282:          if (attr == elfcpp::DW_AT_sibling)
                    283:            entry->has_sibling_attribute = true;
                    284:
                    285:          entry->add_attribute(attr, form);
                    286:        }
                    287:
                    288:       this->store_abbrev(nextcode, entry);
                    289:       if (nextcode == code)
                    290:        return entry;
                    291:     }
                    292:
                    293:   return NULL;
                    294: }
                    295:
                    296: // class Dwarf_ranges_table
                    297:
                    298: // Read the ranges table from an object file.
                    299:
                    300: bool
                    301: Dwarf_ranges_table::read_ranges_table(
                    302:     Relobj* object,
                    303:     const unsigned char* symtab,
                    304:     off_t symtab_size,
                    305:     unsigned int ranges_shndx)
                    306: {
                    307:   // If we've already read this abbrev table, return immediately.
                    308:   if (this->ranges_shndx_ > 0
                    309:       && this->ranges_shndx_ == ranges_shndx)
                    310:     return true;
                    311:
                    312:   // If we don't have relocations, ranges_shndx will be 0, and
                    313:   // we'll have to hunt for the .debug_ranges section.
                    314:   if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
                    315:     ranges_shndx = this->ranges_shndx_;
                    316:   else if (ranges_shndx == 0)
                    317:     {
                    318:       for (unsigned int i = 1; i < object->shnum(); ++i)
                    319:        {
                    320:          std::string name = object->section_name(i);
1.1.1.2   christos  321:          if (name == ".debug_ranges" || name == ".zdebug_ranges")
1.1       christos  322:            {
                    323:              ranges_shndx = i;
                    324:              this->output_section_offset_ = object->output_section_offset(i);
                    325:              break;
                    326:            }
                    327:        }
                    328:       if (ranges_shndx == 0)
                    329:        return false;
                    330:     }
                    331:
                    332:   // Get the section contents and decompress if necessary.
                    333:   if (ranges_shndx != this->ranges_shndx_)
                    334:     {
                    335:       if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
                    336:         {
                    337:          delete[] this->ranges_buffer_;
                    338:          this->owns_ranges_buffer_ = false;
                    339:         }
                    340:
                    341:       section_size_type buffer_size;
                    342:       this->ranges_buffer_ =
                    343:          object->decompressed_section_contents(ranges_shndx,
                    344:                                                &buffer_size,
                    345:                                                &this->owns_ranges_buffer_);
                    346:       this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
                    347:       this->ranges_shndx_ = ranges_shndx;
                    348:     }
                    349:
                    350:   if (this->ranges_reloc_mapper_ != NULL)
                    351:     {
                    352:       delete this->ranges_reloc_mapper_;
                    353:       this->ranges_reloc_mapper_ = NULL;
                    354:     }
                    355:
                    356:   // For incremental objects, we have no relocations.
                    357:   if (object->is_incremental())
                    358:     return true;
                    359:
                    360:   // Find the relocation section for ".debug_ranges".
                    361:   unsigned int reloc_shndx = 0;
                    362:   unsigned int reloc_type = 0;
                    363:   for (unsigned int i = 0; i < object->shnum(); ++i)
                    364:     {
                    365:       reloc_type = object->section_type(i);
                    366:       if ((reloc_type == elfcpp::SHT_REL
                    367:           || reloc_type == elfcpp::SHT_RELA)
                    368:          && object->section_info(i) == ranges_shndx)
                    369:        {
                    370:          reloc_shndx = i;
                    371:          break;
                    372:        }
                    373:     }
                    374:
                    375:   this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
                    376:                                                     symtab_size);
                    377:   this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
1.1.1.2   christos  378:   this->reloc_type_ = reloc_type;
1.1       christos  379:
                    380:   return true;
                    381: }
                    382:
                    383: // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
                    384:
                    385: Dwarf_range_list*
                    386: Dwarf_ranges_table::read_range_list(
                    387:     Relobj* object,
                    388:     const unsigned char* symtab,
                    389:     off_t symtab_size,
                    390:     unsigned int addr_size,
                    391:     unsigned int ranges_shndx,
                    392:     off_t offset)
                    393: {
                    394:   Dwarf_range_list* ranges;
                    395:
                    396:   if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
                    397:     return NULL;
                    398:
                    399:   // Correct the offset.  For incremental update links, we have a
                    400:   // relocated offset that is relative to the output section, but
                    401:   // here we need an offset relative to the input section.
                    402:   offset -= this->output_section_offset_;
                    403:
                    404:   // Read the range list at OFFSET.
                    405:   ranges = new Dwarf_range_list();
                    406:   off_t base = 0;
                    407:   for (;
                    408:        this->ranges_buffer_ + offset < this->ranges_buffer_end_;
                    409:        offset += 2 * addr_size)
                    410:     {
                    411:       off_t start;
                    412:       off_t end;
                    413:
                    414:       // Read the raw contents of the section.
                    415:       if (addr_size == 4)
                    416:        {
1.1.1.2   christos  417:          start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
                    418:                                                       + offset);
                    419:          end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
                    420:                                                     + offset + 4);
1.1       christos  421:        }
                    422:       else
                    423:        {
1.1.1.2   christos  424:          start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
                    425:                                                       + offset);
                    426:          end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
                    427:                                                     + offset + 8);
1.1       christos  428:        }
                    429:
                    430:       // Check for relocations and adjust the values.
                    431:       unsigned int shndx1 = 0;
                    432:       unsigned int shndx2 = 0;
                    433:       if (this->ranges_reloc_mapper_ != NULL)
                    434:         {
1.1.1.2   christos  435:          shndx1 = this->lookup_reloc(offset, &start);
                    436:          shndx2 = this->lookup_reloc(offset + addr_size, &end);
1.1       christos  437:         }
                    438:
                    439:       // End of list is marked by a pair of zeroes.
                    440:       if (shndx1 == 0 && start == 0 && end == 0)
                    441:         break;
                    442:
                    443:       // A "base address selection entry" is identified by
                    444:       // 0xffffffff for the first value of the pair.  The second
                    445:       // value is used as a base for subsequent range list entries.
                    446:       if (shndx1 == 0 && start == -1)
                    447:        base = end;
                    448:       else if (shndx1 == shndx2)
                    449:        {
                    450:          if (shndx1 == 0 || object->is_section_included(shndx1))
                    451:            ranges->add(shndx1, base + start, base + end);
                    452:        }
                    453:       else
                    454:        gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
                    455:                       "range list entry are in different sections"),
                    456:                     object->name().c_str());
                    457:     }
                    458:
                    459:   return ranges;
                    460: }
                    461:
1.1.1.2   christos  462: // Look for a relocation at offset OFF in the range table,
                    463: // and return the section index and offset of the target.
                    464:
                    465: unsigned int
                    466: Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off)
                    467: {
                    468:   off_t value;
                    469:   unsigned int shndx =
                    470:       this->ranges_reloc_mapper_->get_reloc_target(off, &value);
                    471:   if (shndx == 0)
                    472:     return 0;
                    473:   if (this->reloc_type_ == elfcpp::SHT_REL)
                    474:     *target_off += value;
                    475:   else
                    476:     *target_off = value;
                    477:   return shndx;
                    478: }
                    479:
1.1       christos  480: // class Dwarf_pubnames_table
                    481:
1.1.1.2   christos  482: // Read the pubnames section from the object file.
1.1       christos  483:
                    484: bool
1.1.1.2   christos  485: Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab,
                    486:                                    off_t symtab_size)
1.1       christos  487: {
                    488:   section_size_type buffer_size;
1.1.1.2   christos  489:   unsigned int shndx = 0;
                    490:   const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames";
                    491:   const char* gnu_name = (this->is_pubtypes_
                    492:                          ? "gnu_pubtypes"
                    493:                          : "gnu_pubnames");
                    494:
                    495:   for (unsigned int i = 1; i < object->shnum(); ++i)
                    496:     {
                    497:       std::string section_name = object->section_name(i);
                    498:       const char* section_name_suffix = section_name.c_str();
                    499:       if (is_prefix_of(".debug_", section_name_suffix))
                    500:        section_name_suffix += 7;
                    501:       else if (is_prefix_of(".zdebug_", section_name_suffix))
                    502:        section_name_suffix += 8;
                    503:       else
                    504:        continue;
                    505:       if (strcmp(section_name_suffix, name) == 0)
                    506:         {
                    507:           shndx = i;
                    508:           break;
                    509:         }
                    510:       else if (strcmp(section_name_suffix, gnu_name) == 0)
                    511:         {
                    512:           shndx = i;
                    513:           this->is_gnu_style_ = true;
                    514:           break;
                    515:         }
1.1       christos  516:     }
1.1.1.2   christos  517:   if (shndx == 0)
                    518:     return false;
1.1       christos  519:
                    520:   this->buffer_ = object->decompressed_section_contents(shndx,
                    521:                                                        &buffer_size,
                    522:                                                        &this->owns_buffer_);
                    523:   if (this->buffer_ == NULL)
                    524:     return false;
                    525:   this->buffer_end_ = this->buffer_ + buffer_size;
1.1.1.2   christos  526:
                    527:   // For incremental objects, we have no relocations.
                    528:   if (object->is_incremental())
                    529:     return true;
                    530:
                    531:   // Find the relocation section
                    532:   unsigned int reloc_shndx = 0;
                    533:   unsigned int reloc_type = 0;
                    534:   for (unsigned int i = 0; i < object->shnum(); ++i)
                    535:     {
                    536:       reloc_type = object->section_type(i);
                    537:       if ((reloc_type == elfcpp::SHT_REL
                    538:           || reloc_type == elfcpp::SHT_RELA)
                    539:          && object->section_info(i) == shndx)
                    540:        {
                    541:          reloc_shndx = i;
                    542:          break;
                    543:        }
                    544:     }
                    545:
                    546:   this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size);
                    547:   this->reloc_mapper_->initialize(reloc_shndx, reloc_type);
                    548:   this->reloc_type_ = reloc_type;
                    549:
1.1       christos  550:   return true;
                    551: }
                    552:
                    553: // Read the header for the set at OFFSET.
                    554:
                    555: bool
                    556: Dwarf_pubnames_table::read_header(off_t offset)
                    557: {
1.1.1.2   christos  558:   // Make sure we have actually read the section.
                    559:   gold_assert(this->buffer_ != NULL);
1.1       christos  560:
                    561:   if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
                    562:     return false;
                    563:
                    564:   const unsigned char* pinfo = this->buffer_ + offset;
                    565:
                    566:   // Read the unit_length field.
