[BACK]Return to pkgsrc.txt CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / pkgsrc / doc

File: [cvs.NetBSD.org] / pkgsrc / doc / pkgsrc.txt (download)

Revision 1.178, Tue Feb 25 02:30:06 2014 UTC (7 weeks, 4 days ago) by mspo
Branch: MAIN
CVS Tags: pkgsrc-2014Q1-base, pkgsrc-2014Q1, HEAD
Changes since 1.177: +2 -2 lines

change docs saying changes-entry-commit to commit-changes-entry, the correct target

The pkgsrc guide

Documentation on the NetBSD packages system

Alistair Crooks

<agc@NetBSD.org>

Hubert Feyrer

<hubertf@NetBSD.org>

The pkgsrc Developers

Copyright   1994-2007 The NetBSD Foundation, Inc

$NetBSD: pkgsrc.xml,v 1.26 2007/09/18 08:17:21 rillig Exp $

Abstract

pkgsrc is a centralized package management system for Unix-like operating
systems. This guide provides information for users and developers of pkgsrc. It
covers installation of binary and source packages, creation of binary and
source packages and a high-level overview about the infrastructure.

-------------------------------------------------------------------------------

Table of Contents

1. What is pkgsrc?

    1.1. Introduction

        1.1.1. Why pkgsrc?
        1.1.2. Supported platforms

    1.2. Overview
    1.3. Terminology

        1.3.1. Roles involved in pkgsrc

    1.4. Typography

I. The pkgsrc user's guide

    2. Where to get pkgsrc and how to keep it up-to-date

        2.1. Getting pkgsrc for the first time

            2.1.1. As tar archive
            2.1.2. Via anonymous CVS

        2.2. Keeping pkgsrc up-to-date

            2.2.1. Via tar files
            2.2.2. Via CVS

    3. Using pkgsrc on systems other than NetBSD

        3.1. Binary distribution
        3.2. Bootstrapping pkgsrc
        3.3. Platform-specific notes

            3.3.1. Cygwin
            3.3.2. Darwin (Mac OS X)
            3.3.3. FreeBSD
            3.3.4. GNU/kFreeBSD
            3.3.5. Interix
            3.3.6. IRIX
            3.3.7. Linux
            3.3.8. MirBSD
            3.3.9. OpenBSD
            3.3.10. Solaris

    4. Using pkgsrc

        4.1. Using binary packages

            4.1.1. Finding binary packages
            4.1.2. Installing binary packages
            4.1.3. Deinstalling packages
            4.1.4. Getting information about installed packages
            4.1.5. Checking for security vulnerabilities in installed packages
            4.1.6. Finding if newer versions of your installed packages are in
                pkgsrc
            4.1.7. Other administrative functions
            4.1.8. A word of warning

        4.2. Building packages from source

            4.2.1. Requirements
            4.2.2. Fetching distfiles
            4.2.3. How to build and install

    5. Configuring pkgsrc

        5.1. General configuration
        5.2. Variables affecting the build process
        5.3. Variables affecting the installation process
        5.4. Selecting and configuring the compiler

            5.4.1. Selecting the compiler
            5.4.2. Additional flags to the compiler (CFLAGS)
            5.4.3. Additional flags to the linker (LDFLAGS)

        5.5. Developer/advanced settings
        5.6. Selecting Build Options

    6. Creating binary packages

        6.1. Building a single binary package
        6.2. Settings for creation of binary packages

    7. Creating binary packages for everything in pkgsrc (bulk builds)

        7.1. Think first, build later
        7.2. Requirements of a bulk build
        7.3. Running an old-style bulk build

            7.3.1. Configuration
            7.3.2. Other environmental considerations
            7.3.3. Operation
            7.3.4. What it does
            7.3.5. Disk space requirements
            7.3.6. Setting up a sandbox for chrooted builds
            7.3.7. Building a partial set of packages
            7.3.8. Uploading results of a bulk build

        7.4. Running a pbulk-style bulk build

            7.4.1. Preparation
            7.4.2. Configuration

        7.5. Creating a multiple CD-ROM packages collection

            7.5.1. Example of cdpack

    8. Directory layout of the installed files

        8.1. File system layout in ${LOCALBASE}
        8.2. File system layout in ${VARBASE}

    9. Frequently Asked Questions

        9.1. Are there any mailing lists for pkg-related discussion?
        9.2. Where's the pkgviews documentation?
        9.3. Utilities for package management (pkgtools)
        9.4. How to use pkgsrc as non-root
        9.5. How to resume transfers when fetching distfiles?
        9.6. How can I install/use modular X.org from pkgsrc?
        9.7. How to fetch files from behind a firewall
        9.8. How to fetch files from HTTPS sites
        9.9. How do I tell make fetch to do passive FTP?
        9.10. How to fetch all distfiles at once
        9.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc"
            mean?
        9.12. What does "Could not find bsd.own.mk" mean?
        9.13. Using 'sudo' with pkgsrc
        9.14. How do I change the location of configuration files?
        9.15. Automated security checks
        9.16. Why do some packages ignore my CFLAGS?
        9.17. A package does not build. What shall I do?
        9.18. What does "Makefile appears to contain unresolved cvs/rcs/???
            merge conflicts" mean?

II. The pkgsrc developer's guide

    10. Creating a new pkgsrc package from scratch

        10.1. Common types of packages

            10.1.1. Perl modules
            10.1.2. KDE applications
            10.1.3. Python modules and programs

        10.2. Examples

            10.2.1. How the www/nvu package came into pkgsrc

    11. Package components - files, directories and contents

        11.1. Makefile
        11.2. distinfo
        11.3. patches/*

            11.3.1. Structure of a single patch file
            11.3.2. Creating patch files
            11.3.3. Sources where the patch files come from
            11.3.4. Patching guidelines
            11.3.5. Feedback to the author

        11.4. Other mandatory files
        11.5. Optional files

            11.5.1. Files affecting the binary package
            11.5.2. Files affecting the build process
            11.5.3. Files affecting nothing at all

        11.6. work*
        11.7. files/*

    12. Programming in Makefiles

        12.1. Caveats
        12.2. Makefile variables

            12.2.1. Naming conventions

        12.3. Code snippets

            12.3.1. Adding things to a list
            12.3.2. Converting an internal list into an external list
            12.3.3. Passing variables to a shell command
            12.3.4. Quoting guideline
            12.3.5. Workaround for a bug in BSD Make

    13. PLIST issues

        13.1. RCS ID
        13.2. Semi-automatic PLIST generation
        13.3. Tweaking output of make print-PLIST
        13.4. Variable substitution in PLIST
        13.5. Man page compression
        13.6. Changing PLIST source with PLIST_SRC
        13.7. Platform-specific and differing PLISTs
        13.8. Sharing directories between packages

    14. Buildlink methodology

        14.1. Converting packages to use buildlink3
        14.2. Writing buildlink3.mk files

            14.2.1. Anatomy of a buildlink3.mk file
            14.2.2. Updating BUILDLINK_API_DEPENDS.pkg and
                BUILDLINK_ABI_DEPENDS.pkg in buildlink3.mk files

        14.3. Writing builtin.mk files

            14.3.1. Anatomy of a builtin.mk file
            14.3.2. Global preferences for native or pkgsrc software

    15. The pkginstall framework

        15.1. Files and directories outside the installation prefix

            15.1.1. Directory manipulation
            15.1.2. File manipulation

        15.2. Configuration files

            15.2.1. How PKG_SYSCONFDIR is set
            15.2.2. Telling the software where configuration files are
            15.2.3. Patching installations
            15.2.4. Disabling handling of configuration files

        15.3. System startup scripts

            15.3.1. Disabling handling of system startup scripts

        15.4. System users and groups
        15.5. System shells

            15.5.1. Disabling shell registration

        15.6. Fonts

            15.6.1. Disabling automatic update of the fonts databases

    16. Options handling

        16.1. Global default options
        16.2. Converting packages to use bsd.options.mk
        16.3. Option Names
        16.4. Determining the options of dependencies

    17. The build process

        17.1. Introduction
        17.2. Program location
        17.3. Directories used during the build process
        17.4. Running a phase
        17.5. The fetch phase

            17.5.1. What to fetch and where to get it from
            17.5.2. How are the files fetched?

        17.6. The checksum phase
        17.7. The extract phase
        17.8. The patch phase
        17.9. The tools phase
        17.10. The wrapper phase
        17.11. The configure phase
        17.12. The build phase
        17.13. The test phase
        17.14. The install phase
        17.15. The package phase
        17.16. Cleaning up
        17.17. Other helpful targets

    18. Tools needed for building or running

        18.1. Tools for pkgsrc builds
        18.2. Tools needed by packages
        18.3. Tools provided by platforms
        18.4. Questions regarding the tools

    19. Making your package work

        19.1. General operation

            19.1.1. Portability of packages
            19.1.2. How to pull in user-settable variables from mk.conf
            19.1.3. User interaction
            19.1.4. Handling licenses
            19.1.5. Restricted packages
            19.1.6. Handling dependencies
            19.1.7. Handling conflicts with other packages
            19.1.8. Packages that cannot or should not be built
            19.1.9. Packages which should not be deleted, once installed
            19.1.10. Handling packages with security problems
            19.1.11. How to handle incrementing versions when fixing an
                existing package
            19.1.12. Substituting variable text in the package files (the SUBST
                framework)

        19.2. Fixing problems in the fetch phase

            19.2.1. Packages whose distfiles aren't available for plain
                downloading
            19.2.2. How to handle modified distfiles with the 'old' name

        19.3. Fixing problems in the configure phase

            19.3.1. Shared libraries - libtool
            19.3.2. Using libtool on GNU packages that already support libtool
            19.3.3. GNU Autoconf/Automake

        19.4. Programming languages

            19.4.1. C, C++, and Fortran
            19.4.2. Java
            19.4.3. Packages containing perl scripts
            19.4.4. Packages containing shell scripts
            19.4.5. Other programming languages

        19.5. Fixing problems in the build phase

            19.5.1. Compiling C and C++ code conditionally
            19.5.2. How to handle compiler bugs
            19.5.3. Undefined reference to "..."
            19.5.4. Running out of memory

        19.6. Fixing problems in the install phase

            19.6.1. Creating needed directories
            19.6.2. Where to install documentation
            19.6.3. Installing highscore files
            19.6.4. Adding DESTDIR support to packages
            19.6.5. Packages with hardcoded paths to other interpreters
            19.6.6. Packages installing perl modules
            19.6.7. Packages installing info files
            19.6.8. Packages installing man pages
            19.6.9. Packages installing GConf data files
            19.6.10. Packages installing scrollkeeper/rarian data files
            19.6.11. Packages installing X11 fonts
            19.6.12. Packages installing GTK2 modules
            19.6.13. Packages installing SGML or XML data
            19.6.14. Packages installing extensions to the MIME database
            19.6.15. Packages using intltool
            19.6.16. Packages installing startup scripts
            19.6.17. Packages installing TeX modules
            19.6.18. Packages supporting running binaries in emulation
            19.6.19. Packages installing hicolor theme icons
            19.6.20. Packages installing desktop files

        19.7. Marking packages as having problems

    20. Debugging
    21. Submitting and Committing

        21.1. Submitting binary packages
        21.2. Submitting source packages (for non-NetBSD-developers)
        21.3. General notes when adding, updating, or removing packages
        21.4. Committing: Adding a package to CVS
        21.5. Updating a package to a newer version
        21.6. Renaming a package in pkgsrc
        21.7. Moving a package in pkgsrc

    22. Frequently Asked Questions
    23. GNOME packaging and porting

        23.1. Meta packages
        23.2. Packaging a GNOME application
        23.3. Updating GNOME to a newer version
        23.4. Patching guidelines

III. The pkgsrc infrastructure internals

    24. Design of the pkgsrc infrastructure

        24.1. The meaning of variable definitions
        24.2. Avoiding problems before they arise
        24.3. Variable evaluation

            24.3.1. At load time
            24.3.2. At runtime

        24.4. How can variables be specified?
        24.5. Designing interfaces for Makefile fragments

            24.5.1. Procedures with parameters
            24.5.2. Actions taken on behalf of parameters

        24.6. The order in which files are loaded

            24.6.1. The order in bsd.prefs.mk
            24.6.2. The order in bsd.pkg.mk

    25. Regression tests

        25.1. The regression tests framework
        25.2. Running the regression tests
        25.3. Adding a new regression test

            25.3.1. Overridable functions
            25.3.2. Helper functions

    26. Porting pkgsrc

        26.1. Porting pkgsrc to a new operating system
        26.2. Adding support for a new compiler

A. A simple example package: bison

    A.1. files

        A.1.1. Makefile
        A.1.2. DESCR
        A.1.3. PLIST
        A.1.4. Checking a package with pkglint

    A.2. Steps for building, installing, packaging

B. Build logs

    B.1. Building figlet
    B.2. Packaging figlet

C. Directory layout of the pkgsrc FTP server

    C.1. distfiles: The distributed source files
    C.2. misc: Miscellaneous things
    C.3. packages: Binary packages
    C.4. reports: Bulk build reports
    C.5. current, pkgsrc-20xxQy: source packages

D. Editing guidelines for the pkgsrc guide

    D.1. Make targets
    D.2. Procedure

List of Tables

1.1. Platforms supported by pkgsrc
11.1. Patching examples
23.1. PLIST handling for GNOME packages

Chapter 1. What is pkgsrc?

