Up to [cvs.NetBSD.org] / pkgsrc / math / arpack
Request diff between arbitrary revisions
Keyword substitution: kv
Default branch: MAIN
Remove math/arpack successor math/arpack-ng No arpack release has been published by Rice University for many years, and arpack-ng aims to provide a common repository of community fixes with a testsuite.
Correct the default value of BUILDLINK_DEPMETHOD.arpack Since arpack installs a dynamic library, its BUILDLINK_DEPMETHOD shouldn't be set to "build" by default. Bump PKGREVISION of octave for its runtime dependency change.
"This line belongs inside the .ifdef block."
Import ARPACK 96 as math/arpack. Contributed to pkgsrc-wip by Jason Bacon. ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w <- Av requires order n rather than the usual order n**2 floating point operations. This software is based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM). These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale problems. For many standard problems, a matrix factorization is not required. Only the action of the matrix on a vector is needed. ARPACK software is capable of solving large scale symmetric, nonsymmetric, and generalized eigenproblems from significant application areas. The software is designed to compute a few (k) eigenvalues with user specified features such as those of largest real part or largest magnitude. Storage requirements are on the order of n*k locations. No auxiliary storage is required. A set of Schur basis vectors for the desired k-dimensional eigen-space is computed which is numerically orthogonal to working precision. Numerically accurate eigenvectors are available on request. Important Features: o Reverse Communication Interface. o Single and Double Precision Real Arithmetic Versions for Symmetric, Non-symmetric, Standard or Generalized Problems. o Single and Double Precision Complex Arithmetic Versions for Standard or Generalized Problems. o Routines for Banded Matrices - Standard or Generalized Problems. o Routines for The Singular Value Decomposition. o Example driver routines that may be used as templates to implement numerous Shift-Invert strategies for all problem types, data types and precision.
Initial revision