1.1.1.2   christos  567:   uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
1.1       christos  568:   pinfo += 4;
                    569:   if (unit_length == 0xffffffff)
                    570:     {
1.1.1.2   christos  571:       unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
                    572:       this->unit_length_ = unit_length + 12;
1.1       christos  573:       pinfo += 8;
                    574:       this->offset_size_ = 8;
                    575:     }
                    576:   else
1.1.1.2   christos  577:     {
                    578:       this->unit_length_ = unit_length + 4;
                    579:       this->offset_size_ = 4;
                    580:     }
                    581:   this->end_of_table_ = pinfo + unit_length;
                    582:
                    583:   // If unit_length is too big, maybe we should reject the whole table,
                    584:   // but in cases we know about, it seems OK to assume that the table
                    585:   // is valid through the actual end of the section.
                    586:   if (this->end_of_table_ > this->buffer_end_)
                    587:     this->end_of_table_ = this->buffer_end_;
1.1       christos  588:
                    589:   // Check the version.
1.1.1.2   christos  590:   unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
1.1       christos  591:   pinfo += 2;
                    592:   if (version != 2)
                    593:     return false;
                    594:
1.1.1.2   christos  595:   this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_,
                    596:                                         &this->cu_offset_);
                    597:
1.1       christos  598:   // Skip the debug_info_offset and debug_info_size fields.
                    599:   pinfo += 2 * this->offset_size_;
                    600:
                    601:   if (pinfo >= this->buffer_end_)
                    602:     return false;
                    603:
                    604:   this->pinfo_ = pinfo;
                    605:   return true;
                    606: }
                    607:
                    608: // Read the next name from the set.
                    609:
                    610: const char*
1.1.1.2   christos  611: Dwarf_pubnames_table::next_name(uint8_t* flag_byte)
1.1       christos  612: {
                    613:   const unsigned char* pinfo = this->pinfo_;
                    614:
1.1.1.2   christos  615:   // Check for end of list.  The table should be terminated by an
                    616:   // entry containing nothing but a DIE offset of 0.
                    617:   if (pinfo + this->offset_size_ >= this->end_of_table_)
1.1       christos  618:     return NULL;
                    619:
1.1.1.2   christos  620:   // Skip the offset within the CU.  If this is zero, but we're not
                    621:   // at the end of the table, then we have a real pubnames entry
                    622:   // whose DIE offset is 0 (likely to be a GCC bug).  Since we
                    623:   // don't actually use the DIE offset in building .gdb_index,
                    624:   // it's harmless.
                    625:   pinfo += this->offset_size_;
                    626:
                    627:   if (this->is_gnu_style_)
                    628:     *flag_byte = *pinfo++;
                    629:   else
                    630:     *flag_byte = 0;
                    631:
1.1       christos  632:   // Return a pointer to the string at the current location,
                    633:   // and advance the pointer to the next entry.
                    634:   const char* ret = reinterpret_cast<const char*>(pinfo);
                    635:   while (pinfo < this->buffer_end_ && *pinfo != '\0')
                    636:     ++pinfo;
                    637:   if (pinfo < this->buffer_end_)
                    638:     ++pinfo;
                    639:
                    640:   this->pinfo_ = pinfo;
                    641:   return ret;
                    642: }
                    643:
                    644: // class Dwarf_die
                    645:
                    646: Dwarf_die::Dwarf_die(
                    647:     Dwarf_info_reader* dwinfo,
                    648:     off_t die_offset,
                    649:     Dwarf_die* parent)
                    650:   : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
                    651:     child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
                    652:     attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
                    653:     linkage_name_off_(-1), string_shndx_(0), specification_(0),
                    654:     abstract_origin_(0)
                    655: {
                    656:   size_t len;
                    657:   const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
                    658:   if (pdie == NULL)
                    659:     return;
                    660:   unsigned int code = read_unsigned_LEB_128(pdie, &len);
                    661:   if (code == 0)
                    662:     {
                    663:       if (parent != NULL)
                    664:        parent->set_sibling_offset(die_offset + len);
                    665:       return;
                    666:     }
                    667:   this->attr_offset_ = len;
                    668:
                    669:   // Lookup the abbrev code in the abbrev table.
                    670:   this->abbrev_code_ = dwinfo->get_abbrev(code);
                    671: }
                    672:
                    673: // Read all the attributes of the DIE.
                    674:
                    675: bool
                    676: Dwarf_die::read_attributes()
                    677: {
                    678:   if (this->attributes_read_)
                    679:     return true;
                    680:
                    681:   gold_assert(this->abbrev_code_ != NULL);
                    682:
                    683:   const unsigned char* pdie =
                    684:       this->dwinfo_->buffer_at_offset(this->die_offset_);
                    685:   if (pdie == NULL)
                    686:     return false;
                    687:   const unsigned char* pattr = pdie + this->attr_offset_;
                    688:
                    689:   unsigned int nattr = this->abbrev_code_->attributes.size();
                    690:   this->attributes_.reserve(nattr);
                    691:   for (unsigned int i = 0; i < nattr; ++i)
                    692:     {
                    693:       size_t len;
                    694:       unsigned int attr = this->abbrev_code_->attributes[i].attr;
                    695:       unsigned int form = this->abbrev_code_->attributes[i].form;
                    696:       if (form == elfcpp::DW_FORM_indirect)
                    697:         {
                    698:           form = read_unsigned_LEB_128(pattr, &len);
                    699:           pattr += len;
                    700:         }
                    701:       off_t attr_off = this->die_offset_ + (pattr - pdie);
                    702:       bool ref_form = false;
                    703:       Attribute_value attr_value;
                    704:       attr_value.attr = attr;
                    705:       attr_value.form = form;
                    706:       attr_value.aux.shndx = 0;
                    707:       switch(form)
                    708:        {
                    709:          case elfcpp::DW_FORM_flag_present:
                    710:            attr_value.val.intval = 1;
                    711:            break;
                    712:          case elfcpp::DW_FORM_strp:
                    713:            {
                    714:              off_t str_off;
                    715:              if (this->dwinfo_->offset_size() == 4)
1.1.1.2   christos  716:                str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
1.1       christos  717:              else
1.1.1.2   christos  718:                str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
1.1       christos  719:              unsigned int shndx =
                    720:                  this->dwinfo_->lookup_reloc(attr_off, &str_off);
                    721:              attr_value.aux.shndx = shndx;
                    722:              attr_value.val.refval = str_off;
                    723:              break;
                    724:            }
                    725:          case elfcpp::DW_FORM_sec_offset:
                    726:            {
                    727:              off_t sec_off;
                    728:              if (this->dwinfo_->offset_size() == 4)
1.1.1.2   christos  729:                sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
1.1       christos  730:              else
1.1.1.2   christos  731:                sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
1.1       christos  732:              unsigned int shndx =
                    733:                  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
                    734:              attr_value.aux.shndx = shndx;
                    735:              attr_value.val.refval = sec_off;
                    736:              ref_form = true;
                    737:              break;
                    738:            }
                    739:          case elfcpp::DW_FORM_addr:
                    740:            {
                    741:              off_t sec_off;
                    742:              if (this->dwinfo_->address_size() == 4)
1.1.1.2   christos  743:                sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
1.1       christos  744:              else
1.1.1.2   christos  745:                sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
1.1       christos  746:              unsigned int shndx =
                    747:                  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
                    748:              attr_value.aux.shndx = shndx;
                    749:              attr_value.val.refval = sec_off;
                    750:              ref_form = true;
                    751:              break;
                    752:            }
1.1.1.4   christos  753:          case elfcpp::DW_FORM_ref_addr:
                    754:            {
                    755:              off_t sec_off;
                    756:              if (this->dwinfo_->ref_addr_size() == 4)
                    757:                sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
                    758:              else
                    759:                sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
                    760:              unsigned int shndx =
                    761:                  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
                    762:              attr_value.aux.shndx = shndx;
                    763:              attr_value.val.refval = sec_off;
                    764:              ref_form = true;
                    765:              break;
                    766:            }
1.1       christos  767:          case elfcpp::DW_FORM_block1:
                    768:            attr_value.aux.blocklen = *pattr++;
                    769:            attr_value.val.blockval = pattr;
                    770:            pattr += attr_value.aux.blocklen;
                    771:            break;
                    772:          case elfcpp::DW_FORM_block2:
1.1.1.2   christos  773:            attr_value.aux.blocklen =
                    774:                this->dwinfo_->read_from_pointer<16>(&pattr);
1.1       christos  775:            attr_value.val.blockval = pattr;
                    776:            pattr += attr_value.aux.blocklen;
                    777:            break;
                    778:          case elfcpp::DW_FORM_block4:
1.1.1.2   christos  779:            attr_value.aux.blocklen =
                    780:                this->dwinfo_->read_from_pointer<32>(&pattr);
1.1       christos  781:            attr_value.val.blockval = pattr;
                    782:            pattr += attr_value.aux.blocklen;
                    783:            break;
                    784:          case elfcpp::DW_FORM_block:
                    785:          case elfcpp::DW_FORM_exprloc:
                    786:            attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
                    787:            attr_value.val.blockval = pattr + len;
                    788:            pattr += len + attr_value.aux.blocklen;
                    789:            break;
                    790:          case elfcpp::DW_FORM_data1:
                    791:          case elfcpp::DW_FORM_flag:
                    792:            attr_value.val.intval = *pattr++;
                    793:            break;
                    794:          case elfcpp::DW_FORM_ref1:
                    795:            attr_value.val.refval = *pattr++;
                    796:            ref_form = true;
                    797:            break;
                    798:          case elfcpp::DW_FORM_data2:
1.1.1.2   christos  799:            attr_value.val.intval =
                    800:                this->dwinfo_->read_from_pointer<16>(&pattr);
1.1       christos  801:            break;
                    802:          case elfcpp::DW_FORM_ref2:
1.1.1.2   christos  803:            attr_value.val.refval =
                    804:                this->dwinfo_->read_from_pointer<16>(&pattr);
1.1       christos  805:            ref_form = true;
                    806:            break;
                    807:          case elfcpp::DW_FORM_data4:
                    808:            {
                    809:              off_t sec_off;
1.1.1.2   christos  810:              sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
1.1       christos  811:              unsigned int shndx =
                    812:                  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
                    813:              attr_value.aux.shndx = shndx;
                    814:              attr_value.val.intval = sec_off;
                    815:              break;
                    816:            }
                    817:          case elfcpp::DW_FORM_ref4:
                    818:            {
                    819:              off_t sec_off;
1.1.1.2   christos  820:              sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
1.1       christos  821:              unsigned int shndx =
                    822:                  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
                    823:              attr_value.aux.shndx = shndx;
                    824:              attr_value.val.refval = sec_off;
                    825:              ref_form = true;
                    826:              break;
                    827:            }
                    828:          case elfcpp::DW_FORM_data8:
                    829:            {
                    830:              off_t sec_off;
1.1.1.2   christos  831:              sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
1.1       christos  832:              unsigned int shndx =
                    833:                  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
                    834:              attr_value.aux.shndx = shndx;
                    835:              attr_value.val.intval = sec_off;
                    836:              break;
                    837:            }
                    838:          case elfcpp::DW_FORM_ref_sig8:
1.1.1.2   christos  839:            attr_value.val.uintval =
                    840:                this->dwinfo_->read_from_pointer<64>(&pattr);
1.1       christos  841:            break;
                    842:          case elfcpp::DW_FORM_ref8:
                    843:            {
                    844:              off_t sec_off;
1.1.1.2   christos  845:              sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
1.1       christos  846:              unsigned int shndx =
                    847:                  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
                    848:              attr_value.aux.shndx = shndx;
                    849:              attr_value.val.refval = sec_off;
                    850:              ref_form = true;
                    851:              break;
                    852:            }
                    853:          case elfcpp::DW_FORM_ref_udata:
                    854:            attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
                    855:            ref_form = true;
                    856:            pattr += len;
                    857:            break;
                    858:          case elfcpp::DW_FORM_udata:
1.1.1.2   christos  859:          case elfcpp::DW_FORM_GNU_addr_index:
                    860:          case elfcpp::DW_FORM_GNU_str_index:
1.1       christos  861:            attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
                    862:            pattr += len;
                    863:            break;
                    864:          case elfcpp::DW_FORM_sdata:
                    865:            attr_value.val.intval = read_signed_LEB_128(pattr, &len);
                    866:            pattr += len;
                    867:            break;
                    868:          case elfcpp::DW_FORM_string:
                    869:            attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
                    870:            len = strlen(attr_value.val.stringval);
                    871:            pattr += len + 1;
                    872:            break;
                    873:          default:
                    874:            return false;
                    875:        }
                    876:
                    877:       // Cache the most frequently-requested attributes.