Table of Contents

1.1. Introduction

    1.1.1. Why pkgsrc?
    1.1.2. Supported platforms

1.2. Overview
1.3. Terminology

    1.3.1. Roles involved in pkgsrc

1.4. Typography

1.1. Introduction

There is a lot of software freely available for Unix-based systems, which is
usually available in form of the source code. Before such software can be used,
it needs to be configured to the local system, compiled and installed, and this
is exactly what The NetBSD Packages Collection (pkgsrc) does. pkgsrc also has
some basic commands to handle binary packages, so that not every user has to
build the packages for himself, which is a time-costly task.

pkgsrc currently contains several thousand packages, including:

  * www/apache - The Apache web server

  * www/firefox - The Firefox web browser

  * meta-pkgs/gnome - The GNOME Desktop Environment

  * meta-pkgs/kde3 - The K Desktop Environment

...just to name a few.

pkgsrc has built-in support for handling varying dependencies, such as pthreads
and X11, and extended features such as IPv6 support on a range of platforms.

1.1.1. Why pkgsrc?

pkgsrc provides the following key features:

  * Easy building of software from source as well as the creation and
    installation of binary packages. The source and latest patches are
    retrieved from a master or mirror download site, checksum verified, then
    built on your system. Support for binary-only distributions is available
    for both native platforms and NetBSD emulated platforms.

  * All packages are installed in a consistent directory tree, including
    binaries, libraries, man pages and other documentation.

  * Package dependencies, including when performing package updates, are
    handled automatically. The configuration files of various packages are
    handled automatically during updates, so local changes are preserved.

  * Like NetBSD, pkgsrc is designed with portability in mind and consists of
    highly portable code. This allows the greatest speed of development when
    porting to a new platform. This portability also ensures that pkgsrc is 
    consistent across all platforms.

  * The installation prefix, acceptable software licenses, international
    encryption requirements and build-time options for a large number of
    packages are all set in a simple, central configuration file.

  * The entire source (not including the distribution files) is freely
    available under a BSD license, so you may extend and adapt pkgsrc to your
    needs. Support for local packages and patches is available right out of the
    box, so you can configure it specifically for your environment.

The following principles are basic to pkgsrc:

  * "It should only work if it's right." ? That means, if a package contains
    bugs, it's better to find them and to complain about them rather than to
    just install the package and hope that it works. There are numerous checks
    in pkgsrc that try to find such bugs: Static analysis tools (pkgtools/
    pkglint), build-time checks (portability of shell scripts), and
    post-installation checks (installed files, references to shared libraries,
    script interpreters).

  * "If it works, it should work everywhere" ? Like NetBSD has been ported to
    many hardware architectures, pkgsrc has been ported to many operating
    systems. Care is taken that packages behave the same on all platforms.

1.1.2. Supported platforms

pkgsrc consists of both a source distribution and a binary distribution for
these operating systems. After retrieving the required source or binaries, you
can be up and running with pkgsrc in just minutes!

pkgsrc was derived from FreeBSD's ports system, and initially developed for
NetBSD only. Since then, pkgsrc has grown a lot, and now supports the following
platforms:

Table 1.1. Platforms supported by pkgsrc

+----------------------------------------------------------------+
|                  Platform                   |Date Support Added|
|---------------------------------------------+------------------|
|NetBSD                                       |     Aug 1997     |
|---------------------------------------------+------------------|
|Solaris                                      |     Mar 1999     |
|---------------------------------------------+------------------|
|Linux                                        |     Jun 1999     |
|---------------------------------------------+------------------|
|Darwin (Mac OS X)                            |     Oct 2001     |
|---------------------------------------------+------------------|
|FreeBSD                                      |     Nov 2002     |
|---------------------------------------------+------------------|
|OpenBSD                                      |     Nov 2002     |
|---------------------------------------------+------------------|
|IRIX                                         |     Dec 2002     |
|---------------------------------------------+------------------|
|BSD/OS                                       |     Dec 2003     |
|---------------------------------------------+------------------|
|AIX                                          |     Dec 2003     |
|---------------------------------------------+------------------|
|Interix (Microsoft Windows Services for Unix)|     Mar 2004     |
|---------------------------------------------+------------------|
|DragonFlyBSD                                 |     Oct 2004     |
|---------------------------------------------+------------------|
|OSF/1                                        |     Nov 2004     |
|---------------------------------------------+------------------|
|HP-UX                                        |     Apr 2007     |
|---------------------------------------------+------------------|
|Haiku                                        |     Sep 2010     |
|---------------------------------------------+------------------|
|MirBSD                                       |     Jan 2011     |
|---------------------------------------------+------------------|
|Minix3                                       |     Nov 2011     |
|---------------------------------------------+------------------|
|Cygwin                                       |     Mar 2013     |
|---------------------------------------------+------------------|
|GNU/kFreeBSD                                 |     Jul 2013     |
+----------------------------------------------------------------+


1.2. Overview

This document is divided into three parts. The first, The pkgsrc user's guide,
describes how one can use one of the packages in the Package Collection, either
by installing a precompiled binary package, or by building one's own copy using
the NetBSD package system. The second part, The pkgsrc developer's guide,
explains how to prepare a package so it can be easily built by other NetBSD
users without knowing about the package's building details. The third part, The
pkgsrc infrastructure internals is intended for those who want to understand
how pkgsrc is implemented.

This document is available in various formats: HTML, PDF, PS, TXT.

1.3. Terminology

There has been a lot of talk about "ports", "packages", etc. so far. Here is a
description of all the terminology used within this document.

Package

    A set of files and building instructions that describe what's necessary to
    build a certain piece of software using pkgsrc. Packages are traditionally
    stored under /usr/pkgsrc.

The NetBSD package system

    This is the former name of "pkgsrc". It is part of the NetBSD operating
    system and can be bootstrapped to run on non-NetBSD operating systems as
    well. It handles building (compiling), installing, and removing of
    packages.

Distfile

    This term describes the file or files that are provided by the author of
    the piece of software to distribute his work. All the changes necessary to
    build on NetBSD are reflected in the corresponding package. Usually the
    distfile is in the form of a compressed tar-archive, but other types are
    possible, too. Distfiles are usually stored below /usr/pkgsrc/distfiles.

Port

    This is the term used by FreeBSD and OpenBSD people for what we call a
    package. In NetBSD terminology, "port" refers to a different architecture.

Precompiled/binary package

    A set of binaries built with pkgsrc from a distfile and stuffed together in
    a single .tgz file so it can be installed on machines of the same machine
    architecture without the need to recompile. Packages are usually generated
    in /usr/pkgsrc/packages; there is also an archive on ftp.NetBSD.org.

    Sometimes, this is referred to by the term "package" too, especially in the
    context of precompiled packages.

Program

    The piece of software to be installed which will be constructed from all
    the files in the distfile by the actions defined in the corresponding
    package.

1.3.1. Roles involved in pkgsrc

pkgsrc users

    The pkgsrc users are people who use the packages provided by pkgsrc.
    Typically they are system administrators. The people using the software
    that is inside the packages (maybe called "end users") are not covered by
    the pkgsrc guide.

    There are two kinds of pkgsrc users: Some only want to install pre-built
    binary packages. Others build the pkgsrc packages from source, either for
    installing them directly or for building binary packages themselves. For
    pkgsrc users Part I, "The pkgsrc user's guide" should provide all necessary
    documentation.

package maintainers

    A package maintainer creates packages as described in Part II, "The pkgsrc
    developer's guide".

infrastructure developers

    These people are involved in all those files that live in the mk/ directory
    and below. Only these people should need to read through Part III, "The
    pkgsrc infrastructure internals", though others might be curious, too.

1.4. Typography

When giving examples for commands, shell prompts are used to show if the
command should/can be issued as root, or if "normal" user privileges are
sufficient. We use a # for root's shell prompt, and a % for users' shell
prompt, assuming they use the C-shell or tcsh.

Part I. The pkgsrc user's guide

Table of Contents

2. Where to get pkgsrc and how to keep it up-to-date

    2.1. Getting pkgsrc for the first time

        2.1.1. As tar archive
        2.1.2. Via anonymous CVS

    2.2. Keeping pkgsrc up-to-date

        2.2.1. Via tar files
        2.2.2. Via CVS

3. Using pkgsrc on systems other than NetBSD

    3.1. Binary distribution
    3.2. Bootstrapping pkgsrc
    3.3. Platform-specific notes

        3.3.1. Cygwin
        3.3.2. Darwin (Mac OS X)
        3.3.3. FreeBSD
        3.3.4. GNU/kFreeBSD
        3.3.5. Interix
        3.3.6. IRIX
        3.3.7. Linux
        3.3.8. MirBSD
        3.3.9. OpenBSD
        3.3.10. Solaris

4. Using pkgsrc

    4.1. Using binary packages

        4.1.1. Finding binary packages
        4.1.2. Installing binary packages
        4.1.3. Deinstalling packages
        4.1.4. Getting information about installed packages
        4.1.5. Checking for security vulnerabilities in installed packages
        4.1.6. Finding if newer versions of your installed packages are in
            pkgsrc
        4.1.7. Other administrative functions
        4.1.8. A word of warning

    4.2. Building packages from source

        4.2.1. Requirements
        4.2.2. Fetching distfiles
        4.2.3. How to build and install

5. Configuring pkgsrc

    5.1. General configuration
    5.2. Variables affecting the build process
    5.3. Variables affecting the installation process
    5.4. Selecting and configuring the compiler

        5.4.1. Selecting the compiler
        5.4.2. Additional flags to the compiler (CFLAGS)
        5.4.3. Additional flags to the linker (LDFLAGS)

    5.5. Developer/advanced settings
    5.6. Selecting Build Options

6. Creating binary packages

    6.1. Building a single binary package
    6.2. Settings for creation of binary packages

7. Creating binary packages for everything in pkgsrc (bulk builds)

    7.1. Think first, build later
    7.2. Requirements of a bulk build
    7.3. Running an old-style bulk build

        7.3.1. Configuration
        7.3.2. Other environmental considerations
        7.3.3. Operation
        7.3.4. What it does
        7.3.5. Disk space requirements
        7.3.6. Setting up a sandbox for chrooted builds
        7.3.7. Building a partial set of packages
        7.3.8. Uploading results of a bulk build

    7.4. Running a pbulk-style bulk build

        7.4.1. Preparation
        7.4.2. Configuration

    7.5. Creating a multiple CD-ROM packages collection

        7.5.1. Example of cdpack

8. Directory layout of the installed files

    8.1. File system layout in ${LOCALBASE}
    8.2. File system layout in ${VARBASE}

9. Frequently Asked Questions

    9.1. Are there any mailing lists for pkg-related discussion?
    9.2. Where's the pkgviews documentation?
    9.3. Utilities for package management (pkgtools)
    9.4. How to use pkgsrc as non-root
    9.5. How to resume transfers when fetching distfiles?
    9.6. How can I install/use modular X.org from pkgsrc?
    9.7. How to fetch files from behind a firewall
    9.8. How to fetch files from HTTPS sites
    9.9. How do I tell make fetch to do passive FTP?
    9.10. How to fetch all distfiles at once
    9.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
    9.12. What does "Could not find bsd.own.mk" mean?
    9.13. Using 'sudo' with pkgsrc
    9.14. How do I change the location of configuration files?
    9.15. Automated security checks
    9.16. Why do some packages ignore my CFLAGS?
    9.17. A package does not build. What shall I do?
    9.18. What does "Makefile appears to contain unresolved cvs/rcs/??? merge
        conflicts" mean?

