[BACK]Return to DESCR CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / pkgsrc / math / py-numpy

File: [cvs.NetBSD.org] / pkgsrc / math / py-numpy / DESCR (download)

Revision 1.1.1.1 (vendor branch), Fri Dec 19 22:04:36 2008 UTC (10 years, 11 months ago) by markd
Branch: TNF, MAIN
CVS Tags: pkgsrc-base, pkgsrc-2019Q3-base, pkgsrc-2019Q3, pkgsrc-2019Q2-base, pkgsrc-2019Q2, pkgsrc-2019Q1-base, pkgsrc-2019Q1, pkgsrc-2018Q4-base, pkgsrc-2018Q4, pkgsrc-2018Q3-base, pkgsrc-2018Q3, pkgsrc-2018Q2-base, pkgsrc-2018Q2, pkgsrc-2018Q1-base, pkgsrc-2018Q1, pkgsrc-2017Q4-base, pkgsrc-2017Q4, pkgsrc-2017Q3-base, pkgsrc-2017Q3, pkgsrc-2017Q2-base, pkgsrc-2017Q2, pkgsrc-2017Q1-base, pkgsrc-2017Q1, pkgsrc-2016Q4-base, pkgsrc-2016Q4, pkgsrc-2016Q3-base, pkgsrc-2016Q3, pkgsrc-2016Q2-base, pkgsrc-2016Q2, pkgsrc-2016Q1-base, pkgsrc-2016Q1, pkgsrc-2015Q4-base, pkgsrc-2015Q4, pkgsrc-2015Q3-base, pkgsrc-2015Q3, pkgsrc-2015Q2-base, pkgsrc-2015Q2, pkgsrc-2015Q1-base, pkgsrc-2015Q1, pkgsrc-2014Q4-base, pkgsrc-2014Q4, pkgsrc-2014Q3-base, pkgsrc-2014Q3, pkgsrc-2014Q2-base, pkgsrc-2014Q2, pkgsrc-2014Q1-base, pkgsrc-2014Q1, pkgsrc-2013Q4-base, pkgsrc-2013Q4, pkgsrc-2013Q3-base, pkgsrc-2013Q3, pkgsrc-2013Q2-base, pkgsrc-2013Q2, pkgsrc-2013Q1-base, pkgsrc-2013Q1, pkgsrc-2012Q4-base, pkgsrc-2012Q4, pkgsrc-2012Q3-base, pkgsrc-2012Q3, pkgsrc-2012Q2-base, pkgsrc-2012Q2, pkgsrc-2012Q1-base, pkgsrc-2012Q1, pkgsrc-2011Q4-base, pkgsrc-2011Q4, pkgsrc-2011Q3-base, pkgsrc-2011Q3, pkgsrc-2011Q2-base, pkgsrc-2011Q2, pkgsrc-2011Q1-base, pkgsrc-2011Q1, pkgsrc-2010Q4-base, pkgsrc-2010Q4, pkgsrc-2010Q3-base, pkgsrc-2010Q3, pkgsrc-2010Q2-base, pkgsrc-2010Q2, pkgsrc-2010Q1-base, pkgsrc-2010Q1, pkgsrc-2009Q4-base, pkgsrc-2009Q4, pkgsrc-2009Q3-base, pkgsrc-2009Q3, pkgsrc-2009Q2-base, pkgsrc-2009Q2, pkgsrc-2009Q1-base, pkgsrc-2009Q1, pkgsrc-2008Q4-base, pkgsrc-2008Q4, pkgsrc-, HEAD
Changes since 1.1: +0 -0 lines

Initial import of py-numpy 1.1.0

NumPy is a general-purpose array-processing package designed to
efficiently manipulate large multi-dimensional arrays of arbitrary
records without sacrificing too much speed for small multi-dimensional
arrays.  NumPy is built on the Numeric code base and adds features
introduced by numarray as well as an extended C-API and the ability to
create arrays of arbitrary type.

There are also basic facilities for discrete fourier transform,
basic linear algebra and random number generation.

Pkgsrc issue: if the package build happens to find a fortran it prefers
over the one pkgsrc is using it will try to use it and the wrong thing
will happen.

NumPy is a general-purpose array-processing package designed to
efficiently manipulate large multi-dimensional arrays of arbitrary
records without sacrificing too much speed for small multi-dimensional
arrays.  NumPy is built on the Numeric code base and adds features
introduced by numarray as well as an extended C-API and the ability to
create arrays of arbitrary type.

There are also basic facilities for discrete fourier transform,
basic linear algebra and random number generation.