                    878:       switch (attr)
                    879:        {
                    880:          case elfcpp::DW_AT_name:
                    881:            if (form == elfcpp::DW_FORM_string)
                    882:              this->name_ = attr_value.val.stringval;
                    883:            else if (form == elfcpp::DW_FORM_strp)
                    884:              {
                    885:                // All indirect strings should refer to the same
                    886:                // string section, so we just save the last one seen.
                    887:                this->string_shndx_ = attr_value.aux.shndx;
                    888:                this->name_off_ = attr_value.val.refval;
                    889:              }
                    890:            break;
                    891:          case elfcpp::DW_AT_linkage_name:
                    892:          case elfcpp::DW_AT_MIPS_linkage_name:
                    893:            if (form == elfcpp::DW_FORM_string)
                    894:              this->linkage_name_ = attr_value.val.stringval;
                    895:            else if (form == elfcpp::DW_FORM_strp)
                    896:              {
                    897:                // All indirect strings should refer to the same
                    898:                // string section, so we just save the last one seen.
                    899:                this->string_shndx_ = attr_value.aux.shndx;
                    900:                this->linkage_name_off_ = attr_value.val.refval;
                    901:              }
                    902:            break;
                    903:          case elfcpp::DW_AT_specification:
                    904:            if (ref_form)
                    905:              this->specification_ = attr_value.val.refval;
                    906:            break;
                    907:          case elfcpp::DW_AT_abstract_origin:
                    908:            if (ref_form)
                    909:              this->abstract_origin_ = attr_value.val.refval;
                    910:            break;
                    911:          case elfcpp::DW_AT_sibling:
                    912:            if (ref_form && attr_value.aux.shndx == 0)
                    913:              this->sibling_offset_ = attr_value.val.refval;
                    914:          default:
                    915:            break;
                    916:        }
                    917:
                    918:       this->attributes_.push_back(attr_value);
                    919:     }
                    920:
                    921:   // Now that we know where the next DIE begins, record the offset
                    922:   // to avoid later recalculation.
                    923:   if (this->has_children())
                    924:     this->child_offset_ = this->die_offset_ + (pattr - pdie);
                    925:   else
                    926:     this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
                    927:
                    928:   this->attributes_read_ = true;
                    929:   return true;
                    930: }
                    931:
                    932: // Skip all the attributes of the DIE and return the offset of the next DIE.
                    933:
                    934: off_t
                    935: Dwarf_die::skip_attributes()
                    936: {
                    937:   gold_assert(this->abbrev_code_ != NULL);
                    938:
                    939:   const unsigned char* pdie =
                    940:       this->dwinfo_->buffer_at_offset(this->die_offset_);
                    941:   if (pdie == NULL)
                    942:     return 0;
                    943:   const unsigned char* pattr = pdie + this->attr_offset_;
                    944:
                    945:   for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
                    946:     {
                    947:       size_t len;
                    948:       unsigned int form = this->abbrev_code_->attributes[i].form;
                    949:       if (form == elfcpp::DW_FORM_indirect)
                    950:         {
                    951:           form = read_unsigned_LEB_128(pattr, &len);
                    952:           pattr += len;
                    953:         }
                    954:       switch(form)
                    955:        {
                    956:          case elfcpp::DW_FORM_flag_present:
                    957:            break;
                    958:          case elfcpp::DW_FORM_strp:
                    959:          case elfcpp::DW_FORM_sec_offset:
                    960:            pattr += this->dwinfo_->offset_size();
                    961:            break;
                    962:          case elfcpp::DW_FORM_addr:
                    963:            pattr += this->dwinfo_->address_size();
                    964:            break;
1.1.1.4   christos  965:          case elfcpp::DW_FORM_ref_addr:
                    966:            pattr += this->dwinfo_->ref_addr_size();
                    967:            break;
1.1       christos  968:          case elfcpp::DW_FORM_block1:
                    969:            pattr += 1 + *pattr;
                    970:            break;
                    971:          case elfcpp::DW_FORM_block2:
                    972:            {
                    973:              uint16_t block_size;
1.1.1.2   christos  974:              block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
1.1       christos  975:              pattr += block_size;
                    976:              break;
                    977:            }
                    978:          case elfcpp::DW_FORM_block4:
                    979:            {
                    980:              uint32_t block_size;
1.1.1.2   christos  981:              block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
1.1       christos  982:              pattr += block_size;
                    983:              break;
                    984:            }
                    985:          case elfcpp::DW_FORM_block:
                    986:          case elfcpp::DW_FORM_exprloc:
                    987:            {
                    988:              uint64_t block_size;
                    989:              block_size = read_unsigned_LEB_128(pattr, &len);
                    990:              pattr += len + block_size;
                    991:              break;
                    992:            }
                    993:          case elfcpp::DW_FORM_data1:
                    994:          case elfcpp::DW_FORM_ref1:
                    995:          case elfcpp::DW_FORM_flag:
                    996:            pattr += 1;
                    997:            break;
                    998:          case elfcpp::DW_FORM_data2:
                    999:          case elfcpp::DW_FORM_ref2:
                   1000:            pattr += 2;
                   1001:            break;
                   1002:          case elfcpp::DW_FORM_data4:
                   1003:          case elfcpp::DW_FORM_ref4:
                   1004:            pattr += 4;
                   1005:            break;
                   1006:          case elfcpp::DW_FORM_data8:
                   1007:          case elfcpp::DW_FORM_ref8:
                   1008:          case elfcpp::DW_FORM_ref_sig8:
                   1009:            pattr += 8;
                   1010:            break;
                   1011:          case elfcpp::DW_FORM_ref_udata:
                   1012:          case elfcpp::DW_FORM_udata:
1.1.1.2   christos 1013:          case elfcpp::DW_FORM_GNU_addr_index:
                   1014:          case elfcpp::DW_FORM_GNU_str_index:
1.1       christos 1015:            read_unsigned_LEB_128(pattr, &len);
                   1016:            pattr += len;
                   1017:            break;
                   1018:          case elfcpp::DW_FORM_sdata:
                   1019:            read_signed_LEB_128(pattr, &len);
                   1020:            pattr += len;
                   1021:            break;
                   1022:          case elfcpp::DW_FORM_string:
                   1023:            len = strlen(reinterpret_cast<const char*>(pattr));
                   1024:            pattr += len + 1;
                   1025:            break;
                   1026:          default:
                   1027:            return 0;
                   1028:        }
                   1029:     }
                   1030:
                   1031:   return this->die_offset_ + (pattr - pdie);
                   1032: }
                   1033:
                   1034: // Get the name of the DIE and cache it.
                   1035:
                   1036: void
                   1037: Dwarf_die::set_name()
                   1038: {
                   1039:   if (this->name_ != NULL || !this->read_attributes())
                   1040:     return;
                   1041:   if (this->name_off_ != -1)
                   1042:     this->name_ = this->dwinfo_->get_string(this->name_off_,
                   1043:                                            this->string_shndx_);
                   1044: }
                   1045:
                   1046: // Get the linkage name of the DIE and cache it.
                   1047:
                   1048: void
                   1049: Dwarf_die::set_linkage_name()
                   1050: {
                   1051:   if (this->linkage_name_ != NULL || !this->read_attributes())
                   1052:     return;
                   1053:   if (this->linkage_name_off_ != -1)
                   1054:     this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
                   1055:                                                    this->string_shndx_);
                   1056: }
                   1057:
                   1058: // Return the value of attribute ATTR.