Chapter 2. Where to get pkgsrc and how to keep it up-to-date

Table of Contents

2.1. Getting pkgsrc for the first time

    2.1.1. As tar archive
    2.1.2. Via anonymous CVS

2.2. Keeping pkgsrc up-to-date

    2.2.1. Via tar files
    2.2.2. Via CVS

Before you download and extract the files, you need to decide where you want to
extract them. When using pkgsrc as root user, pkgsrc is usually installed in /
usr/pkgsrc. You are though free to install the sources and binary packages
wherever you want in your filesystem, provided that the pathname does not
contain white-space or other characters that are interpreted specially by the
shell and some other programs. A safe bet is to use only letters, digits,
underscores and dashes.

2.1. Getting pkgsrc for the first time

Before you download any pkgsrc files, you should decide whether you want the 
current branch or the stable branch. The latter is forked on a quarterly basis
from the current branch and only gets modified for security updates. The names
of the stable branches are built from the year and the quarter, for example
2009Q1.

The second step is to decide how you want to download pkgsrc. You can get it as
a tar file or via CVS. Both ways are described here.

Note that tar archive contains CVS working copy. Thus you can switch to using
CVS at any later time.

Note also that quarterly branch is not frozen in stone. It receives critical
updates.

2.1.1. As tar archive

The primary download location for all pkgsrc files is http://ftp.NetBSD.org/pub
/pkgsrc/ or ftp://ftp.NetBSD.org/pub/pkgsrc/ (it points to the same location).
There are a number of subdirectories for different purposes, which are
described in detail in Appendix C, Directory layout of the pkgsrc FTP server.

The tar archive for the current branch is in the directory current and is
called pkgsrc.tar.gz. It is autogenerated daily.

To save download time we provide bzip2- and xz-compressed archives which are
published at pkgsrc.tar.bz2 and pkgsrc.tar.xz respectively.

You can fetch the same files using FTP.

The tar file for the stable branch 2013Q1 is in the directory pkgsrc-2013Q1 and
is also called pkgsrc.tar.gz.

To download a pkgsrc stable tarball, run:

$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/pkgsrc-20xxQy/pkgsrc.tar.gz

Where pkgsrc-20xxQy is the stable branch to be downloaded, for example, "
pkgsrc-2013Q1".

You can use fetch it also using "wget", "curl", or your web browser.

Then, extract it with:

$ tar -xzf pkgsrc-20xxQy.tar.gz -C /usr

This will create the directory pkgsrc/ in /usr/ and all the package source will
be stored under /usr/pkgsrc/.

To download pkgsrc-current, run:

$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz

2.1.2. Via anonymous CVS

To fetch a specific pkgsrc stable branch, run:

$ cd /usr && cvs -q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -r pkgsrc-20xxQy -P pkgsrc

Where pkgsrc-20xxQy is the stable branch to be checked out, for example, "
pkgsrc-2009Q1"

This will create the directory pkgsrc/ in your /usr/ directory and all the
package source will be stored under /usr/pkgsrc/.

To fetch the pkgsrc current branch, run:

$ cd /usr && cvs -q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc

Refer to the list of available mirrors to choose a faster CVS mirror, if
needed.

If you get error messages from rsh, you need to set CVS_RSH variable. E.g.:

$ cd /usr && env CVS_RSH=ssh cvs -q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc

Refer to documentation on your command shell how to set CVS_RSH=ssh
permanently. For Bourne shells, you can set it in your .profile or better
globally in /etc/profile:

# set CVS remote shell command
CVS_RSH=ssh
export CVS_RSH

By default, CVS doesn't do things like most people would expect it to do. But
there is a way to convince CVS, by creating a file called .cvsrc in your home
directory and saving the following lines to it. This file will save you lots of
headache and some bug reports, so we strongly recommend it. You can find an
explanation of this file in the CVS documentation.

# recommended CVS configuration file from the pkgsrc guide
cvs -q -z2
checkout -P
update -dP
diff -upN
rdiff -u
release -d

2.2. Keeping pkgsrc up-to-date

The preferred way to keep pkgsrc up-to-date is via CVS (which also works if you
have first installed it via a tar file). It saves bandwidth and hard disk
activity, compared to downloading the tar file again.

2.2.1. Via tar files

Warning

When updating from a tar file, you first need to completely remove the old
pkgsrc directory. Otherwise those files that have been removed from pkgsrc in
the mean time will not be removed on your local disk, resulting in
inconsistencies. When removing the old files, any changes that you have done to
the pkgsrc files will be lost after updating. Therefore updating via CVS is
strongly recommended.

Note that by default the distfiles and the binary packages are saved in the
pkgsrc tree, so don't forget to rescue them before updating. You can also
configure pkgsrc to use other than the default directories by setting the
DISTDIR and PACKAGES variables. See Chapter 5, Configuring pkgsrc for the
details.

To update pkgsrc from a tar file, download the tar file as explained above.
Then, make sure that you have not made any changes to the files in the pkgsrc
directory. Remove the pkgsrc directory and extract the new tar file. Done.

2.2.2. Via CVS

To update pkgsrc via CVS, change to the pkgsrc directory and run cvs:

$ cd /usr/pkgsrc && cvs update -dP

If you get error messages from rsh, you need to set CVS_RSH variable as
described above. E.g.:

$ cd /usr/pkgsrc && env CVS_RSH=ssh cvs up -dP

2.2.2.1. Switching between different pkgsrc branches

When updating pkgsrc, the CVS program keeps track of the branch you selected.
But if you, for whatever reason, want to switch from the stable branch to the
current one, you can do it by adding the option "-A" after the "update"
keyword. To switch from the current branch back to the stable branch, add the "
-rpkgsrc-2009Q3" option.

2.2.2.2. What happens to my changes when updating?

When you update pkgsrc, the CVS program will only touch those files that are
registered in the CVS repository. That means that any packages that you created
on your own will stay unmodified. If you change files that are managed by CVS,
later updates will try to merge your changes with those that have been done by
others. See the CVS manual, chapter "update" for details.

Chapter 3. Using pkgsrc on systems other than NetBSD

Table of Contents

3.1. Binary distribution
3.2. Bootstrapping pkgsrc
3.3. Platform-specific notes

    3.3.1. Cygwin
    3.3.2. Darwin (Mac OS X)
    3.3.3. FreeBSD
    3.3.4. GNU/kFreeBSD
    3.3.5. Interix
    3.3.6. IRIX
    3.3.7. Linux
    3.3.8. MirBSD
    3.3.9. OpenBSD
    3.3.10. Solaris

3.1. Binary distribution

See Section 4.1, "Using binary packages".

3.2. Bootstrapping pkgsrc

pkgsrc can be bootstrapped for use in two different modes: privileged and
unprivileged one. In unprivileged mode in contrast to privileged one all
programs are installed under one particular user and cannot utilise privileged
operations (packages don't create special users and all special file
permissions like setuid are ignored).

Installing the bootstrap kit from source should be as simple as:

# env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc
# cd pkgsrc/bootstrap
# ./bootstrap


To bootstrap in unprivileged mode pass "--unprivileged" flag to bootstrap

By default, in privileged mode pkgsrc uses /usr/pkg for prefix where programs
will be installed in, and /var/db/pkg for the package database directory where
pkgsrc will do its internal bookkeeping, /var is used as varbase, where
packages install their persistent data. In unprivileged mode pkgsrc uses ~/pkg
for prefix, ~/pkg/var/db/pkg for the package database, and ~/pkg/var for 
varbase.

You can change default layout using command-line arguments. Run "./bootstrap
--help" to get details.

Note

The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc.
For examples in this guide, use bmake instead of "make".

Note

It is possible to bootstrap multiple instances of pkgsrc using non-intersecting
directories. Use bmake corresponding to the installation you're working with to
build and install packages.

3.3. Platform-specific notes

Here are some platform-specific notes you should be aware of.

3.3.1. Cygwin

Cygwin 1.7.x and later are supported.

You need to install minimal base packages in `Base' category plus any of
compiler, gcc, gcc4, and/or clang. For gcc and gcc4, C and C++ compiler will be
installed by default, but you can install Fortran compiler additionally because
it will be required to use libtool. If it is not installed (or too old),
Fortran compiler will be installed with pkgsrc automatically.

As noted in Cygwin FAQ: `Why doesn't su work?', su(1) command has been in
Cygwin distribution, but it has never worked. Unless you bootstrap pkgsrc with
the --unprivileged option, workaround is:

  * Right click "Cygwin Terminal" in your Start Menu, then pick "Run as
    administrator".

3.3.2. Darwin (Mac OS X)

Darwin 5.x and up are supported.

Before you start, you need to download and install the Mac OS X Developer Tools
from Apple's Developer Connection. This requires (free) membership. See http://
developer.apple.com/macosx/ for details. Also, make sure you install X11 (an
optional package included with the Developer Tools) if you intend to build
packages that use the X11 Window System. (If you don't want or need the full
Xcode GUI, download and install Command Line Tools for Xcode.)

3.3.3. FreeBSD

FreeBSD 8.3 and 9.0 have been tested and are supported, other versions may
work.

Care should be taken so that the tools that this kit installs do not conflict
with the FreeBSD userland tools. There are several steps:

 1. FreeBSD stores its ports pkg database in /var/db/pkg. It is therefore
    recommended that you choose a different location (e.g. /usr/pkgdb) by using
    the --pkgdbdir option to the bootstrap script.

 2. If you do not intend to use the FreeBSD ports tools, it's probably a good
    idea to move them out of the way to avoid confusion, e.g.

    # cd /usr/sbin
    # mv pkg_add pkg_add.orig
    # mv pkg_create pkg_create.orig
    # mv pkg_delete pkg_delete.orig
    # mv pkg_info pkg_info.orig


 3. An example mk.conf file will be placed in /etc/mk.conf.example file when
    you use the bootstrap script.

3.3.4. GNU/kFreeBSD

Debian GNU/kFreeBSD is the only GNU/kFreeBSD distribution now. Debian GNU/
kFreeBSD 7.0 or later is tested and supported.

You should install ncurses (libncurses and libncurses-dev) packages.

3.3.5. Interix

Interix is a POSIX-compatible subsystem for the Windows NT kernel, providing a
Unix-like environment with a tighter kernel integration than available with
Cygwin. It is part of the Windows Services for Unix package, available for free
for any licensed copy of Windows 2000, XP (not including XP Home), or 2003. SFU
can be downloaded from http://www.microsoft.com/windows/sfu/.

Services for Unix 3.5 has been tested. 3.0 or 3.1 may work, but are not
officially supported. (The main difference in 3.0/3.1 is lack of pthreads, but
other parts of libc may also be lacking.)

Services for Unix Applications (aka SUA) is an integrated component of Windows
Server 2003 R2 (5.2), Windows Vista and Windows Server 2008 (6.0), Windows 7
and Windows Server 2008 R2 (6.1). As of this writing, the SUA's Interix 6.0
(32bit) and 6.1 (64bit) subsystems have been tested. Other versions may work as
well. The Interix 5.x subsystem has not yet been tested with pkgsrc.

3.3.5.1. When installing Interix/SFU

At an absolute minimum, the following packages must be installed from the
Windows Services for Unix 3.5 distribution in order to use pkgsrc:

  * Utilities -> Base Utilities

  * Interix GNU Components -> (all)

  * Remote Connectivity

  * Interix SDK

When using pkgsrc on Interix, DO NOT install the Utilities subcomponent "UNIX
Perl". That is Perl 5.6 without shared module support, installed to /usr/local,
and will only cause confusion. Instead, install Perl 5.8 from pkgsrc (or from a
binary package).

The Remote Connectivity subcomponent "Windows Remote Shell Service" does not
need to be installed, but Remote Connectivity itself should be installed in
order to have a working inetd.

During installation you may be asked whether to enable setuid behavior for
Interix programs, and whether to make pathnames default to case-sensitive.
Setuid should be enabled, and case-sensitivity MUST be enabled. (Without
case-sensitivity, a large number of packages including perl will not build.)

NOTE: Newer Windows service packs change the way binary execution works (via
the Data Execution Prevention feature). In order to use pkgsrc and other
gcc-compiled binaries reliably, a hotfix containing POSIX.EXE, PSXDLL.DLL,
PSXRUN.EXE, and PSXSS.EXE (899522 or newer) must be installed. Hotfixes are
available from Microsoft through a support contract; however, Debian Interix
Port has made most Interix hotfixes available for personal use from http://
www.debian-interix.net/hotfixes/.

