The NetBSD Project

CVS log for pkgsrc/math/arpack/distinfo

[BACK] Up to [cvs.NetBSD.org] / pkgsrc / math / arpack

Request diff between arbitrary revisions


Default branch: MAIN


Revision 1.2 / (download) - annotate - [select for diffs], Tue Nov 3 23:33:31 2015 UTC (3 years, 9 months ago) by agc
Branch: MAIN
CVS Tags: pkgsrc-2019Q2-base, pkgsrc-2019Q2, pkgsrc-2019Q1-base, pkgsrc-2019Q1, pkgsrc-2018Q4-base, pkgsrc-2018Q4, pkgsrc-2018Q3-base, pkgsrc-2018Q3, pkgsrc-2018Q2-base, pkgsrc-2018Q2, pkgsrc-2018Q1-base, pkgsrc-2018Q1, pkgsrc-2017Q4-base, pkgsrc-2017Q4, pkgsrc-2017Q3-base, pkgsrc-2017Q3, pkgsrc-2017Q2-base, pkgsrc-2017Q2, pkgsrc-2017Q1-base, pkgsrc-2017Q1, pkgsrc-2016Q4-base, pkgsrc-2016Q4, pkgsrc-2016Q3-base, pkgsrc-2016Q3, pkgsrc-2016Q2-base, pkgsrc-2016Q2, pkgsrc-2016Q1-base, pkgsrc-2016Q1, pkgsrc-2015Q4-base, pkgsrc-2015Q4, pkgsrc-, HEAD
Changes since 1.1: +3 -1 lines
Diff to previous 1.1 (colored)

Add SHA512 digests for distfiles for math category

Problems found locating distfiles:
	Package dfftpack: missing distfile dfftpack-20001209.tar.gz
	Package eispack: missing distfile eispack-20001130.tar.gz
	Package fftpack: missing distfile fftpack-20001130.tar.gz
	Package linpack: missing distfile linpack-20010510.tar.gz
	Package minpack: missing distfile minpack-20001130.tar.gz
	Package odepack: missing distfile odepack-20001130.tar.gz
	Package py-networkx: missing distfile networkx-1.10.tar.gz
	Package py-sympy: missing distfile sympy-0.7.6.1.tar.gz
	Package quadpack: missing distfile quadpack-20001130.tar.gz

Otherwise, existing SHA1 digests verified and found to be the same on
the machine holding the existing distfiles (morden).  All existing
SHA1 digests retained for now as an audit trail.

Revision 1.1.1.1 / (download) - annotate - [select for diffs] (vendor branch), Tue May 29 16:38:01 2012 UTC (7 years, 2 months ago) by asau
Branch: TNF
CVS Tags: pkgsrc-base, pkgsrc-2015Q3-base, pkgsrc-2015Q3, pkgsrc-2015Q2-base, pkgsrc-2015Q2, pkgsrc-2015Q1-base, pkgsrc-2015Q1, pkgsrc-2014Q4-base, pkgsrc-2014Q4, pkgsrc-2014Q3-base, pkgsrc-2014Q3, pkgsrc-2014Q2-base, pkgsrc-2014Q2, pkgsrc-2014Q1-base, pkgsrc-2014Q1, pkgsrc-2013Q4-base, pkgsrc-2013Q4, pkgsrc-2013Q3-base, pkgsrc-2013Q3, pkgsrc-2013Q2-base, pkgsrc-2013Q2, pkgsrc-2013Q1-base, pkgsrc-2013Q1, pkgsrc-2012Q4-base, pkgsrc-2012Q4, pkgsrc-2012Q3-base, pkgsrc-2012Q3, pkgsrc-2012Q2-base, pkgsrc-2012Q2
Changes since 1.1: +0 -0 lines
Diff to previous 1.1 (colored)

Import ARPACK 96 as math/arpack.
Contributed to pkgsrc-wip by Jason Bacon.

ARPACK is a collection of Fortran77 subroutines designed to solve large
scale eigenvalue problems.

The package is designed to compute a few eigenvalues and corresponding
eigenvectors of a general n by n matrix A. It is most appropriate for large
sparse or structured matrices A where structured means that a matrix-vector
product w <- Av requires order n rather than the usual order n**2 floating
point operations. This software is based upon an algorithmic variant of the
Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM). When
the matrix A is symmetric it reduces to a variant of the Lanczos process
called the Implicitly Restarted Lanczos Method (IRLM). These variants may be
viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly
Shifted QR technique that is suitable for large scale problems. For many
standard problems, a matrix factorization is not required. Only the action
of the matrix on a vector is needed.  ARPACK software is capable of solving
large scale symmetric, nonsymmetric, and generalized eigenproblems from
significant application areas. The software is designed to compute a few (k)
eigenvalues with user specified features such as those of largest real part
or largest magnitude.  Storage requirements are on the order of n*k locations.
No auxiliary storage is required. A set of Schur basis vectors for the desired
k-dimensional eigen-space is computed which is numerically orthogonal to working
precision. Numerically accurate eigenvectors are available on request.

Important Features:

    o  Reverse Communication Interface.
    o  Single and Double Precision Real Arithmetic Versions for Symmetric,
       Non-symmetric, Standard or Generalized Problems.
    o  Single and Double Precision Complex Arithmetic Versions for Standard
       or Generalized Problems.
    o  Routines for Banded Matrices - Standard or Generalized Problems.
    o  Routines for The Singular Value Decomposition.
    o  Example driver routines that may be used as templates to implement
       numerous Shift-Invert strategies for all problem types, data types
       and precision.

Revision 1.1 / (download) - annotate - [select for diffs], Tue May 29 16:38:01 2012 UTC (7 years, 2 months ago) by asau
Branch: MAIN

Initial revision

This form allows you to request diff's between any two revisions of a file. You may select a symbolic revision name using the selection box or you may type in a numeric name using the type-in text box.




CVSweb <webmaster@jp.NetBSD.org>