                   1059:
                   1060: const Dwarf_die::Attribute_value*
                   1061: Dwarf_die::attribute(unsigned int attr)
                   1062: {
                   1063:   if (!this->read_attributes())
                   1064:     return NULL;
                   1065:   for (unsigned int i = 0; i < this->attributes_.size(); ++i)
                   1066:     {
                   1067:       if (this->attributes_[i].attr == attr)
                   1068:         return &this->attributes_[i];
                   1069:     }
                   1070:   return NULL;
                   1071: }
                   1072:
                   1073: const char*
                   1074: Dwarf_die::string_attribute(unsigned int attr)
                   1075: {
                   1076:   const Attribute_value* attr_val = this->attribute(attr);
                   1077:   if (attr_val == NULL)
                   1078:     return NULL;
                   1079:   switch (attr_val->form)
                   1080:     {
                   1081:       case elfcpp::DW_FORM_string:
                   1082:         return attr_val->val.stringval;
                   1083:       case elfcpp::DW_FORM_strp:
                   1084:        return this->dwinfo_->get_string(attr_val->val.refval,
                   1085:                                         attr_val->aux.shndx);
                   1086:       default:
                   1087:         return NULL;
                   1088:     }
                   1089: }
                   1090:
                   1091: int64_t
                   1092: Dwarf_die::int_attribute(unsigned int attr)
                   1093: {
                   1094:   const Attribute_value* attr_val = this->attribute(attr);
                   1095:   if (attr_val == NULL)
                   1096:     return 0;
                   1097:   switch (attr_val->form)
                   1098:     {
                   1099:       case elfcpp::DW_FORM_flag_present:
                   1100:       case elfcpp::DW_FORM_data1:
                   1101:       case elfcpp::DW_FORM_flag:
                   1102:       case elfcpp::DW_FORM_data2:
                   1103:       case elfcpp::DW_FORM_data4:
                   1104:       case elfcpp::DW_FORM_data8:
                   1105:       case elfcpp::DW_FORM_sdata:
                   1106:         return attr_val->val.intval;
                   1107:       default:
                   1108:         return 0;
                   1109:     }
                   1110: }
                   1111:
                   1112: uint64_t
                   1113: Dwarf_die::uint_attribute(unsigned int attr)
                   1114: {
                   1115:   const Attribute_value* attr_val = this->attribute(attr);
                   1116:   if (attr_val == NULL)
                   1117:     return 0;
                   1118:   switch (attr_val->form)
                   1119:     {
                   1120:       case elfcpp::DW_FORM_flag_present:
                   1121:       case elfcpp::DW_FORM_data1:
                   1122:       case elfcpp::DW_FORM_flag:
                   1123:       case elfcpp::DW_FORM_data4:
                   1124:       case elfcpp::DW_FORM_data8:
                   1125:       case elfcpp::DW_FORM_ref_sig8:
                   1126:       case elfcpp::DW_FORM_udata:
                   1127:         return attr_val->val.uintval;
                   1128:       default:
                   1129:         return 0;
                   1130:     }
                   1131: }
                   1132:
                   1133: off_t
                   1134: Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
                   1135: {
                   1136:   const Attribute_value* attr_val = this->attribute(attr);
                   1137:   if (attr_val == NULL)
                   1138:     return -1;
                   1139:   switch (attr_val->form)
                   1140:     {
                   1141:       case elfcpp::DW_FORM_sec_offset:
                   1142:       case elfcpp::DW_FORM_addr:
                   1143:       case elfcpp::DW_FORM_ref_addr:
                   1144:       case elfcpp::DW_FORM_ref1:
                   1145:       case elfcpp::DW_FORM_ref2:
                   1146:       case elfcpp::DW_FORM_ref4:
                   1147:       case elfcpp::DW_FORM_ref8:
                   1148:       case elfcpp::DW_FORM_ref_udata:
                   1149:         *shndx = attr_val->aux.shndx;
                   1150:         return attr_val->val.refval;
                   1151:       case elfcpp::DW_FORM_ref_sig8:
                   1152:         *shndx = attr_val->aux.shndx;
                   1153:         return attr_val->val.uintval;
                   1154:       case elfcpp::DW_FORM_data4:
                   1155:       case elfcpp::DW_FORM_data8:
                   1156:         *shndx = attr_val->aux.shndx;
                   1157:         return attr_val->val.intval;
                   1158:       default:
                   1159:         return -1;
                   1160:     }
                   1161: }
                   1162:
                   1163: off_t
                   1164: Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
                   1165: {
                   1166:   const Attribute_value* attr_val = this->attribute(attr);
                   1167:   if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
                   1168:     return -1;
                   1169:
                   1170:   *shndx = attr_val->aux.shndx;
                   1171:   return attr_val->val.refval;
                   1172: }
                   1173:
                   1174: // Return the offset of this DIE's first child.
                   1175:
                   1176: off_t
                   1177: Dwarf_die::child_offset()
                   1178: {
                   1179:   gold_assert(this->abbrev_code_ != NULL);
                   1180:   if (!this->has_children())
                   1181:     return 0;
                   1182:   if (this->child_offset_ == 0)
                   1183:     this->child_offset_ = this->skip_attributes();
                   1184:   return this->child_offset_;
                   1185: }
                   1186:
                   1187: // Return the offset of this DIE's next sibling.
                   1188:
                   1189: off_t
                   1190: Dwarf_die::sibling_offset()
                   1191: {
                   1192:   gold_assert(this->abbrev_code_ != NULL);
                   1193:
                   1194:   if (this->sibling_offset_ != 0)
                   1195:     return this->sibling_offset_;
                   1196:
                   1197:   if (!this->has_children())
                   1198:     {
                   1199:       this->sibling_offset_ = this->skip_attributes();
                   1200:       return this->sibling_offset_;
                   1201:     }
                   1202:
                   1203:   if (this->has_sibling_attribute())
                   1204:     {
                   1205:       if (!this->read_attributes())
                   1206:        return 0;
                   1207:       if (this->sibling_offset_ != 0)
                   1208:        return this->sibling_offset_;
                   1209:     }
                   1210:
                   1211:   // Skip over the children.
                   1212:   off_t child_offset = this->child_offset();
                   1213:   while (child_offset > 0)
                   1214:     {
                   1215:       Dwarf_die die(this->dwinfo_, child_offset, this);
                   1216:       // The Dwarf_die ctor will set this DIE's sibling offset
                   1217:       // when it reads a zero abbrev code.
                   1218:       if (die.tag() == 0)
                   1219:        break;
                   1220:       child_offset = die.sibling_offset();
                   1221:     }
                   1222:
                   1223:   // This should be set by now.  If not, there was a problem reading
                   1224:   // the DWARF info, and we return 0.
                   1225:   return this->sibling_offset_;
                   1226: }
                   1227:
                   1228: // class Dwarf_info_reader
                   1229:
                   1230: // Begin parsing the debug info.  This calls visit_compilation_unit()
                   1231: // or visit_type_unit() for each compilation or type unit found in the
                   1232: // section, and visit_die() for each top-level DIE.
                   1233:
                   1234: void
                   1235: Dwarf_info_reader::parse()
                   1236: {
1.1.1.2   christos 1237:   if (this->object_->is_big_endian())
1.1       christos 1238:     {
1.1.1.2   christos 1239: #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
                   1240:       this->do_parse<true>();
                   1241: #else
                   1242:       gold_unreachable();
1.1       christos 1243: #endif
1.1.1.2   christos 1244:     }
                   1245:   else
                   1246:     {
                   1247: #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
                   1248:       this->do_parse<false>();
                   1249: #else
                   1250:       gold_unreachable();
1.1       christos 1251: #endif
                   1252:     }
                   1253: }
                   1254:
                   1255: template<bool big_endian>
                   1256: void
                   1257: Dwarf_info_reader::do_parse()
                   1258: {
                   1259:   // Get the section contents and decompress if necessary.
                   1260:   section_size_type buffer_size;
                   1261:   bool buffer_is_new;
                   1262:   this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
                   1263:                                                               &buffer_size,
                   1264:                                                               &buffer_is_new);
                   1265:   if (this->buffer_ == NULL || buffer_size == 0)
                   1266:     return;
                   1267:   this->buffer_end_ = this->buffer_ + buffer_size;
                   1268:
                   1269:   // The offset of this input section in the output section.
                   1270:   off_t section_offset = this->object_->output_section_offset(this->shndx_);
                   1271:
                   1272:   // Start tracking relocations for this section.
                   1273:   this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
                   1274:                                              this->symtab_size_);
                   1275:   this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
                   1276:
                   1277:   // Loop over compilation units (or type units).
1.1.1.2   christos 1278:   unsigned int abbrev_shndx = this->abbrev_shndx_;
1.1       christos 1279:   off_t abbrev_offset = 0;
                   1280:   const unsigned char* pinfo = this->buffer_;
                   1281:   while (pinfo < this->buffer_end_)
                   1282:     {
                   1283:       // Read the compilation (or type) unit header.
                   1284:       const unsigned char* cu_start = pinfo;
                   1285:       this->cu_offset_ = cu_start - this->buffer_;
                   1286:       this->cu_length_ = this->buffer_end_ - cu_start;
                   1287:
                   1288:       // Read unit_length (4 or 12 bytes).
                   1289:       if (!this->check_buffer(pinfo + 4))
                   1290:        break;
                   1291:       uint32_t unit_length =
                   1292:           elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
                   1293:       pinfo += 4;
                   1294:       if (unit_length == 0xffffffff)
                   1295:        {
                   1296:          if (!this->check_buffer(pinfo + 8))
                   1297:            break;
                   1298:          unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
                   1299:          pinfo += 8;
                   1300:          this->offset_size_ = 8;
                   1301:        }
                   1302:       else
                   1303:        this->offset_size_ = 4;
                   1304:       if (!this->check_buffer(pinfo + unit_length))
                   1305:        break;
                   1306:       const unsigned char* cu_end = pinfo + unit_length;
                   1307:       this->cu_length_ = cu_end - cu_start;
                   1308:       if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
                   1309:        break;
                   1310:
                   1311:       // Read version (2 bytes).
                   1312:       this->cu_version_ =
                   1313:          elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
                   1314:       pinfo += 2;
                   1315:
                   1316:       // Read debug_abbrev_offset (4 or 8 bytes).
                   1317:       if (this->offset_size_ == 4)
                   1318:        abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
                   1319:       else
                   1320:        abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
                   1321:       if (this->reloc_shndx_ > 0)
                   1322:        {
                   1323:          off_t reloc_offset = pinfo - this->buffer_;
                   1324:          off_t value;
                   1325:          abbrev_shndx =
                   1326:              this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
                   1327:          if (abbrev_shndx == 0)
                   1328:            return;
                   1329:          if (this->reloc_type_ == elfcpp::SHT_REL)
                   1330:            abbrev_offset += value;
                   1331:          else
                   1332:            abbrev_offset = value;
                   1333:        }
                   1334:       pinfo += this->offset_size_;
                   1335:
                   1336:       // Read address_size (1 byte).
                   1337:       this->address_size_ = *pinfo++;
                   1338:
                   1339:       // For type units, read the two extra fields.
                   1340:       uint64_t signature = 0;
                   1341:       off_t type_offset = 0;
                   1342:       if (this->is_type_unit_)
                   1343:         {
                   1344:          if (!this->check_buffer(pinfo + 8 + this->offset_size_))
                   1345:            break;
                   1346:
                   1347:          // Read type_signature (8 bytes).
                   1348:          signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
                   1349:          pinfo += 8;
                   1350:
                   1351:          // Read type_offset (4 or 8 bytes).
                   1352:          if (this->offset_size_ == 4)
                   1353:            type_offset =
                   1354:                elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
                   1355:          else
                   1356:            type_offset =
                   1357:                elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
                   1358:          pinfo += this->offset_size_;
                   1359:        }
                   1360:
                   1361:       // Read the .debug_abbrev table.
                   1362:       this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
                   1363:                                       abbrev_offset);
                   1364:
                   1365:       // Visit the root DIE.
                   1366:       Dwarf_die root_die(this,
                   1367:                         pinfo - (this->buffer_ + this->cu_offset_),
                   1368:                         NULL);
                   1369:       if (root_die.tag() != 0)
                   1370:        {
                   1371:          // Visit the CU or TU.