In addition to the hotfix noted above, it may be necessary to disable Data
Execution Prevention entirely to make Interix functional. This may happen only
with certain types of CPUs; the cause is not fully understood at this time. If
gcc or other applications still segfault repeatedly after installing one of the
hotfixes note above, the following option can be added to the appropriate
"boot.ini" line on the Windows boot drive: /NoExecute=AlwaysOff (WARNING, this
will disable DEP completely, which may be a security risk if applications are
often run as a user in the Administrators group!)

3.3.5.2. What to do if Interix/SFU is already installed

If SFU is already installed and you wish to alter these settings to work with
pkgsrc, note the following things.

  * To uninstall UNIX Perl, use Add/Remove Programs, select Microsoft Windows
    Services for UNIX, then click Change. In the installer, choose Add or
    Remove, then uncheck Utilities->UNIX Perl.

  * To enable case-sensitivity for the file system, run REGEDIT.EXE, and change
    the following registry key:

    HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\kernel

    Set the DWORD value "obcaseinsensitive" to 0; then reboot.

  * To enable setuid binaries (optional), run REGEDIT.EXE, and change the
    following registry key:

    HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Services for UNIX

    Set the DWORD value "EnableSetuidBinaries" to 1; then reboot.

3.3.5.3. Important notes for using pkgsrc

The package manager (either the pkgsrc "su" user, or the user running
"pkg_add") must be a member of the local Administrators group. Such a user must
also be used to run the bootstrap. This is slightly relaxed from the normal
pkgsrc requirement of "root".

The package manager should use a umask of 002. "make install" will
automatically complain if this is not the case. This ensures that directories
written in /var/db/pkg are Administrators-group writeable.

The popular Interix binary packages from http://www.interopsystems.com/ use an
older version of pkgsrc's pkg_* tools. Ideally, these should NOT be used in
conjunction with pkgsrc. If you choose to use them at the same time as the
pkgsrc packages, ensure that you use the proper pkg_* tools for each type of
binary package.

The TERM setting used for DOS-type console windows (including those invoked by
the csh and ksh startup shortcuts) is "interix". Most systems don't have a
termcap/terminfo entry for it, but the following .termcap entry provides
adequate emulation in most cases:

interix:kP=\E[S:kN=\E[T:kH=\E[U:dc@:DC@:tc=pcansi:


3.3.5.4. Limitations of the Interix platform

Though Interix suffices as a familiar and flexible substitute for a full
Unix-like platform, it has some drawbacks that should be noted for those
desiring to make the most of Interix.

  * X11:

    Interix comes with the standard set of X11R6 client libraries, and can run
    X11 based applications, but it does not come with an X server. Some options
    are StarNet X-Win32, Hummingbird Exceed (available in a trimmed version for
    Interix from Interop Systems as the Interop X Server), and the free X11
    server included with Cygwin.

  * X11 acceleration:

    Because Interix runs in a completely different NT subsystem from Win32
    applications, it does not currently support various X11 protocol extensions
    for acceleration (such as MIT-SHM or DGA). Most interactive applications to
    a local X server will run reasonably fast, but full motion video and other
    graphics intensive applications may require a faster-than-expected CPU.

  * Audio:

    Interix has no native support for audio output. For audio support, pkgsrc
    uses the esound client/server audio system on Interix. Unlike on most
    platforms, the audio/esound package does not contain the esd server
    component. To output audio via an Interix host, the emulators/cygwin_esound
    package must also be installed.

  * CD/DVDs, USB, and SCSI:

    Direct device access is not currently supported in Interix, so it is not
    currently possible to access CD/DVD drives, USB devices, or SCSI devices
    through non-filesystem means. Among other things, this makes it impossible
    to use Interix directly for CD/DVD burning.

  * Tape drives:

    Due to the same limitations as for CD-ROMs and SCSI devices, tape drives
    are also not directly accessible in Interix. However, support is in work to
    make tape drive access possible by using Cygwin as a bridge (similarly to
    audio bridged via Cygwin's esound server).

3.3.5.5. Known issues for pkgsrc on Interix

It is not necessary, in general, to have a "root" user on the Windows system;
any member of the local Administrators group will suffice. However, some
packages currently assume that the user named "root" is the privileged user. To
accommodate these, you may create such a user; make sure it is in the local
group Administrators (or your language equivalent).

pkg_add creates directories of mode 0755, not 0775, in $PKG_DBDIR. For the time
being, install packages as the local Administrator (or your language
equivalent), or run the following command after installing a package to work
around the issue:

# chmod -R g+w $PKG_DBDIR


3.3.6. IRIX

You will need a working C compiler, either gcc or SGI's MIPS and MIPSpro
compiler (cc/c89). Please set the CC environment variable according to your
preference. If you do not have a license for the MIPSpro compiler suite, you
can download a gcc tardist file from http://freeware.sgi.com/.

Please note that you will need IRIX 6.5.17 or higher, as this is the earliest
version of IRIX providing support for if_indextoname(3), if_nametoindex(3),
etc.

At this point in time, pkgsrc only supports one ABI at a time. That is, you
cannot switch between the old 32-bit ABI, the new 32-bit ABI and the 64-bit
ABI. If you start out using "abi=n32", that's what all your packages will be
built with.

Therefore, please make sure that you have no conflicting CFLAGS in your
environment or the mk.conf. Particularly, make sure that you do not try to link
n32 object files with lib64 or vice versa. Check your /etc/compiler.defaults!

If you have the actual pkgsrc tree mounted via NFS from a different host,
please make sure to set WRKOBJDIR to a local directory, as it appears that IRIX
linker occasionally runs into issues when trying to link over a network-mounted
file system.

The bootstrapping process should set all the right options for programs such as
imake(1), but you may want to set some options depending on your local setup.
Please see pkgsrc/mk/defaults/mk.conf and, of course, your compiler's man pages
for details.

If you are using SGI's MIPSPro compiler, please set

PKGSRC_COMPILER=        mipspro


in mk.conf. Otherwise, pkgsrc will assume you are using gcc and may end up
passing invalid flags to the compiler. Note that bootstrap should create an
appropriate mk.conf.example by default.

If you have both the MIPSPro compiler chain installed as well as gcc, but want
to make sure that MIPSPro is used, please set your PATH to not include the
location of gcc (often /usr/freeware/bin), and (important) pass the
'--preserve-path' flag.

3.3.7. Linux

Some versions of Linux (for example Debian GNU/Linux) need either libtermcap or
libcurses (libncurses). Installing the distributions libncurses-dev package (or
equivalent) should fix the problem.

pkgsrc supports both gcc (GNU Compiler Collection) and icc (Intel C++
Compiler). gcc is the default. icc 8.0 and 8.1 on i386 have been tested.

To bootstrap using icc, assuming the default icc installation directory:

env ICCBASE=/opt/intel/cc/10.1.008 ./bootstrap --compiler=icc


Note

For icc 8.0 you must add `LDFLAGS=-static-libcxa' to this.

For icc 8.1 you must add `LDFLAGS=-i-static' instead.

For icc 10.1 neither of these appears to be necessary.

Use a value for ICCBASE that corresponds to the directory where icc is
installed. After bootstrapping, set ICCBASE in mk.conf:

ICCBASE=                /opt/intel/cc/10.1.008


The pkgsrc default for ICCBASE is /opt/intel_cc_80. This is the default install
directory for icc 8.0. If you are using a more recent version, be sure to set
the correct path explicitly.

pkgsrc uses the static linking method of the runtime libraries provided by icc,
so binaries can be run on other systems which do not have the shared libraries
installed.

Libtool, however, extracts a list of libraries from the ld(1) command run when
linking a C++ shared library and records it, throwing away the -Bstatic and
-Bdynamic options interspersed between the libraries. This means that
libtool-linked C++ shared libraries will have a runtime dependency on the icc
libraries until this is fixed in libtool.

3.3.8. MirBSD

pkgsrc has been tested on MirBSD #10-current (2011 and newer). Older versions
might also work. Releases before #10 are not supported.

The package tools of the (older) native ports tree, MirPorts, have the same
names as the ones used by pkgsrc. Care should be taken that the right tools are
used. When installing packages from source, use the bmake command for pkgsrc
and mmake for MirPorts.

pkgsrc and MirPorts use the same location for the package database, /var/db/
pkg. It is strongly recommended to use /usr/pkg/db instead, so that the pkgsrc
tree is self-contained. This is also the default setting used in the binary
package builds.

Binary packages for MirBSD/i386 can be found on the pkgsrc ftp server. The
bootstrap kit there already contains the pkgin package manager. See the pkgsrc
on MirOS page for more details.

3.3.9. OpenBSD

OpenBSD 5.1 has been tested and supported, other versions may work.

Care should be taken so that the tools that this kit installs do not conflict
with the OpenBSD userland tools. There are several steps:

 1. OpenBSD stores its ports pkg database in /var/db/pkg. It is therefore
    recommended that you choose a different location (e.g. /usr/pkgdb) by using
    the --pkgdbdir option to the bootstrap script.

 2. If you do not intend to use the OpenBSD ports tools, it's probably a good
    idea to move them out of the way to avoid confusion, e.g.

    # cd /usr/sbin
    # mv pkg_add pkg_add.orig
    # mv pkg_create pkg_create.orig
    # mv pkg_delete pkg_delete.orig
    # mv pkg_info pkg_info.orig


 3. An example mk.conf file will be placed in /etc/mk.conf.example file when
    you use the bootstrap script. OpenBSD's make program uses mk.conf as well.
    You can work around this by enclosing all the pkgsrc-specific parts of the
    file with:

    .ifdef BSD_PKG_MK
    # pkgsrc stuff, e.g. insert defaults/mk.conf or similar here
    .else
    # OpenBSD stuff
    .endif


3.3.10. Solaris

Solaris 2.6 through 10 are supported on both x86 and sparc. You will need a
working C compiler. Both gcc 4.5.3 and Sun WorkShop 5 have been tested.

The following packages are required on Solaris 8 for the bootstrap process and
to build packages.

  * SUNWsprot

  * SUNWarc

  * SUNWbtool

  * SUNWtoo

  * SUNWlibm

Please note that the use of GNU binutils on Solaris is not supported, as of
June 2006.

Whichever compiler you use, please ensure the compiler tools and your $prefix
are in your PATH. This includes /usr/ccs/{bin,lib} and e.g. /usr/pkg/
{bin,sbin}.

3.3.10.1. If you are using gcc

It makes life much simpler if you only use the same gcc consistently for
building all packages.

It is recommended that an external gcc be used only for bootstrapping, then
either build gcc from lang/gcc46 or install a binary gcc package, then remove
gcc used during bootstrapping.

Binary packages of gcc can be found through http://www.sunfreeware.com/.

3.3.10.2. If you are using Sun WorkShop

You will need at least the following packages installed (from WorkShop 5.0)

  * SPROcc - Sun WorkShop Compiler C 5.0

  * SPROcpl - Sun WorkShop Compiler C++ 5.0

  * SPROild - Sun WorkShop Incremental Linker

  * SPROlang - Sun WorkShop Compilers common components

You should set the following variables in your mk.conf file:

CC=     cc
CXX=    CC
CPP=    cc -E
CXXCPP= CC -E

Note

The CPP setting might break some packages that use the C preprocessor for
processing things other than C source code.

3.3.10.3. Building 64-bit binaries with SunPro

To build 64-bit packages, you just need to have the following lines in your
mk.conf file:

PKGSRC_COMPILER=        sunpro
ABI=                    64

Note

This setting has been tested for the SPARC architecture. Intel and AMD machines
need some more work.

3.3.10.4. Common problems

Sometimes, when using libtool, /bin/ksh crashes with a segmentation fault. The
workaround is to use another shell for the configure scripts, for example by
installing shells/bash and adding the following lines to your mk.conf:

CONFIG_SHELL=   ${LOCALBASE}/bin/bash
WRAPPER_SHELL=  ${LOCALBASE}/bin/bash


Then, rebuild the devel/libtool-base package.

Chapter 4. Using pkgsrc

Table of Contents

4.1. Using binary packages

    4.1.1. Finding binary packages
    4.1.2. Installing binary packages
    4.1.3. Deinstalling packages
    4.1.4. Getting information about installed packages
    4.1.5. Checking for security vulnerabilities in installed packages
    4.1.6. Finding if newer versions of your installed packages are in pkgsrc
    4.1.7. Other administrative functions
    4.1.8. A word of warning

4.2. Building packages from source

    4.2.1. Requirements
    4.2.2. Fetching distfiles
    4.2.3. How to build and install

Basically, there are two ways of using pkgsrc. The first is to only install the
package tools and to use binary packages that someone else has prepared. This
is the "pkg" in pkgsrc. The second way is to install the "src" of pkgsrc, too.
Then you are able to build your own packages, and you can still use binary
packages from someone else.