                   1372:          if (this->is_type_unit_)
                   1373:            this->visit_type_unit(section_offset + this->cu_offset_,
1.1.1.2   christos 1374:                                  cu_end - cu_start, type_offset, signature,
                   1375:                                  &root_die);
1.1       christos 1376:          else
                   1377:            this->visit_compilation_unit(section_offset + this->cu_offset_,
                   1378:                                         cu_end - cu_start, &root_die);
                   1379:        }
                   1380:
                   1381:       // Advance to the next CU.
                   1382:       pinfo = cu_end;
                   1383:     }
                   1384:
                   1385:   if (buffer_is_new)
                   1386:     {
                   1387:       delete[] this->buffer_;
                   1388:       this->buffer_ = NULL;
                   1389:     }
                   1390: }
                   1391:
                   1392: // Read the DWARF string table.
                   1393:
                   1394: bool
                   1395: Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
                   1396: {
                   1397:   Relobj* object = this->object_;
                   1398:
                   1399:   // If we don't have relocations, string_shndx will be 0, and
                   1400:   // we'll have to hunt for the .debug_str section.
                   1401:   if (string_shndx == 0)
                   1402:     {
                   1403:       for (unsigned int i = 1; i < this->object_->shnum(); ++i)
                   1404:        {
                   1405:          std::string name = object->section_name(i);
1.1.1.2   christos 1406:          if (name == ".debug_str" || name == ".zdebug_str")
1.1       christos 1407:            {
                   1408:              string_shndx = i;
                   1409:              this->string_output_section_offset_ =
                   1410:                  object->output_section_offset(i);
                   1411:              break;
                   1412:            }
                   1413:        }
                   1414:       if (string_shndx == 0)
                   1415:        return false;
                   1416:     }
                   1417:
                   1418:   if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
                   1419:     {
                   1420:       delete[] this->string_buffer_;
                   1421:       this->owns_string_buffer_ = false;
                   1422:     }
                   1423:
                   1424:   // Get the secton contents and decompress if necessary.
                   1425:   section_size_type buffer_size;
                   1426:   const unsigned char* buffer =
                   1427:       object->decompressed_section_contents(string_shndx,
                   1428:                                            &buffer_size,
                   1429:                                            &this->owns_string_buffer_);
                   1430:   this->string_buffer_ = reinterpret_cast<const char*>(buffer);
                   1431:   this->string_buffer_end_ = this->string_buffer_ + buffer_size;
                   1432:   this->string_shndx_ = string_shndx;
                   1433:   return true;
                   1434: }
                   1435:
1.1.1.2   christos 1436: // Read a possibly unaligned integer of SIZE.
                   1437: template <int valsize>
                   1438: inline typename elfcpp::Valtype_base<valsize>::Valtype
                   1439: Dwarf_info_reader::read_from_pointer(const unsigned char* source)
                   1440: {
                   1441:   typename elfcpp::Valtype_base<valsize>::Valtype return_value;
                   1442:   if (this->object_->is_big_endian())
                   1443:     return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
                   1444:   else
                   1445:     return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
                   1446:   return return_value;
                   1447: }
                   1448:
                   1449: // Read a possibly unaligned integer of SIZE.  Update SOURCE after read.
                   1450: template <int valsize>
                   1451: inline typename elfcpp::Valtype_base<valsize>::Valtype
                   1452: Dwarf_info_reader::read_from_pointer(const unsigned char** source)
                   1453: {
                   1454:   typename elfcpp::Valtype_base<valsize>::Valtype return_value;
                   1455:   if (this->object_->is_big_endian())
                   1456:     return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
                   1457:   else
                   1458:     return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
                   1459:   *source += valsize / 8;
                   1460:   return return_value;
                   1461: }
                   1462:
1.1       christos 1463: // Look for a relocation at offset ATTR_OFF in the dwarf info,
                   1464: // and return the section index and offset of the target.
                   1465:
                   1466: unsigned int
                   1467: Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
                   1468: {
                   1469:   off_t value;
                   1470:   attr_off += this->cu_offset_;
                   1471:   unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
                   1472:   if (shndx == 0)
                   1473:     return 0;
                   1474:   if (this->reloc_type_ == elfcpp::SHT_REL)
                   1475:     *target_off += value;
                   1476:   else
                   1477:     *target_off = value;
                   1478:   return shndx;
                   1479: }
                   1480:
                   1481: // Return a string from the DWARF string table.
                   1482:
                   1483: const char*
                   1484: Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
                   1485: {
                   1486:   if (!this->read_string_table(string_shndx))
                   1487:     return NULL;
                   1488:
                   1489:   // Correct the offset.  For incremental update links, we have a
                   1490:   // relocated offset that is relative to the output section, but
                   1491:   // here we need an offset relative to the input section.
                   1492:   str_off -= this->string_output_section_offset_;
                   1493:
                   1494:   const char* p = this->string_buffer_ + str_off;
                   1495:
                   1496:   if (p < this->string_buffer_ || p >= this->string_buffer_end_)
                   1497:     return NULL;
                   1498:
                   1499:   return p;
                   1500: }
                   1501:
                   1502: // The following are default, do-nothing, implementations of the
                   1503: // hook methods normally provided by a derived class.  We provide
                   1504: // default implementations rather than no implementation so that
                   1505: // a derived class needs to implement only the hooks that it needs
                   1506: // to use.
                   1507:
                   1508: // Process a compilation unit and parse its child DIE.
                   1509:
                   1510: void
                   1511: Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
                   1512: {
                   1513: }
                   1514:
                   1515: // Process a type unit and parse its child DIE.
                   1516:
                   1517: void
1.1.1.2   christos 1518: Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*)
                   1519: {
                   1520: }
                   1521:
                   1522: // Print a warning about a corrupt debug section.
                   1523:
                   1524: void
                   1525: Dwarf_info_reader::warn_corrupt_debug_section() const
1.1       christos 1526: {
1.1.1.2   christos 1527:   gold_warning(_("%s: corrupt debug info in %s"),
                   1528:               this->object_->name().c_str(),
                   1529:               this->object_->section_name(this->shndx_).c_str());
1.1       christos 1530: }
                   1531:
                   1532: // class Sized_dwarf_line_info
                   1533:
                   1534: struct LineStateMachine
                   1535: {
                   1536:   int file_num;
                   1537:   uint64_t address;
                   1538:   int line_num;
                   1539:   int column_num;
                   1540:   unsigned int shndx;    // the section address refers to
                   1541:   bool is_stmt;          // stmt means statement.
                   1542:   bool basic_block;
                   1543:   bool end_sequence;
                   1544: };
                   1545:
                   1546: static void
                   1547: ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
                   1548: {
                   1549:   lsm->file_num = 1;
                   1550:   lsm->address = 0;
                   1551:   lsm->line_num = 1;
                   1552:   lsm->column_num = 0;
                   1553:   lsm->shndx = -1U;
                   1554:   lsm->is_stmt = default_is_stmt;
                   1555:   lsm->basic_block = false;
                   1556:   lsm->end_sequence = false;
                   1557: }
                   1558:
                   1559: template<int size, bool big_endian>
                   1560: Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
                   1561:     Object* object,
                   1562:     unsigned int read_shndx)
                   1563:   : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
                   1564:     reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
                   1565:     current_header_index_(-1)
                   1566: {
                   1567:   unsigned int debug_shndx;
                   1568:
                   1569:   for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
                   1570:     {
                   1571:       // FIXME: do this more efficiently: section_name() isn't super-fast
                   1572:       std::string name = object->section_name(debug_shndx);
                   1573:       if (name == ".debug_line" || name == ".zdebug_line")
                   1574:        {
                   1575:          section_size_type buffer_size;
                   1576:          bool is_new = false;
                   1577:          this->buffer_ = object->decompressed_section_contents(debug_shndx,
                   1578:                                                                &buffer_size,
                   1579:                                                                &is_new);
                   1580:          if (is_new)
                   1581:            this->buffer_start_ = this->buffer_;
                   1582:          this->buffer_end_ = this->buffer_ + buffer_size;
                   1583:          break;
                   1584:        }
                   1585:     }
                   1586:   if (this->buffer_ == NULL)
                   1587:     return;
                   1588:
                   1589:   // Find the relocation section for ".debug_line".
                   1590:   // We expect these for relobjs (.o's) but not dynobjs (.so's).
                   1591:   unsigned int reloc_shndx = 0;
                   1592:   for (unsigned int i = 0; i < object->shnum(); ++i)
                   1593:     {
                   1594:       unsigned int reloc_sh_type = object->section_type(i);
                   1595:       if ((reloc_sh_type == elfcpp::SHT_REL
                   1596:           || reloc_sh_type == elfcpp::SHT_RELA)
                   1597:          && object->section_info(i) == debug_shndx)
                   1598:        {
                   1599:          reloc_shndx = i;
                   1600:          this->track_relocs_type_ = reloc_sh_type;
                   1601:          break;
                   1602:        }
                   1603:     }
                   1604:
                   1605:   // Finally, we need the symtab section to interpret the relocs.
                   1606:   if (reloc_shndx != 0)
                   1607:     {
                   1608:       unsigned int symtab_shndx;
                   1609:       for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
                   1610:         if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
                   1611:           {
                   1612:            this->symtab_buffer_ = object->section_contents(
                   1613:                symtab_shndx, &this->symtab_buffer_size_, false);
                   1614:             break;
                   1615:           }
                   1616:       if (this->symtab_buffer_ == NULL)
                   1617:         return;
                   1618:     }
                   1619:
                   1620:   this->reloc_mapper_ =
                   1621:       new Sized_elf_reloc_mapper<size, big_endian>(object,
                   1622:                                                   this->symtab_buffer_,
                   1623:                                                   this->symtab_buffer_size_);
                   1624:   if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
                   1625:     return;
                   1626:
                   1627:   // Now that we have successfully read all the data, parse the debug
                   1628:   // info.
                   1629:   this->data_valid_ = true;
                   1630:   this->read_line_mappings(read_shndx);
                   1631: }
                   1632:
                   1633: // Read the DWARF header.
                   1634:
                   1635: template<int size, bool big_endian>
                   1636: const unsigned char*
                   1637: Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
                   1638:     const unsigned char* lineptr)
                   1639: {
                   1640:   uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
                   1641:   lineptr += 4;
                   1642:
                   1643:   // In DWARF2/3, if the initial length is all 1 bits, then the offset
                   1644:   // size is 8 and we need to read the next 8 bytes for the real length.
                   1645:   if (initial_length == 0xffffffff)
                   1646:     {
                   1647:       header_.offset_size = 8;
                   1648:       initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
                   1649:       lineptr += 8;
                   1650:     }
                   1651:   else
                   1652:     header_.offset_size = 4;
                   1653:
                   1654:   header_.total_length = initial_length;
                   1655:
                   1656:   gold_assert(lineptr + header_.total_length <= buffer_end_);
                   1657:
                   1658:   header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
                   1659:   lineptr += 2;
                   1660:
                   1661:   if (header_.offset_size == 4)
                   1662:     header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
                   1663:   else
                   1664:     header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
                   1665:   lineptr += header_.offset_size;
                   1666:
                   1667:   header_.min_insn_length = *lineptr;
                   1668:   lineptr += 1;
                   1669:
1.1.1.4   christos 1670:   if (header_.version < 4)
                   1671:     header_.max_ops_per_insn = 1;
                   1672:   else
                   1673:     {
                   1674:       // DWARF 4 added the maximum_operations_per_instruction field.
                   1675:       header_.max_ops_per_insn = *lineptr;
                   1676:       lineptr += 1;
                   1677:       // TODO: Add support for values other than 1.
                   1678:       gold_assert(header_.max_ops_per_insn == 1);
                   1679:     }
                   1680:
1.1       christos 1681:   header_.default_is_stmt = *lineptr;
                   1682:   lineptr += 1;
                   1683:
                   1684:   header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
                   1685:   lineptr += 1;
                   1686:
                   1687:   header_.line_range = *lineptr;
                   1688:   lineptr += 1;
                   1689:
                   1690:   header_.opcode_base = *lineptr;
                   1691:   lineptr += 1;
                   1692:
                   1693:   header_.std_opcode_lengths.resize(header_.opcode_base + 1);
                   1694:   header_.std_opcode_lengths[0] = 0;
                   1695:   for (int i = 1; i < header_.opcode_base; i++)
                   1696:     {
                   1697:       header_.std_opcode_lengths[i] = *lineptr;
                   1698:       lineptr += 1;
                   1699:     }
                   1700:
                   1701:   return lineptr;
                   1702: }
                   1703:
                   1704: // The header for a debug_line section is mildly complicated, because
                   1705: // the line info is very tightly encoded.
                   1706:
                   1707: template<int size, bool big_endian>
                   1708: const unsigned char*
                   1709: Sized_dwarf_line_info<size, big_endian>::read_header_tables(
                   1710:     const unsigned char* lineptr)
                   1711: {
                   1712:   ++this->current_header_index_;
                   1713:
                   1714:   // Create a new directories_ entry and a new files_ entry for our new
                   1715:   // header.  We initialize each with a single empty element, because
                   1716:   // dwarf indexes directory and filenames starting at 1.
                   1717:   gold_assert(static_cast<int>(this->directories_.size())
                   1718:              == this->current_header_index_);
                   1719:   gold_assert(static_cast<int>(this->files_.size())
                   1720:              == this->current_header_index_);
                   1721:   this->directories_.push_back(std::vector<std::string>(1));
                   1722:   this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
                   1723:
                   1724:   // It is legal for the directory entry table to be empty.
                   1725:   if (*lineptr)
                   1726:     {
                   1727:       int dirindex = 1;
                   1728:       while (*lineptr)
                   1729:         {
                   1730:          const char* dirname = reinterpret_cast<const char*>(lineptr);
                   1731:           gold_assert(dirindex
                   1732:                      == static_cast<int>(this->directories_.back().size()));
                   1733:           this->directories_.back().push_back(dirname);
                   1734:           lineptr += this->directories_.back().back().size() + 1;
                   1735:           dirindex++;
                   1736:         }
                   1737:     }
                   1738:   lineptr++;
                   1739:
                   1740:   // It is also legal for the file entry table to be empty.
                   1741:   if (*lineptr)
                   1742:     {
                   1743:       int fileindex = 1;
                   1744:       size_t len;
                   1745:       while (*lineptr)
                   1746:         {
                   1747:           const char* filename = reinterpret_cast<const char*>(lineptr);
                   1748:           lineptr += strlen(filename) + 1;
                   1749:
                   1750:           uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
                   1751:           lineptr += len;
                   1752:
                   1753:           if (dirindex >= this->directories_.back().size())
                   1754:             dirindex = 0;
                   1755:          int dirindexi = static_cast<int>(dirindex);
                   1756:
                   1757:           read_unsigned_LEB_128(lineptr, &len);   // mod_time
                   1758:           lineptr += len;
                   1759:
                   1760:           read_unsigned_LEB_128(lineptr, &len);   // filelength
                   1761:           lineptr += len;
                   1762:
                   1763:           gold_assert(fileindex
                   1764:                      == static_cast<int>(this->files_.back().size()));
                   1765:           this->files_.back().push_back(std::make_pair(dirindexi, filename));
                   1766:           fileindex++;
                   1767:         }
                   1768:     }
                   1769:   lineptr++;
                   1770:
                   1771:   return lineptr;
                   1772: }
                   1773:
                   1774: // Process a single opcode in the .debug.line structure.
                   1775:
                   1776: template<int size, bool big_endian>
                   1777: bool
                   1778: Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
                   1779:     const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
                   1780: {
                   1781:   size_t oplen = 0;
                   1782:   size_t templen;
                   1783:   unsigned char opcode = *start;
                   1784:   oplen++;
                   1785:   start++;
                   1786:
                   1787:   // If the opcode is great than the opcode_base, it is a special
                   1788:   // opcode. Most line programs consist mainly of special opcodes.
                   1789:   if (opcode >= header_.opcode_base)
                   1790:     {
                   1791:       opcode -= header_.opcode_base;
                   1792:       const int advance_address = ((opcode / header_.line_range)
                   1793:                                    * header_.min_insn_length);
                   1794:       lsm->address += advance_address;
                   1795:
                   1796:       const int advance_line = ((opcode % header_.line_range)
                   1797:                                 + header_.line_base);
                   1798:       lsm->line_num += advance_line;
                   1799:       lsm->basic_block = true;
                   1800:       *len = oplen;
                   1801:       return true;
                   1802:     }
                   1803:
                   1804:   // Otherwise, we have the regular opcodes
                   1805:   switch (opcode)
                   1806:     {
                   1807:     case elfcpp::DW_LNS_copy:
                   1808:       lsm->basic_block = false;
                   1809:       *len = oplen;
                   1810:       return true;
                   1811:
                   1812:     case elfcpp::DW_LNS_advance_pc:
                   1813:       {
                   1814:         const uint64_t advance_address
                   1815:             = read_unsigned_LEB_128(start, &templen);
                   1816:         oplen += templen;
                   1817:         lsm->address += header_.min_insn_length * advance_address;
                   1818:       }
                   1819:       break;
                   1820:
                   1821:     case elfcpp::DW_LNS_advance_line:
                   1822:       {
                   1823:         const uint64_t advance_line = read_signed_LEB_128(start, &templen);
                   1824:         oplen += templen;
                   1825:         lsm->line_num += advance_line;
                   1826:       }
                   1827:       break;
                   1828:
                   1829:     case elfcpp::DW_LNS_set_file:
                   1830:       {
                   1831:         const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
                   1832:         oplen += templen;
                   1833:         lsm->file_num = fileno;
                   1834:       }
                   1835:       break;
                   1836:
                   1837:     case elfcpp::DW_LNS_set_column:
                   1838:       {
                   1839:         const uint64_t colno = read_unsigned_LEB_128(start, &templen);
                   1840:         oplen += templen;
                   1841:         lsm->column_num = colno;
                   1842:       }
                   1843:       break;
                   1844:
                   1845:     case elfcpp::DW_LNS_negate_stmt:
                   1846:       lsm->is_stmt = !lsm->is_stmt;
                   1847:       break;
                   1848:
                   1849:     case elfcpp::DW_LNS_set_basic_block:
                   1850:       lsm->basic_block = true;
                   1851:       break;
                   1852:
                   1853:     case elfcpp::DW_LNS_fixed_advance_pc:
                   1854:       {
                   1855:         int advance_address;
                   1856:         advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
                   1857:         oplen += 2;
                   1858:         lsm->address += advance_address;
                   1859:       }
                   1860:       break;
                   1861:
                   1862:     case elfcpp::DW_LNS_const_add_pc:
                   1863:       {
                   1864:         const int advance_address = (header_.min_insn_length
                   1865:                                      * ((255 - header_.opcode_base)
                   1866:                                         / header_.line_range));
                   1867:         lsm->address += advance_address;
                   1868:       }
                   1869:       break;
                   1870:
                   1871:     case elfcpp::DW_LNS_extended_op:
                   1872:       {
                   1873:         const uint64_t extended_op_len
                   1874:             = read_unsigned_LEB_128(start, &templen);
                   1875:         start += templen;
                   1876:         oplen += templen + extended_op_len;
                   1877:
                   1878:         const unsigned char extended_op = *start;
                   1879:         start++;
                   1880:
                   1881:         switch (extended_op)
                   1882:           {
                   1883:           case elfcpp::DW_LNE_end_sequence:
                   1884:             // This means that the current byte is the one immediately
                   1885:             // after a set of instructions.  Record the current line
                   1886:             // for up to one less than the current address.
                   1887:             lsm->line_num = -1;
                   1888:             lsm->end_sequence = true;
                   1889:             *len = oplen;
                   1890:             return true;
                   1891:
                   1892:           case elfcpp::DW_LNE_set_address:
                   1893:             {
                   1894:               lsm->address =
                   1895:                elfcpp::Swap_unaligned<size, big_endian>::readval(start);
                   1896:               typename Reloc_map::const_iterator it
                   1897:                   = this->reloc_map_.find(start - this->buffer_);
                   1898:               if (it != reloc_map_.end())
                   1899:                 {
                   1900:                  // If this is a SHT_RELA section, then ignore the
                   1901:                  // section contents.  This assumes that this is a
                   1902:                  // straight reloc which just uses the reloc addend.
                   1903:                  // The reloc addend has already been included in the
                   1904:                  // symbol value.
                   1905:                  if (this->track_relocs_type_ == elfcpp::SHT_RELA)
                   1906:                    lsm->address = 0;
                   1907:                  // Add in the symbol value.
                   1908:                  lsm->address += it->second.second;
                   1909:                   lsm->shndx = it->second.first;
                   1910:                 }
                   1911:               else
                   1912:                 {
                   1913:                   // If we're a normal .o file, with relocs, every
                   1914:                   // set_address should have an associated relocation.