4.1. Using binary packages

On the ftp.NetBSD.org server and its mirrors, there are collections of binary
packages, ready to be installed. These binary packages have been built using
the default settings for the directories, that is:

  * /usr/pkg for LOCALBASE, where most of the files are installed,

  * /usr/pkg/etc for configuration files,

  * /var for VARBASE, where those files are installed that may change after
    installation.

If you cannot use these directories for whatever reasons (maybe because you're
not root), you cannot use these binary packages, but have to build the packages
yourself, which is explained in Section 3.2, "Bootstrapping pkgsrc".

4.1.1. Finding binary packages

To install binary packages, you first need to know from where to get them. The
first place where you should look is on the main pkgsrc FTP server in the
directory /pub/pkgsrc/packages.

This directory contains binary packages for multiple platforms. First, select
your operating system. (Ignore the directories with version numbers attached to
it, they just exist for legacy reasons.) Then, select your hardware
architecture, and in the third step, the OS version and the "version" of
pkgsrc.

In this directory, you often find a file called bootstrap.tar.gz which contains
the package management tools. If the file is missing, it is likely that your
operating system already provides those tools. Download the file and extract it
in the / directory. It will create the directories /usr/pkg (containing the
tools for managing binary packages) and /var/db/pkg (the database of installed
packages).

4.1.2. Installing binary packages

In the directory from the last section, there is a subdirectory called All,
which contains all the binary packages that are available for the platform,
excluding those that may not be distributed via FTP or CDROM (depending on
which medium you are using).

To install packages directly from an FTP or HTTP server, run the following
commands in a Bourne-compatible shell (be sure to su to root first):

# PATH="/usr/pkg/sbin:$PATH"
# PKG_PATH="ftp://ftp.NetBSD.org/pub/pkgsrc/packages/OPSYS/ARCH/VERSIONS/All"
# export PATH PKG_PATH

Instead of URLs, you can also use local paths, for example if you are
installing from a set of CDROMs, DVDs or an NFS-mounted repository. If you want
to install packages from multiple sources, you can separate them by a semicolon
in PKG_PATH.

After these preparations, installing a package is very easy:

# pkg_add openoffice2
# pkg_add kde-3.5.7
# pkg_add ap2-php5-*

Note that any prerequisite packages needed to run the package in question will
be installed, too, assuming they are present where you install from.

Adding packages might install vulnerable packages. Thus you should run 
pkg_admin audit regularly, especially after installing new packages, and verify
that the vulnerabilities are acceptable for your configuration.

After you've installed packages, be sure to have /usr/pkg/bin and /usr/pkg/sbin
in your PATH so you can actually start the just installed program.

4.1.3. Deinstalling packages

To deinstall a package, it does not matter whether it was installed from source
code or from a binary package. The pkg_delete command does not know it anyway.
To delete a package, you can just run pkg_delete package-name. The package name
can be given with or without version number. Wildcards can also be used to
deinstall a set of packages, for example *emacs*. Be sure to include them in
quotes, so that the shell does not expand them before pkg_delete sees them.

The -r option is very powerful: it removes all the packages that require the
package in question and then removes the package itself. For example:

# pkg_delete -r jpeg


will remove jpeg and all the packages that used it; this allows upgrading the
jpeg package.

4.1.4. Getting information about installed packages

The pkg_info shows information about installed packages or binary package
files.

4.1.5. Checking for security vulnerabilities in installed packages

The NetBSD Security-Officer and Packages Groups maintain a list of known
security vulnerabilities to packages which are (or have been) included in
pkgsrc. The list is available from the NetBSD FTP site at ftp://ftp.NetBSD.org/
pub/pkgsrc/distfiles/vulnerabilities.

Through pkg_admin fetch-pkg-vulnerabilities, this list can be downloaded
automatically, and a security audit of all packages installed on a system can
take place.

There are two components to auditing. The first step, pkg_admin
fetch-pkg-vulnerabilities, is for downloading the list of vulnerabilities from
the NetBSD FTP site. The second step, pkg_admin audit, checks to see if any of
your installed packages are vulnerable. If a package is vulnerable, you will
see output similar to the following:

Package samba-2.0.9 has a local-root-shell vulnerability, see
    http://www.samba.org/samba/whatsnew/macroexploit.html

You may wish to have the vulnerabilities file downloaded daily so that it
remains current. This may be done by adding an appropriate entry to the root
users crontab(5) entry. For example the entry

# download vulnerabilities file
0 3 * * * /usr/sbin/pkg_admin fetch-pkg-vulnerabilities >/dev/null 2>&1


will update the vulnerability list every day at 3AM. You may wish to do this
more often than once a day. In addition, you may wish to run the package audit
from the daily security script. This may be accomplished by adding the
following line to /etc/security.local:

/usr/sbin/pkg_admin audit


4.1.6. Finding if newer versions of your installed packages are in pkgsrc

Install pkgtools/lintpkgsrc and run lintpkgsrc with the "-i" argument to check
if your packages are up-to-date, e.g.

% lintpkgsrc -i
...
Version mismatch: 'tcsh' 6.09.00 vs 6.10.00


You can then use make update to update the package on your system and rebuild
any dependencies.

4.1.7. Other administrative functions

The pkg_admin executes various administrative functions on the package system.

4.1.8. A word of warning

Please pay very careful attention to the warnings expressed in the pkg_add(1)
manual page about the inherent dangers of installing binary packages which you
did not create yourself, and the security holes that can be introduced onto
your system by indiscriminate adding of such files.

The same warning of course applies to every package you install from source
when you haven't completely read and understood the source code of the package,
the compiler that is used to build the package and all the other tools that are
involved.

4.2. Building packages from source

After obtaining pkgsrc, the pkgsrc directory now contains a set of packages,
organized into categories. You can browse the online index of packages, or run 
make readme from the pkgsrc directory to build local README.html files for all
packages, viewable with any web browser such as www/lynx or www/firefox.

The default prefix for installed packages is /usr/pkg. If you wish to change
this, you should do so by setting LOCALBASE in mk.conf. You should not try to
use multiple different LOCALBASE definitions on the same system (inside a
chroot is an exception).

The rest of this chapter assumes that the package is already in pkgsrc. If it
is not, see Part II, "The pkgsrc developer's guide" for instructions how to
create your own packages.

4.2.1. Requirements

To build packages from source, you need a working C compiler. On NetBSD, you
need to install the "comp" and the "text" distribution sets. If you want to
build X11-related packages, the "xbase" and "xcomp" distribution sets are
required, too.

4.2.2. Fetching distfiles

The first step for building a package is downloading the distfiles (i.e. the
unmodified source). If they have not yet been downloaded, pkgsrc will fetch
them automatically.

If you have all files that you need in the distfiles directory, you don't need
to connect. If the distfiles are on CD-ROM, you can mount the CD-ROM on /cdrom
and add:

DISTDIR=/cdrom/pkgsrc/distfiles

to your mk.conf.

By default a list of distribution sites will be randomly intermixed to prevent
huge load on servers which holding popular packages (for example,
SourceForge.net mirrors). Thus, every time when you need to fetch yet another
distfile all the mirrors will be tried in new (random) order. You can turn this
feature off by setting MASTER_SORT_RANDOM=NO (for PKG_DEVELOPERs it's already
disabled).

You can overwrite some of the major distribution sites to fit to sites that are
close to your own. By setting one or two variables you can modify the order in
which the master sites are accessed. MASTER_SORT contains a whitespace
delimited list of domain suffixes. MASTER_SORT_REGEX is even more flexible, it
contains a whitespace delimited list of regular expressions. It has higher
priority than MASTER_SORT. Have a look at pkgsrc/mk/defaults/mk.conf to find
some examples. This may save some of your bandwidth and time.

You can change these settings either in your shell's environment, or, if you
want to keep the settings, by editing the mk.conf file, and adding the
definitions there.

If a package depends on many other packages (such as meta-pkgs/kde3), the build
process may alternate between periods of downloading source, and compiling. To
ensure you have all the source downloaded initially you can run the command:

% make fetch-list | sh

which will output and run a set of shell commands to fetch the necessary files
into the distfiles directory. You can also choose to download the files
manually.

4.2.3. How to build and install

Once the software has downloaded, any patches will be applied, then it will be
compiled for you. This may take some time depending on your computer, and how
many other packages the software depends on and their compile time.

Note

If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake
command instead of "make" in the examples in this guide.

For example, type

% cd misc/figlet
% make


at the shell prompt to build the various components of the package.

The next stage is to actually install the newly compiled program onto your
system. Do this by entering:

% make install


while you are still in the directory for whatever package you are installing.

Installing the package on your system may require you to be root. However,
pkgsrc has a just-in-time-su feature, which allows you to only become root for
the actual installation step.

That's it, the software should now be installed and setup for use. You can now
enter:

% make clean


to remove the compiled files in the work directory, as you shouldn't need them
any more. If other packages were also added to your system (dependencies) to
allow your program to compile, you can tidy these up also with the command:

% make clean-depends


Taking the figlet utility as an example, we can install it on our system by
building as shown in Appendix B, Build logs.

The program is installed under the default root of the packages tree - /usr/
pkg. Should this not conform to your tastes, set the LOCALBASE variable in your
environment, and it will use that value as the root of your packages tree. So,
to use /usr/local, set LOCALBASE=/usr/local in your environment. Please note
that you should use a directory which is dedicated to packages and not shared
with other programs (i.e., do not try and use LOCALBASE=/usr). Also, you should
not try to add any of your own files or directories (such as src/, obj/, or
pkgsrc/) below the LOCALBASE tree. This is to prevent possible conflicts
between programs and other files installed by the package system and whatever
else may have been installed there.

Some packages look in mk.conf to alter some configuration options at build
time. Have a look at pkgsrc/mk/defaults/mk.conf to get an overview of what will
be set there by default. Environment variables such as LOCALBASE can be set in
mk.conf to save having to remember to set them each time you want to use
pkgsrc.

Occasionally, people want to "look under the covers" to see what is going on
when a package is building or being installed. This may be for debugging
purposes, or out of simple curiosity. A number of utility values have been
added to help with this.

 1. If you invoke the make(1) command with PKG_DEBUG_LEVEL=2, then a huge
    amount of information will be displayed. For example,

    make patch PKG_DEBUG_LEVEL=2

    will show all the commands that are invoked, up to and including the "patch
    " stage.

 2. If you want to know the value of a certain make(1) definition, then the
    VARNAME definition should be used, in conjunction with the show-var target.
    e.g. to show the expansion of the make(1) variable LOCALBASE:

    % make show-var VARNAME=LOCALBASE
    /usr/pkg
    %


If you want to install a binary package that you've either created yourself
(see next section), that you put into pkgsrc/packages manually or that is
located on a remote FTP server, you can use the "bin-install" target. This
target will install a binary package - if available - via pkg_add(1), else do a
make package. The list of remote FTP sites searched is kept in the variable
BINPKG_SITES, which defaults to ftp.NetBSD.org. Any flags that should be added
to pkg_add(1) can be put into BIN_INSTALL_FLAGS. See pkgsrc/mk/defaults/mk.conf
for more details.

A final word of warning: If you set up a system that has a non-standard setting
for LOCALBASE, be sure to set that before any packages are installed, as you
cannot use several directories for the same purpose. Doing so will result in
pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with
the default LOCALBASE of /usr/pkg, and that you should not install any if you
use a non-standard LOCALBASE.

Chapter 5. Configuring pkgsrc

Table of Contents

5.1. General configuration
5.2. Variables affecting the build process
5.3. Variables affecting the installation process
5.4. Selecting and configuring the compiler

    5.4.1. Selecting the compiler
    5.4.2. Additional flags to the compiler (CFLAGS)
    5.4.3. Additional flags to the linker (LDFLAGS)

5.5. Developer/advanced settings
5.6. Selecting Build Options

The whole pkgsrc system is configured in a single file, usually called mk.conf.
In which directory pkgsrc looks for that file depends on the installation. On
NetBSD, when you use make(1) from the base system, it is in the directory /etc
/. In all other cases the default location is ${PREFIX}/etc/, depending on
where you told the bootstrap program to install the binary packages.

During the bootstrap, an example configuration file is created. To use that,
you have to create the directory ${PREFIX}/etc and copy the example file there.

The format of the configuration file is that of the usual BSD-style Makefiles.
The whole pkgsrc configuration is done by setting variables in this file. Note
that you can define all kinds of variables, and no special error checking (for
example for spelling mistakes) takes place, so you have to try it out to see if
it works.