                   1915:                  if (this->input_is_relobj())
                   1916:                     this->data_valid_ = false;
                   1917:                 }
                   1918:               break;
                   1919:             }
                   1920:           case elfcpp::DW_LNE_define_file:
                   1921:             {
                   1922:               const char* filename  = reinterpret_cast<const char*>(start);
                   1923:               templen = strlen(filename) + 1;
                   1924:               start += templen;
                   1925:
                   1926:               uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
                   1927:
                   1928:               if (dirindex >= this->directories_.back().size())
                   1929:                 dirindex = 0;
                   1930:              int dirindexi = static_cast<int>(dirindex);
                   1931:
                   1932:               // This opcode takes two additional ULEB128 parameters
                   1933:               // (mod_time and filelength), but we don't use those
                   1934:               // values.  Because OPLEN already tells us how far to
                   1935:               // skip to the next opcode, we don't need to read
                   1936:               // them at all.
                   1937:
                   1938:               this->files_.back().push_back(std::make_pair(dirindexi,
                   1939:                                                           filename));
                   1940:             }
                   1941:             break;
                   1942:           }
                   1943:       }
                   1944:       break;
                   1945:
                   1946:     default:
                   1947:       {
                   1948:         // Ignore unknown opcode  silently
                   1949:         for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
                   1950:           {
                   1951:             size_t templen;
                   1952:             read_unsigned_LEB_128(start, &templen);
                   1953:             start += templen;
                   1954:             oplen += templen;
                   1955:           }
                   1956:       }
                   1957:       break;
                   1958:   }
                   1959:   *len = oplen;
                   1960:   return false;
                   1961: }
                   1962:
                   1963: // Read the debug information at LINEPTR and store it in the line
                   1964: // number map.
                   1965:
                   1966: template<int size, bool big_endian>
                   1967: unsigned const char*
                   1968: Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
                   1969:                                                     unsigned int shndx)
                   1970: {
                   1971:   struct LineStateMachine lsm;
                   1972:
                   1973:   // LENGTHSTART is the place the length field is based on.  It is the
                   1974:   // point in the header after the initial length field.
                   1975:   const unsigned char* lengthstart = buffer_;
                   1976:
                   1977:   // In 64 bit dwarf, the initial length is 12 bytes, because of the
                   1978:   // 0xffffffff at the start.
                   1979:   if (header_.offset_size == 8)
                   1980:     lengthstart += 12;
                   1981:   else
                   1982:     lengthstart += 4;
                   1983:
                   1984:   while (lineptr < lengthstart + header_.total_length)
                   1985:     {
                   1986:       ResetLineStateMachine(&lsm, header_.default_is_stmt);
                   1987:       while (!lsm.end_sequence)
                   1988:         {
                   1989:           size_t oplength;
                   1990:           bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
                   1991:           if (add_line
                   1992:               && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
                   1993:             {
                   1994:               Offset_to_lineno_entry entry
                   1995:                   = { static_cast<off_t>(lsm.address),
                   1996:                      this->current_header_index_,
                   1997:                      static_cast<unsigned int>(lsm.file_num),
                   1998:                      true, lsm.line_num };
                   1999:              std::vector<Offset_to_lineno_entry>&
                   2000:                map(this->line_number_map_[lsm.shndx]);
                   2001:              // If we see two consecutive entries with the same
                   2002:              // offset and a real line number, then mark the first
                   2003:              // one as non-canonical.
                   2004:              if (!map.empty()
                   2005:                  && (map.back().offset == static_cast<off_t>(lsm.address))
                   2006:                  && lsm.line_num != -1
                   2007:                  && map.back().line_num != -1)
                   2008:                map.back().last_line_for_offset = false;
                   2009:              map.push_back(entry);
                   2010:             }
                   2011:           lineptr += oplength;
                   2012:         }
                   2013:     }
                   2014:
                   2015:   return lengthstart + header_.total_length;
                   2016: }
                   2017:
                   2018: // Read the relocations into a Reloc_map.
                   2019:
                   2020: template<int size, bool big_endian>
                   2021: void
                   2022: Sized_dwarf_line_info<size, big_endian>::read_relocs()
                   2023: {
                   2024:   if (this->symtab_buffer_ == NULL)
                   2025:     return;
                   2026:
                   2027:   off_t value;
                   2028:   off_t reloc_offset;
                   2029:   while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
                   2030:     {
                   2031:       const unsigned int shndx =
                   2032:           this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
                   2033:
                   2034:       // There is no reason to record non-ordinary section indexes, or
                   2035:       // SHN_UNDEF, because they will never match the real section.
                   2036:       if (shndx != 0)
                   2037:        this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
                   2038:
                   2039:       this->reloc_mapper_->advance(reloc_offset + 1);
                   2040:     }
                   2041: }
                   2042:
                   2043: // Read the line number info.
                   2044:
                   2045: template<int size, bool big_endian>
                   2046: void
                   2047: Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
                   2048: {
                   2049:   gold_assert(this->data_valid_ == true);
                   2050:
                   2051:   this->read_relocs();
                   2052:   while (this->buffer_ < this->buffer_end_)
                   2053:     {
                   2054:       const unsigned char* lineptr = this->buffer_;
                   2055:       lineptr = this->read_header_prolog(lineptr);
                   2056:       lineptr = this->read_header_tables(lineptr);
                   2057:       lineptr = this->read_lines(lineptr, shndx);
                   2058:       this->buffer_ = lineptr;
                   2059:     }
                   2060:
                   2061:   // Sort the lines numbers, so addr2line can use binary search.
                   2062:   for (typename Lineno_map::iterator it = line_number_map_.begin();
                   2063:        it != line_number_map_.end();
                   2064:        ++it)
                   2065:     // Each vector needs to be sorted by offset.
                   2066:     std::sort(it->second.begin(), it->second.end());
                   2067: }
                   2068:
                   2069: // Some processing depends on whether the input is a .o file or not.
                   2070: // For instance, .o files have relocs, and have .debug_lines
                   2071: // information on a per section basis.  .so files, on the other hand,
                   2072: // lack relocs, and offsets are unique, so we can ignore the section
                   2073: // information.
                   2074:
                   2075: template<int size, bool big_endian>
                   2076: bool
                   2077: Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
                   2078: {
                   2079:   // Only .o files have relocs and the symtab buffer that goes with them.
                   2080:   return this->symtab_buffer_ != NULL;
                   2081: }
                   2082:
                   2083: // Given an Offset_to_lineno_entry vector, and an offset, figure out
                   2084: // if the offset points into a function according to the vector (see
                   2085: // comments below for the algorithm).  If it does, return an iterator
                   2086: // into the vector that points to the line-number that contains that
                   2087: // offset.  If not, it returns vector::end().
                   2088:
                   2089: static std::vector<Offset_to_lineno_entry>::const_iterator
                   2090: offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
                   2091:                    off_t offset)
                   2092: {
                   2093:   const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
                   2094:
                   2095:   // lower_bound() returns the smallest offset which is >= lookup_key.
                   2096:   // If no offset in offsets is >= lookup_key, returns end().
                   2097:   std::vector<Offset_to_lineno_entry>::const_iterator it
                   2098:       = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
                   2099:
                   2100:   // This code is easiest to understand with a concrete example.
                   2101:   // Here's a possible offsets array:
                   2102:   // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16},  // 0
                   2103:   //  {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20},  // 1
                   2104:   //  {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22},  // 2
                   2105:   //  {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25},  // 3
                   2106:   //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1},  // 4
                   2107:   //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65},  // 5
                   2108:   //  {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66},  // 6
                   2109:   //  {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1},  // 7
                   2110:   //  {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48},  // 8
                   2111:   //  {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47},  // 9
                   2112:   //  {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49},  // 10
                   2113:   //  {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50},  // 11
                   2114:   //  {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51},  // 12
                   2115:   //  {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1},  // 13
                   2116:   //  {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19},  // 14
                   2117:   //  {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20},  // 15
                   2118:   //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67},  // 16
                   2119:   //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1},  // 17
                   2120:   //  {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66},  // 18
                   2121:   //  {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68},  // 19
                   2122:   //  {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1},  // 20
                   2123:   // The entries with line_num == -1 mark the end of a function: the
                   2124:   // associated offset is one past the last instruction in the
                   2125:   // function.  This can correspond to the beginning of the next
                   2126:   // function (as is true for offset 3232); alternately, there can be
                   2127:   // a gap between the end of one function and the start of the next
                   2128:   // (as is true for some others, most obviously from 3236->5764).
                   2129:   //
                   2130:   // Case 1: lookup_key has offset == 10.  lower_bound returns
                   2131:   //         offsets[0].  Since it's not an exact match and we're
                   2132:   //         at the beginning of offsets, we return end() (invalid).
                   2133:   // Case 2: lookup_key has offset 10000.  lower_bound returns
                   2134:   //         offset[21] (end()).  We return end() (invalid).
                   2135:   // Case 3: lookup_key has offset == 3211.  lower_bound matches
                   2136:   //         offsets[0] exactly, and that's the entry we return.
                   2137:   // Case 4: lookup_key has offset == 3232.  lower_bound returns
                   2138:   //         offsets[4].  That's an exact match, but indicates
                   2139:   //         end-of-function.  We check if offsets[5] is also an
                   2140:   //         exact match but not end-of-function.  It is, so we
                   2141:   //         return offsets[5].
                   2142:   // Case 5: lookup_key has offset == 3214.  lower_bound returns
                   2143:   //         offsets[1].  Since it's not an exact match, we back
                   2144:   //         up to the offset that's < lookup_key, offsets[0].
                   2145:   //         We note offsets[0] is a valid entry (not end-of-function),
                   2146:   //         so that's the entry we return.
                   2147:   // Case 6: lookup_key has offset == 4000.  lower_bound returns
                   2148:   //         offsets[8].  Since it's not an exact match, we back
                   2149:   //         up to offsets[7].  Since offsets[7] indicates
                   2150:   //         end-of-function, we know lookup_key is between
                   2151:   //         functions, so we return end() (not a valid offset).
                   2152:   // Case 7: lookup_key has offset == 5794.  lower_bound returns
                   2153:   //         offsets[19].  Since it's not an exact match, we back
                   2154:   //         up to offsets[16].  Note we back up to the *first*
                   2155:   //         entry with offset 5793, not just offsets[19-1].
                   2156:   //         We note offsets[16] is a valid entry, so we return it.
                   2157:   //         If offsets[16] had had line_num == -1, we would have
                   2158:   //         checked offsets[17].  The reason for this is that
                   2159:   //         16 and 17 can be in an arbitrary order, since we sort
                   2160:   //         only by offset and last_line_for_offset.  (Note it
                   2161:   //         doesn't help to use line_number as a tertiary sort key,
                   2162:   //         since sometimes we want the -1 to be first and sometimes
                   2163:   //         we want it to be last.)
                   2164:
                   2165:   // This deals with cases (1) and (2).
                   2166:   if ((it == offsets->begin() && offset < it->offset)
                   2167:       || it == offsets->end())
                   2168:     return offsets->end();
                   2169:
                   2170:   // This deals with cases (3) and (4).