5.1. General configuration

In this section, you can find some variables that apply to all pkgsrc packages.
A complete list of the variables that can be configured by the user is
available in mk/defaults/mk.conf, together with some comments that describe
each variable's intent.

  * LOCALBASE: Where packages will be installed. The default is /usr/pkg. Do
    not mix binary packages with different LOCALBASEs!

  * CROSSBASE: Where "cross" category packages will be installed. The default
    is ${LOCALBASE}/cross.

  * X11BASE: Where X11 is installed on the system. The default is /usr/X11R6.

  * DISTDIR: Where to store the downloaded copies of the original source
    distributions used for building pkgsrc packages. The default is $
    {PKGSRCDIR}/distfiles.

  * PKG_DBDIR: Where the database about installed packages is stored. The
    default is /var/db/pkg.

  * MASTER_SITE_OVERRIDE: If set, override the packages' MASTER_SITES with this
    value.

  * MASTER_SITE_BACKUP: Backup location(s) for distribution files and patch
    files if not found locally or in ${MASTER_SITES} or ${PATCH_SITES}
    respectively. The defaults are ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/$
    {DIST_SUBDIR}/ and ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/$
    {DIST_SUBDIR}/.

  * BINPKG_SITES: List of sites carrying binary pkgs. rel and arch are replaced
    with OS release ("2.0", etc.) and architecture ("mipsel", etc.).

  * ACCEPTABLE_LICENSES: List of acceptable licenses. License names are
    case-sensitive. Whenever you try to build a package whose license is not in
    this list, you will get an error message. If the license condition is
    simple enough, the error message will include specific instructions on how
    to change this variable.

5.2. Variables affecting the build process

XXX

  * PACKAGES: The top level directory for the binary packages. The default is $
    {PKGSRCDIR}/packages.

  * WRKOBJDIR: The top level directory where, if defined, the separate working
    directories will get created, and symbolically linked to from ${WRKDIR}
    (see below). This is useful for building packages on several architectures,
    then ${PKGSRCDIR} can be NFS-mounted while ${WRKOBJDIR} is local to every
    architecture. (It should be noted that PKGSRCDIR should not be set by the
    user ? it is an internal definition which refers to the root of the pkgsrc
    tree. It is possible to have many pkgsrc tree instances.)

  * LOCALPATCHES: Directory for local patches that aren't part of pkgsrc. See
    Section 11.3, "patches/*" for more information.

  * PKGMAKECONF: Location of the mk.conf file used by a package's BSD-style
    Makefile. If this is not set, MAKECONF is set to /dev/null to avoid picking
    up settings used by builds in /usr/src.

  * DEPENDS_TARGET: By default, dependencies are only installed, and no binary
    package is created for them. You can set this variable to package to
    automatically create binary packages after installing dependencies.

5.3. Variables affecting the installation process

Most packages support installation into a subdirectory of WRKDIR. This allows a
package to be built, before the actual filesystem is touched. DESTDIR support
exists in two variations:

  * Basic DESTDIR support means that the package installation and packaging is
    still run as root.

  * Full DESTDIR support can run the complete build, installation and packaging
    as normal user. Root privileges are only needed to add packages.

DESTDIR support is now the default. To switch back to non-DESTDIR, you can set
USE_DESTDIR=no; this setting will be deprecated though, so it's preferable to
convert a package to DESTDIR instead.

DESTDIR support changes the behaviour of various targets slightly. To install a
package after building it, use package-install. package and install don't do
that any longer. package-install can be used as DEPENDS_TARGET. bin-install
will ask for the root password to install the package and fail, package-install
will ask again.

With basic DESTDIR support, make clean needs to be run as root.

Considering the foo/bar package, DESTDIR full support can be tested using the
following commands

$ id
uid=1000(myusername) gid=100(users) groups=100(users),0(wheel)
$ mkdir $HOME/packages
$ cd $PKGSRCDIR/foo/bar

Verify DESTDIR full support, no root privileges should be needed

$ make USE_DESTDIR=yes install

Create a package without root privileges

$ make USE_DESTDIR=yes PACKAGES=$HOME/packages package

For the following command, you must be able to gain root privileges using su(1)

$ make USE_DESTDIR=yes PACKAGES=$HOME/packages package-install

Then, as a simple user

$ make clean

5.4. Selecting and configuring the compiler

5.4.1. Selecting the compiler

By default, pkgsrc will use GCC to build packages. This may be overridden by
setting the following variables in /etc/mk.conf:

PKGSRC_COMPILER:

    This is a list of values specifying the chain of compilers to invoke when
    building packages. Valid values are:

      + distcc: distributed C/C++ (chainable)

      + ccache: compiler cache (chainable)

      + gcc: GNU C/C++ Compiler

      + mipspro: Silicon Graphics, Inc. MIPSpro (n32/n64)

      + mipspro: Silicon Graphics, Inc. MIPSpro (o32)

      + sunpro: Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio

    The default is "gcc". You can use ccache and/or distcc with an appropriate
    PKGSRC_COMPILER setting, e.g. "ccache gcc". This variable should always be
    terminated with a value for a real compiler. Note that only one real
    compiler should be listed (e.g. "sunpro gcc" is not allowed).

GCC_REQD:

    This specifies the minimum version of GCC to use when building packages. If
    the system GCC doesn't satisfy this requirement, then pkgsrc will build and
    install one of the GCC packages to use instead.

5.4.2. Additional flags to the compiler (CFLAGS)

If you wish to set the CFLAGS variable, please make sure to use the += operator
instead of the = operator:

CFLAGS+=        -your -flags

Using CFLAGS= (i.e. without the "+") may lead to problems with packages that
need to add their own flags. You may want to take a look at the devel/cpuflags
package if you're interested in optimization specifically for the current CPU.

5.4.3. Additional flags to the linker (LDFLAGS)

If you want to pass flags to the linker, both in the configure step and the
build step, you can do this in two ways. Either set LDFLAGS or LIBS. The
difference between the two is that LIBS will be appended to the command line,
while LDFLAGS come earlier. LDFLAGS is pre-loaded with rpath settings for ELF
machines depending on the setting of USE_IMAKE or the inclusion of mk/
x11.buildlink3.mk. As with CFLAGS, if you do not wish to override these
settings, use the += operator:

LDFLAGS+=        -your -linkerflags

5.5. Developer/advanced settings

XXX

  * PKG_DEVELOPER: Run some sanity checks that package developers want:

      + make sure patches apply with zero fuzz

      + run check-shlibs to see that all binaries will find their shared libs.

  * PKG_DEBUG_LEVEL: The level of debugging output which is displayed whilst
    making and installing the package. The default value for this is 0, which
    will not display the commands as they are executed (normal, default, quiet
    operation); the value 1 will display all shell commands before their
    invocation, and the value 2 will display both the shell commands before
    their invocation, and their actual execution progress with set -x will be
    displayed.

5.6. Selecting Build Options

Some packages have build time options, usually to select between different
dependencies, enable optional support for big dependencies or enable
experimental features.

To see which options, if any, a package supports, and which options are
mutually exclusive, run make show-options, for example:

    The following options are supported by this package:
        ssl      Enable SSL support.
    Exactly one of the following gecko options is required:
        firefox  Use firefox as gecko rendering engine.
        mozilla  Use mozilla as gecko rendering engine.
    At most one of the following database options may be selected:
        mysql    Enable support for MySQL database.
        pgsql    Enable support for PostgreSQL database.

    These options are enabled by default: firefox
    These options are currently enabled: mozilla ssl

The following variables can be defined in mk.conf to select which options to
enable for a package: PKG_DEFAULT_OPTIONS, which can be used to select or
disable options for all packages that support them, and PKG_OPTIONS.pkgbase,
which can be used to select or disable options specifically for package pkgbase
. Options listed in these variables are selected, options preceded by "-" are
disabled. A few examples:

$ grep "PKG.*OPTION" mk.conf
PKG_DEFAULT_OPTIONS=    -arts -dvdread -esound
PKG_OPTIONS.kdebase=    debug -sasl
PKG_OPTIONS.apache=     suexec

It is important to note that options that were specifically suggested by the
package maintainer must be explicitly removed if you do not wish to include the
option. If you are unsure you can view the current state with make show-options
.

The following settings are consulted in the order given, and the last setting
that selects or disables an option is used:

 1. the default options as suggested by the package maintainer

 2. the options implied by the settings of legacy variables (see below)

 3. PKG_DEFAULT_OPTIONS

 4. PKG_OPTIONS.pkgbase

For groups of mutually exclusive options, the last option selected is used, all
others are automatically disabled. If an option of the group is explicitly
disabled, the previously selected option, if any, is used. It is an error if no
option from a required group of options is selected, and building the package
will fail.

Before the options framework was introduced, build options were selected by
setting a variable (often named USE_FOO) in mk.conf for each option. To ease
transition to the options framework for the user, these legacy variables are
converted to the appropriate options setting (PKG_OPTIONS.pkgbase)
automatically. A warning is issued to prompt the user to update mk.conf to use
the options framework directly. Support for the legacy variables will be
removed eventually.

Chapter 6. Creating binary packages

Table of Contents

6.1. Building a single binary package
6.2. Settings for creation of binary packages

6.1. Building a single binary package

Once you have built and installed a package, you can create a binary package
which can be installed on another system with pkg_add(1). This saves having to
build the same package on a group of hosts and wasting CPU time. It also
provides a simple means for others to install your package, should you
distribute it.

To create a binary package, change into the appropriate directory in pkgsrc,
and run make package:

# cd misc/figlet
# make package


This will build and install your package (if not already done), and then build
a binary package from what was installed. You can then use the pkg_* tools to
manipulate it. Binary packages are created by default in /usr/pkgsrc/packages,
in the form of a gzipped tar file. See Section B.2, "Packaging figlet" for a
continuation of the above misc/figlet example.

See Chapter 21, Submitting and Committing for information on how to submit such
a binary package.

6.2. Settings for creation of binary packages

See Section 17.17, "Other helpful targets".

Chapter 7. Creating binary packages for everything in pkgsrc (bulk builds)

Table of Contents

7.1. Think first, build later
7.2. Requirements of a bulk build
7.3. Running an old-style bulk build

    7.3.1. Configuration
    7.3.2. Other environmental considerations
    7.3.3. Operation
    7.3.4. What it does
    7.3.5. Disk space requirements
    7.3.6. Setting up a sandbox for chrooted builds
    7.3.7. Building a partial set of packages
    7.3.8. Uploading results of a bulk build

7.4. Running a pbulk-style bulk build

    7.4.1. Preparation
    7.4.2. Configuration

7.5. Creating a multiple CD-ROM packages collection

    7.5.1. Example of cdpack

When you have multiple machines that should run the same packages, it is wasted
time if they all build their packages themselves from source. There are two
ways of getting a set of binary packages: The old bulk build system, or the new
(as of 2007) parallel bulk build (pbulk) system. This chapter describes how to
set them up so that the packages are most likely to be usable later.

7.1. Think first, build later

Since a bulk build takes several days or even weeks to finish, you should think
about the setup before you start everything. Pay attention to at least the
following points:

  * If you want to upload the binary packages to ftp.NetBSD.org, make sure the
    setup complies to the requirements for binary packages:

      + To end up on ftp.NetBSD.org, the packages must be built by a NetBSD
        developer on a trusted machine (that is, where you and only you have
        root access).

      + Packages on ftp.NetBSD.org should only be created from the stable
        branches (like 2009Q1), so that users browsing the available
        collections can see at a glance how old the packages are.

      + The packages must be built as root, since some packages require set-uid
        binaries at runtime, and creating those packages as unprivileged user
        doesn't work well at the moment.

  * Make sure that the bulk build cannot break anything in your system. Most
    bulk builds run as root, so they should be run at least in a chroot
    environment or something even more restrictive, depending on what the
    operating system provides. There have been numerous cases where certain
    packages tried to install files outside the LOCALBASE or wanted to edit
    some files in /etc. Furthermore, the bulk builds install and deinstall
    packages in /usr/pkg (or whatever LOCALBASE is) during their operation, so
    be sure that you don't need any package during the build.

7.2. Requirements of a bulk build

A complete bulk build requires lots of disk space. Some of the disk space can
be read-only, some other must be writable. Some can be on remote filesystems
(such as NFS) and some should be local. Some can be temporary filesystems,
others must survive a sudden reboot.

  * 40 GB for the distfiles (read-write, remote, temporary)

  * 30 GB for the binary packages (read-write, remote, permanent)

  * 1 GB for the pkgsrc tree (read-only, remote, permanent)

  * 5 GB for LOCALBASE (read-write, local, temporary for pbulk, permanent for
    old-bulk)

  * 10 GB for the log files (read-write, remote, permanent)

  * 5 GB for temporary files (read-write, local, temporary)

7.3. Running an old-style bulk build

Note

There are two ways of doing a bulk build. The old-style one and the new-style "
pbulk". The latter is the recommended way.

7.3.1. Configuration

7.3.1.1. build.conf

The build.conf file is the main configuration file for bulk builds. You can
configure how your copy of pkgsrc is kept up to date, how the distfiles are
downloaded, how the packages are built and how the report is generated. You can
find an annotated example file in pkgsrc/mk/bulk/build.conf-example. To use it,
copy build.conf-example to build.conf and edit it, following the comments in
that file.

7.3.1.2. mk.conf

You may want to set variables in mk.conf. Look at pkgsrc/mk/defaults/mk.conf
for details of the default settings. You will want to ensure that
ACCEPTABLE_LICENSES meet your local policy. As used in this example,
SKIP_LICENSE_CHECK=yes completely bypasses the license check.

PACKAGES?=      ${_PKGSRCDIR}/packages/${MACHINE_ARCH}
WRKOBJDIR?=     /usr/tmp/pkgsrc   # build here instead of in pkgsrc
BSDSRCDIR=      /usr/src
BSDXSRCDIR=     /usr/xsrc         # for x11/xservers
OBJHOSTNAME?=   yes               # use work.`hostname`
FAILOVER_FETCH= yes               # insist on the correct checksum
PKG_DEVELOPER?= yes
SKIP_LICENSE_CHECK=    yes

Some options that are especially useful for bulk builds can be found at the top
lines of the file mk/bulk/bsd.bulk-pkg.mk. The most useful options of these are
briefly described here.

  * If you are on a slow machine, you may want to set USE_BULK_BROKEN_CHECK to 
    "no".

  * If you are doing bulk builds from a read-only copy of pkgsrc, you have to
    set BULKFILESDIR to the directory where all log files are created.
    Otherwise the log files are created in the pkgsrc directory.

  * Another important variable is BULK_PREREQ, which is a list of packages that
    should be always available while building other packages.

Some other options are scattered in the pkgsrc infrastructure:

  * ALLOW_VULNERABLE_PACKAGES should be set to yes. The purpose of the bulk
    builds is creating binary packages, no matter if they are vulnerable or
    not. Leaving this variable unset would prevent the bulk build system from
    even trying to build them, so possible building errors would not show up.

  * CHECK_FILES (pkgsrc/mk/check/check-files.mk) can be set to "yes" to check
    that the installed set of files matches the PLIST.

  * CHECK_INTERPRETER (pkgsrc/mk/check/check-interpreter.mk) can be set to "yes
    " to check that the installed "#!"-scripts will find their interpreter.

  * PKGSRC_RUN_TEST can be set to "yes" to run each package's self-test before
    installing it. Note that some packages make heavy use of "good" random
    numbers, so you need to assure that the machine on which you are doing the
    bulk builds is not completely idle. Otherwise some test programs will seem
    to hang, while they are just waiting for new random data to be available.

7.3.1.3. pre-build.local

It is possible to configure the bulk build to perform certain site-specific
tasks at the end of the pre-build stage. If the file pre-build.local exists in
/usr/pkgsrc/mk/bulk, it will be executed (as a sh(1) script) at the end of the
usual pre-build stage. An example use of pre-build.local is to have the line:

echo "I do not have enough disk space to build this pig." \
        > misc/openoffice/$BROKENF

to prevent the system from trying to build a particular package which requires
nearly 3 GB of disk space.

7.3.2. Other environmental considerations

As /usr/pkg will be completely deleted at the start of bulk builds, make sure
your login shell is placed somewhere else. Either drop it into /usr/local/bin
(and adjust your login shell in the passwd file), or (re-)install it via
pkg_add(1) from /etc/rc.local, so you can login after a reboot (remember that
your current process won't die if the package is removed, you just can't start
any new instances of the shell any more). Also, if you use NetBSD earlier than
1.5, or you still want to use the pkgsrc version of ssh for some reason, be
sure to install ssh before starting it from rc.local:

(cd /usr/pkgsrc/security/ssh && make bulk-install)
if [ -f /usr/pkg/etc/rc.d/sshd ]; then
  /usr/pkg/etc/rc.d/sshd
fi

Not doing so will result in you being not able to log in via ssh after the bulk
build is finished or if the machine gets rebooted or crashes. You have been
warned! :)

7.3.3. Operation

Make sure you don't need any of the packages still installed.

Warning

During the bulk build, all packages, their configuration files and some more
files from /var, /home and possibly other locations will be removed! So don't
run a bulk build with privileges that might harm your system.

Be sure to remove all other things that might interfere with builds, like some
libs installed in /usr/local, etc. then become root and type:

# cd /usr/pkgsrc
# sh mk/bulk/build


If for some reason your last build didn't complete (power failure, system
panic, ...), you can continue it by running:

# sh mk/bulk/build restart

At the end of the bulk build, you will get a summary via mail, and find build
logs in the directory specified by FTP in the build.conf file.

7.3.4. What it does

The bulk builds consist of three steps:

1. pre-build

    The script updates your pkgsrc tree via (anon)cvs, then cleans out any
    broken distfiles, and removes all packages installed.

2. the bulk build

    This is basically "make bulk-package" with an optimised order in which
    packages will be built. Packages that don't require other packages will be
    built first, and packages with many dependencies will be built later.

3. post-build

    Generates a report that's placed in the directory specified in the
    build.conf file named broken.html, a short version of that report will also
    be mailed to the build's admin.

During the build, a list of broken packages will be compiled in /usr/pkgsrc
/.broken (or .../.broken.${MACHINE} if OBJMACHINE is set), individual build
logs of broken builds can be found in the package's directory. These files are
used by the bulk-targets to mark broken builds to not waste time trying to
rebuild them, and they can be used to debug these broken package builds later.

7.3.5. Disk space requirements

Currently, roughly the following requirements are valid for NetBSD 6.99/amd64:

  * 40 GB - distfiles (NFS ok)

  * 30 GB - full set of all binaries (NFS ok)

  * 5 GB - temp space for compiling (local disk recommended)

Note that all pkgs will be de-installed as soon as they are turned into a
binary package, and that sources are removed, so there is no excessively huge
demand to disk space. Afterwards, if the package is needed again, it will be
installed via pkg_add(1) instead of building again, so there are no cycles
wasted by recompiling.

7.3.6. Setting up a sandbox for chrooted builds

If you don't want all the packages nuked from a machine (rendering it useless
for anything but pkg compiling), there is the possibility of doing the package
bulk build inside a chroot environment.

The first step is to set up a chroot sandbox, e.g. /usr/sandbox. This can be
done by using null mounts, or manually.

There is a shell script called mksandbox installed by the pkgtools/mksandbox
package, which will set up the sandbox environment using null mounts. It will
also create a script called sandbox in the root of the sandbox environment,
which will allow the null mounts to be activated using the sandbox mount
command and deactivated using the sandbox umount command.

To set up a sandbox environment by hand, after extracting all the sets from a
NetBSD installation or doing a make distribution DESTDIR=/usr/sandbox in /usr/
src/etc, be sure the following items are present and properly configured:

 1. Kernel

    # cp /netbsd /usr/sandbox

 2. /dev/*

    # cd /usr/sandbox/dev ; sh MAKEDEV all

 3. /etc/resolv.conf (for security/smtpd and mail):

    # cp /etc/resolv.conf /usr/sandbox/etc

 4. Working(!) mail config (hostname, sendmail.cf):

    # cp /etc/mail/sendmail.cf /usr/sandbox/etc/mail

 5. /etc/localtime (for security/smtpd):

    # ln -sf /usr/share/zoneinfo/UTC /usr/sandbox/etc/localtime

 6. /usr/src (system sources, rarely used by packages if at all:

    # ln -s ../disk1/cvs .
              # ln -s cvs/src-2.0 src

 7. Create /var/db/pkg (not part of default install):

    # mkdir /usr/sandbox/var/db/pkg

 8. Create /usr/pkg (not part of default install):

    # mkdir /usr/sandbox/usr/pkg

 9. Checkout pkgsrc via cvs into /usr/sandbox/usr/pkgsrc:

    # cd /usr/sandbox/usr
    # cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -d -P pkgsrc


    Do not mount/link this to the copy of your pkgsrc tree you do development
    in, as this will likely cause problems!

10. Make /usr/sandbox/usr/pkgsrc/packages and .../distfiles point somewhere
    appropriate. NFS- and/or nullfs-mounts may come in handy!

11. Edit mk.conf, see Section 7.3.1.2, "mk.conf".

12. Adjust mk/bulk/build.conf to suit your needs.

When the chroot sandbox is set up, you can start the build with the following
steps:

# cd /usr/sandbox/usr/pkgsrc
# sh mk/bulk/do-sandbox-build


This will just jump inside the sandbox and start building. At the end of the
build, mail will be sent with the results of the build. Created binary pkgs
will be in /usr/sandbox/usr/pkgsrc/packages (wherever that points/mounts to/
from).

7.3.7. Building a partial set of packages

In addition to building a complete set of all packages in pkgsrc, the pkgsrc/mk
/bulk/build script may be used to build a subset of the packages contained in
pkgsrc. By setting SPECIFIC_PKGS in mk.conf, the variables

  * SITE_SPECIFIC_PKGS

  * HOST_SPECIFIC_PKGS

  * GROUP_SPECIFIC_PKGS

  * USER_SPECIFIC_PKGS

will define the set of packages which should be built. The bulk build code will
also include any packages which are needed as dependencies for the explicitly
listed packages.

One use of this is to do a bulk build with SPECIFIC_PKGS in a chroot sandbox
periodically to have a complete set of the binary packages needed for your site
available without the overhead of building extra packages that are not needed.

7.3.8. Uploading results of a bulk build

This section describes how pkgsrc developers can upload binary pkgs built by
bulk builds to ftp.NetBSD.org.

If you would like to automatically create checksum files for the binary
packages you intend to upload, remember to set MKSUMS=yes in your mk/bulk/
build.conf.

If you would like to PGP sign the checksum files (highly recommended!),
remember to set SIGN_AS=username@NetBSD.org in your mk/bulk/build.conf. This
will prompt you for your GPG password to sign the files before uploading
everything.

Then, make sure that you have RSYNC_DST set properly in your mk/bulk/build.conf
file, i.e. adjust it to something like one of the following:

RSYNC_DST=ftp.NetBSD.org:/pub/pkgsrc/packages/NetBSD/arch/a.b.c-20xxQy/upload

Please use appropriate values for "20xxQy" (the branch), "a.b.c" (the OS
version) and "arch" here. If your login on ftp.NetBSD.org is different from
your local login, write your login directly into the variable, e.g. my local
account is "feyrer", but for my login "hubertf", I use:

RSYNC_DST=hubertf@ftp.NetBSD.org:/pub/pkgsrc/packages/NetBSD/arch/a.b.c-20xxQy/upload

A separate upload directory is used here to allow "closing" the directory
during upload. To do so, run the following command on ftp.NetBSD.org next:

nbftp% mkdir -p -m 750 /pub/pkgsrc/packages/NetBSD/arch/a.b.c-20xxQy/upload

Before uploading the binary pkgs, ssh authentication needs to be set up. This
example shows how to set up temporary keys for the root account inside the
sandbox (assuming that no keys should be present there usually):

# chroot /usr/sandbox
chroot-# rm $HOME/.ssh/id-dsa*
chroot-# ssh-keygen -t rsa
chroot-# cat $HOME/.ssh/id-rsa.pub


Now take the output of id-rsa.pub and append it to your ~/.ssh/authorized_keys
file on ftp.NetBSD.org. You should remove the key after the upload is done!

Next, test if your ssh connection really works:

chroot-# ssh ftp.NetBSD.org date

Use "-l yourNetBSDlogin" here as appropriate!

Now after all this works, you can exit the sandbox and start the upload:

chroot-# exit
# cd /usr/sandbox/usr/pkgsrc
# sh mk/bulk/do-sandbox-upload


The upload process may take quite some time. Use ls(1) or du(1) on the FTP
server to monitor progress of the upload. The upload script will take care of
not uploading restricted packages.

After the upload has ended, first thing is to revoke ssh access:

nbftp% vi ~/.ssh/authorized_keys
      Gdd:x!