                   2171:   if (offset == it->offset)
                   2172:     {
                   2173:       while (it != offsets->end()
                   2174:              && it->offset == offset
                   2175:              && it->line_num == -1)
                   2176:         ++it;
                   2177:       if (it == offsets->end() || it->offset != offset)
                   2178:         return offsets->end();
                   2179:       else
                   2180:         return it;
                   2181:     }
                   2182:
                   2183:   // This handles the first part of case (7) -- we back up to the
                   2184:   // *first* entry that has the offset that's behind us.
                   2185:   gold_assert(it != offsets->begin());
                   2186:   std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
                   2187:   --it;
                   2188:   const off_t range_value = it->offset;
                   2189:   while (it != offsets->begin() && (it-1)->offset == range_value)
                   2190:     --it;
                   2191:
                   2192:   // This handles cases (5), (6), and (7): if any entry in the
                   2193:   // equal_range [it, range_end) has a line_num != -1, it's a valid
                   2194:   // match.  If not, we're not in a function.  The line number we saw
                   2195:   // last for an offset will be sorted first, so it'll get returned if
                   2196:   // it's present.
                   2197:   for (; it != range_end; ++it)
                   2198:     if (it->line_num != -1)
                   2199:       return it;
                   2200:   return offsets->end();
                   2201: }
                   2202:
                   2203: // Returns the canonical filename:lineno for the address passed in.
                   2204: // If other_lines is not NULL, appends the non-canonical lines
                   2205: // assigned to the same address.
                   2206:
                   2207: template<int size, bool big_endian>
                   2208: std::string
                   2209: Sized_dwarf_line_info<size, big_endian>::do_addr2line(
                   2210:     unsigned int shndx,
                   2211:     off_t offset,
                   2212:     std::vector<std::string>* other_lines)
                   2213: {
                   2214:   if (this->data_valid_ == false)
                   2215:     return "";
                   2216:
                   2217:   const std::vector<Offset_to_lineno_entry>* offsets;
                   2218:   // If we do not have reloc information, then our input is a .so or
                   2219:   // some similar data structure where all the information is held in
                   2220:   // the offset.  In that case, we ignore the input shndx.
                   2221:   if (this->input_is_relobj())
                   2222:     offsets = &this->line_number_map_[shndx];
                   2223:   else
                   2224:     offsets = &this->line_number_map_[-1U];
                   2225:   if (offsets->empty())
                   2226:     return "";
                   2227:
                   2228:   typename std::vector<Offset_to_lineno_entry>::const_iterator it
                   2229:       = offset_to_iterator(offsets, offset);
                   2230:   if (it == offsets->end())
                   2231:     return "";
                   2232:
                   2233:   std::string result = this->format_file_lineno(*it);
1.1.1.2   christos 2234:   gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s",
                   2235:             result.c_str());
1.1       christos 2236:   if (other_lines != NULL)
1.1.1.2   christos 2237:     {
                   2238:       unsigned int last_file_num = it->file_num;
                   2239:       int last_line_num = it->line_num;
                   2240:       // Return up to 4 more locations from the beginning of the function
                   2241:       // for fuzzy matching.
                   2242:       for (++it; it != offsets->end(); ++it)
                   2243:        {
                   2244:          if (it->offset == offset && it->line_num == -1)
                   2245:            continue;  // The end of a previous function.
                   2246:          if (it->line_num == -1)
                   2247:            break;  // The end of the current function.
                   2248:          if (it->file_num != last_file_num || it->line_num != last_line_num)
                   2249:            {
                   2250:              other_lines->push_back(this->format_file_lineno(*it));
                   2251:              gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s",
                   2252:                         other_lines->back().c_str());
                   2253:              last_file_num = it->file_num;
                   2254:              last_line_num = it->line_num;
                   2255:            }
                   2256:          if (it->offset > offset && other_lines->size() >= 4)
                   2257:            break;
                   2258:        }
                   2259:     }
                   2260:
1.1       christos 2261:   return result;
                   2262: }
                   2263:
                   2264: // Convert the file_num + line_num into a string.
                   2265:
                   2266: template<int size, bool big_endian>
                   2267: std::string
                   2268: Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
                   2269:     const Offset_to_lineno_entry& loc) const
                   2270: {
                   2271:   std::string ret;
                   2272:
                   2273:   gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
                   2274:   gold_assert(loc.file_num
                   2275:              < static_cast<unsigned int>(this->files_[loc.header_num].size()));
                   2276:   const std::pair<int, std::string>& filename_pair
                   2277:       = this->files_[loc.header_num][loc.file_num];
                   2278:   const std::string& filename = filename_pair.second;
                   2279:
                   2280:   gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
                   2281:   gold_assert(filename_pair.first
                   2282:               < static_cast<int>(this->directories_[loc.header_num].size()));
                   2283:   const std::string& dirname
                   2284:       = this->directories_[loc.header_num][filename_pair.first];
                   2285:
                   2286:   if (!dirname.empty())
                   2287:     {
                   2288:       ret += dirname;
                   2289:       ret += "/";
                   2290:     }
                   2291:   ret += filename;
                   2292:   if (ret.empty())
                   2293:     ret = "(unknown)";
                   2294:
                   2295:   char buffer[64];   // enough to hold a line number
                   2296:   snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
                   2297:   ret += ":";
                   2298:   ret += buffer;
                   2299:
                   2300:   return ret;
                   2301: }
                   2302:
                   2303: // Dwarf_line_info routines.
                   2304:
                   2305: static unsigned int next_generation_count = 0;
                   2306:
                   2307: struct Addr2line_cache_entry
                   2308: {
                   2309:   Object* object;
                   2310:   unsigned int shndx;
                   2311:   Dwarf_line_info* dwarf_line_info;
                   2312:   unsigned int generation_count;
                   2313:   unsigned int access_count;
                   2314:
                   2315:   Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
                   2316:       : object(o), shndx(s), dwarf_line_info(d),
                   2317:         generation_count(next_generation_count), access_count(0)
                   2318:   {
                   2319:     if (next_generation_count < (1U << 31))
                   2320:       ++next_generation_count;
                   2321:   }
                   2322: };
                   2323: // We expect this cache to be small, so don't bother with a hashtable
                   2324: // or priority queue or anything: just use a simple vector.
                   2325: static std::vector<Addr2line_cache_entry> addr2line_cache;
                   2326:
                   2327: std::string
                   2328: Dwarf_line_info::one_addr2line(Object* object,
                   2329:                                unsigned int shndx, off_t offset,
                   2330:                                size_t cache_size,
                   2331:                                std::vector<std::string>* other_lines)
                   2332: {
                   2333:   Dwarf_line_info* lineinfo = NULL;
                   2334:   std::vector<Addr2line_cache_entry>::iterator it;
                   2335:
                   2336:   // First, check the cache.  If we hit, update the counts.
                   2337:   for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
                   2338:     {
                   2339:       if (it->object == object && it->shndx == shndx)
                   2340:         {
                   2341:           lineinfo = it->dwarf_line_info;
                   2342:           it->generation_count = next_generation_count;
                   2343:           // We cap generation_count at 2^31 -1 to avoid overflow.
                   2344:           if (next_generation_count < (1U << 31))
                   2345:             ++next_generation_count;
                   2346:           // We cap access_count at 31 so 2^access_count doesn't overflow
                   2347:           if (it->access_count < 31)
                   2348:             ++it->access_count;
                   2349:           break;
                   2350:         }
                   2351:     }
                   2352:
                   2353:   // If we don't hit the cache, create a new object and insert into the
                   2354:   // cache.
                   2355:   if (lineinfo == NULL)
                   2356:   {
                   2357:     switch (parameters->size_and_endianness())
                   2358:       {
                   2359: #ifdef HAVE_TARGET_32_LITTLE
                   2360:         case Parameters::TARGET_32_LITTLE:
                   2361:           lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
                   2362: #endif
                   2363: #ifdef HAVE_TARGET_32_BIG
                   2364:         case Parameters::TARGET_32_BIG:
                   2365:           lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
                   2366: #endif
                   2367: #ifdef HAVE_TARGET_64_LITTLE
                   2368:         case Parameters::TARGET_64_LITTLE:
                   2369:           lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
                   2370: #endif
                   2371: #ifdef HAVE_TARGET_64_BIG
                   2372:         case Parameters::TARGET_64_BIG:
                   2373:           lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
                   2374: #endif
                   2375:         default:
                   2376:           gold_unreachable();
                   2377:       }
                   2378:     addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
                   2379:   }
                   2380:
                   2381:   // Now that we have our object, figure out the answer
                   2382:   std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
                   2383:
                   2384:   // Finally, if our cache has grown too big, delete old objects.  We
                   2385:   // assume the common (probably only) case is deleting only one object.
                   2386:   // We use a pretty simple scheme to evict: function of LRU and MFU.
                   2387:   while (addr2line_cache.size() > cache_size)
                   2388:     {
                   2389:       unsigned int lowest_score = ~0U;
                   2390:       std::vector<Addr2line_cache_entry>::iterator lowest
                   2391:           = addr2line_cache.end();
                   2392:       for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
                   2393:         {
                   2394:           const unsigned int score = (it->generation_count
                   2395:                                       + (1U << it->access_count));
                   2396:           if (score < lowest_score)
                   2397:             {
                   2398:               lowest_score = score;
                   2399:               lowest = it;
                   2400:             }
                   2401:         }
                   2402:       if (lowest != addr2line_cache.end())
                   2403:         {
                   2404:           delete lowest->dwarf_line_info;
                   2405:           addr2line_cache.erase(lowest);
                   2406:         }
                   2407:     }
                   2408:
                   2409:   return retval;
                   2410: }
                   2411:
                   2412: void
                   2413: Dwarf_line_info::clear_addr2line_cache()
                   2414: {
                   2415:   for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
                   2416:        it != addr2line_cache.end();
                   2417:        ++it)
                   2418:     delete it->dwarf_line_info;
                   2419:   addr2line_cache.clear();
                   2420: }
                   2421:
                   2422: #ifdef HAVE_TARGET_32_LITTLE
                   2423: template
                   2424: class Sized_dwarf_line_info<32, false>;
                   2425: #endif
                   2426:
                   2427: #ifdef HAVE_TARGET_32_BIG
                   2428: template
                   2429: class Sized_dwarf_line_info<32, true>;
                   2430: #endif
                   2431:
                   2432: #ifdef HAVE_TARGET_64_LITTLE
                   2433: template
                   2434: class Sized_dwarf_line_info<64, false>;
                   2435: #endif
                   2436:
                   2437: #ifdef HAVE_TARGET_64_BIG
                   2438: template
                   2439: class Sized_dwarf_line_info<64, true>;
                   2440: #endif
                   2441:
                   2442: } // End namespace gold.

CVSweb <webmaster@jp.NetBSD.org>