Use whatever is needed to remove the key you've entered before! Last, move the
uploaded packages out of the upload directory to have them accessible to
everyone:

nbftp% cd /pub/pkgsrc/packages/NetBSD/arch/a.b.c-20xxQy
nbftp% mv upload/* .
nbftp% rmdir upload
nbftp% chgrp -R netbsd .
nbftp% find . -type d | xargs chmod 775


7.4. Running a pbulk-style bulk build

Running a pbulk-style bulk build works roughly as follows:

  * First, build the pbulk infrastructure in a fresh pkgsrc location.

  * Then, build each of the packages from a clean installation directory using
    the infrastructure.

7.4.1. Preparation

First, you need to create a pkgsrc installation for the pbulk infrastructure.
No matter on which platform you are (even on NetBSD), you should bootstrap into
its own directory. Let's take the directory /usr/pbulk or $HOME/pbulk for it.
This installation will be bootstrapped and all the tools that are required for
the bulk build will be installed there.

$ cd /usr/pkgsrc
$ ./bootstrap/bootstrap --prefix=/usr/pbulk --varbase=/usr/pbulk/var --workdir=/tmp/pbulk-bootstrap
$ rm -rf /tmp/pbulk-bootstrap

Now the basic environment for the pbulk infrastructure is installed. The
specific tools are still missing. This is a good time to edit the pkgsrc
configuration file /usr/pbulk/etc/mk.conf to fit your needs. Typical things you
might set now are:

  * PKG_DEVELOPER=yes, to enable many consistency checks,

  * WRKOBJDIR=/tmp/pbulk-outer, to keep /usr/pkgsrc free from any
    modifications,

  * DISTDIR=/distfiles, to have only one directory in which all distfiles (for
    the infrastructure and for the actual packages) are downloaded,

  * ACCEPTABLE_LICENSES+=..., to select some licenses additional to the usual
    Free/Open Source licenses that are acceptable to you,

  * SKIP_LICENSE_CHECK=yes, to bypass the license checks.

Now you are ready to build the rest of the pbulk infrastructure.

$ cd pkgtools/pbulk
$ /usr/pbulk/bin/bmake install
$ rm -rf /tmp/pbulk-outer

Now the pbulk infrastructure is built and installed. It still needs to be
configured, and after some more preparation, we will be able to start the real
bulk build.

7.4.2. Configuration

TODO; see pkgsrc/doc/HOWTO-pbulk for more information.

TODO: continue writing

7.5. Creating a multiple CD-ROM packages collection

After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set
of the resulting binary packages to assist in installing packages on other
machines. The pkgtools/cdpack package provides a simple tool for creating the
ISO 9660 images. cdpack arranges the packages on the CD-ROMs in a way that
keeps all the dependencies for a given package on the same CD as that package.

7.5.1. Example of cdpack

Complete documentation for cdpack is found in the cdpack(1) man page. The
following short example assumes that the binary packages are left in /usr/
pkgsrc/packages/All and that sufficient disk space exists in /u2 to hold the
ISO 9660 images.

# mkdir /u2/images
# pkg_add /usr/pkgsrc/packages/All/cdpack
# cdpack /usr/pkgsrc/packages/All /u2/images


If you wish to include a common set of files (COPYRIGHT, README, etc.) on each
CD in the collection, then you need to create a directory which contains these
files. e.g.

# mkdir /tmp/common
# echo "This is a README" > /tmp/common/README
# echo "Another file" > /tmp/common/COPYING
# mkdir /tmp/common/bin
# echo "#!/bin/sh" > /tmp/common/bin/myscript
# echo "echo Hello world" >> /tmp/common/bin/myscript
# chmod 755 /tmp/common/bin/myscript


Now create the images:

# cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/images

Each image will contain README, COPYING, and bin/myscript in their root
directories.

Chapter 8. Directory layout of the installed files

Table of Contents

8.1. File system layout in ${LOCALBASE}
8.2. File system layout in ${VARBASE}

The files that are installed by pkgsrc are organized in a way that is similar
to what you find in the /usr directory of the base system. But some details are
different. This is because pkgsrc initially came from FreeBSD and had adopted
its file system hierarchy. Later it was largely influenced by NetBSD. But no
matter which operating system you are using pkgsrc with, you can expect the
same layout for pkgsrc.

There are mainly four root directories for pkgsrc, which are all configurable
in the bootstrap/bootstrap script. When pkgsrc has been installed as root, the
default locations are:

LOCALBASE=              /usr/pkg
PKG_SYSCONFBASE=        /usr/pkg/etc
VARBASE=                /var
PKG_DBDIR=              /var/db/pkg

In unprivileged mode (when pkgsrc has been installed as any other user), the
default locations are:

LOCALBASE=              ${HOME}/pkg
PKG_SYSCONFBASE=        ${HOME}/pkg/etc
VARBASE=                ${HOME}/pkg/var
PKG_DBDIR=              ${HOME}/pkg/var/db/pkg

What these four directories are for, and what they look like is explained
below.

  * LOCALBASE corresponds to the /usr directory in the base system. It is the "
    main" directory where the files are installed and contains the well-known
    subdirectories like bin, include, lib, share and sbin.

  * VARBASE corresponds to /var in the base system. Some programs (especially
    games, network daemons) need write access to it during normal operation.

  * PKG_SYSCONFDIR corresponds to /etc in the base system. It contains
    configuration files of the packages, as well as pkgsrc's mk.conf itself.

8.1. File system layout in ${LOCALBASE}

The following directories exist in a typical pkgsrc installation in $
{LOCALBASE}.

bin

    Contains executable programs that are intended to be directly used by the
    end user.

emul

    Contains files for the emulation layers of various other operating systems,
    especially for NetBSD.

etc (the usual location of ${PKG_SYSCONFDIR})

    Contains the configuration files.

include

    Contains headers for the C and C++ programming languages.

info

    Contains GNU info files of various packages.

lib

    Contains shared and static libraries.

libdata

    Contains data files that don't change after installation. Other data files
    belong into ${VARBASE}.

libexec

    Contains programs that are not intended to be used by end users, such as
    helper programs or network daemons.

libexec/cgi-bin

    Contains programs that are intended to be executed as CGI scripts by a web
    server.

man (the usual value of ${PKGMANDIR})

    Contains brief documentation in form of manual pages.

sbin

    Contains programs that are intended to be used only by the super-user.

share

    Contains platform-independent data files that don't change after
    installation.

share/doc

    Contains documentation files provided by the packages.

share/examples

    Contains example files provided by the packages. Among others, the original
    configuration files are saved here and copied to ${PKG_SYSCONFDIR} during
    installation.

share/examples/rc.d

    Contains the original files for rc.d scripts.

var (the usual location of ${VARBASE})

    Contains files that may be modified after installation.

8.2. File system layout in ${VARBASE}

db/pkg (the usual location of ${PKG_DBDIR})

    Contains information about the currently installed packages.

games

    Contains highscore files.

log

    Contains log files.

run

    Contains informational files about daemons that are currently running.

Chapter 9. Frequently Asked Questions

Table of Contents

9.1. Are there any mailing lists for pkg-related discussion?
9.2. Where's the pkgviews documentation?
9.3. Utilities for package management (pkgtools)
9.4. How to use pkgsrc as non-root
9.5. How to resume transfers when fetching distfiles?
9.6. How can I install/use modular X.org from pkgsrc?
9.7. How to fetch files from behind a firewall
9.8. How to fetch files from HTTPS sites
9.9. How do I tell make fetch to do passive FTP?
9.10. How to fetch all distfiles at once
9.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
9.12. What does "Could not find bsd.own.mk" mean?
9.13. Using 'sudo' with pkgsrc
9.14. How do I change the location of configuration files?
9.15. Automated security checks
9.16. Why do some packages ignore my CFLAGS?
9.17. A package does not build. What shall I do?
9.18. What does "Makefile appears to contain unresolved cvs/rcs/??? merge
    conflicts" mean?

This section contains hints, tips & tricks on special things in pkgsrc that we
didn't find a better place for in the previous chapters, and it contains items
for both pkgsrc users and developers.

9.1. Are there any mailing lists for pkg-related discussion?

The following mailing lists may be of interest to pkgsrc users:

  * pkgsrc-users: This is a general purpose list for most issues regarding
    pkgsrc, regardless of platform, e.g. soliciting user help for pkgsrc
    configuration, unexpected build failures, using particular packages,
    upgrading pkgsrc installations, questions regarding the pkgsrc release
    branches, etc. General announcements or proposals for changes that impact
    the pkgsrc user community, e.g. major infrastructure changes, new features,
    package removals, etc., may also be posted.

  * pkgsrc-bulk: A list where the results of pkgsrc bulk builds are sent and
    discussed.

  * pkgsrc-changes: This list is for those who are interested in getting a
    commit message for every change committed to pkgsrc. It is also available
    in digest form, meaning one daily message containing all commit messages
    for changes to the package source tree in that 24 hour period.

To subscribe, do:

% echo subscribe listname | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from http://
mail-index.NetBSD.org/.

9.2. Where's the pkgviews documentation?

Pkgviews is tightly integrated with buildlink. You can find a pkgviews User's
guide in pkgsrc/mk/buildlink3/PKGVIEWS_UG.

9.3. Utilities for package management (pkgtools)

The directory pkgsrc/pkgtools contains a number of useful utilities for both
users and developers of pkgsrc. This section attempts only to make the reader
aware of the utilities and when they might be useful, and not to duplicate the
documentation that comes with each package.

Utilities used by pkgsrc (automatically installed when needed):

  * pkgtools/x11-links: Symlinks for use by buildlink.

OS tool augmentation (automatically installed when needed):

  * pkgtools/digest: Calculates various kinds of checksums (including SHA1).

  * pkgtools/libnbcompat: Compatibility library for pkgsrc tools.

  * pkgtools/mtree: Installed on non-BSD systems due to lack of native mtree.

  * pkgtools/pkg_install: Up-to-date replacement for /usr/sbin/pkg_install, or
    for use on operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

  * pkgtools/pkg_tarup: Create a binary package from an already-installed
    package. Used by make replace to save the old package.

  * pkgtools/dfdisk: Adds extra functionality to pkgsrc, allowing it to fetch
    distfiles from multiple locations. It currently supports the following
    methods: multiple CD-ROMs and network FTP/HTTP connections.

  * devel/cpuflags: Determine the best compiler flags to optimise code for your
    current CPU and compiler.

Utilities for keeping track of installed packages, being up to date, etc:

  * pkgtools/pkgin: A package update tool similar to apt(1). Download, install,
    and upgrade binary packages easily.

  * pkgtools/pkg_chk: Reports on packages whose installed versions do not match
    the latest pkgsrc entries.

  * pkgtools/pkgdep: Makes dependency graphs of packages, to aid in choosing a
    strategy for updating.

  * pkgtools/pkgdepgraph: Makes graphs from the output of pkgtools/pkgdep (uses
    graphviz).

  * pkgtools/pkglint: The pkglint(1) program checks a pkgsrc entry for errors.

  * pkgtools/lintpkgsrc: The lintpkgsrc(1) program does various checks on the
    complete pkgsrc system.

  * pkgtools/pkgsurvey: Report what packages you have installed.

Utilities for people maintaining or creating individual packages:

  * pkgtools/pkgdiff: Automate making and maintaining patches for a package
    (includes pkgdiff, pkgvi, mkpatches, etc.).

  * pkgtools/url2pkg: Aids in converting to pkgsrc.

Utilities for people maintaining pkgsrc (or: more obscure pkg utilities)

  * pkgtools/pkg_comp: Build packages in a chrooted area.

  * pkgtools/libkver: Spoof kernel version for chrooted cross builds.

9.4. How to use pkgsrc as non-root

If you want to use pkgsrc as non-root user, you can set some variables to make
pkgsrc work under these conditions. At the very least, you need to set
UNPRIVILEGED to "yes"; this will turn on unprivileged mode and set multiple
related variables to allow installation of packages as non-root.

In case the defaults are not enough, you may want to tune some other variables
used. For example, if the automatic user/group detection leads to incorrect
values (or not the ones you would like to use), you can change them by setting
UNPRIVILEGED_USER and UNPRIVILEGED_GROUP respectively.

As regards bootstrapping, please note that the bootstrap script will ease
non-root configuration when given the "--ignore-user-check" flag, as it will
choose and use multiple default directories under ~/pkg as the installation
targets. These directories can be overridden by the "--prefix" flag provided by
the script, as well as some others that allow finer tuning of the tree layout.

9.5. How to resume transfers when fetching distfiles?

By default, resuming transfers in pkgsrc is disabled, but you can enable this
feature by adding the option PKG_RESUME_TRANSFERS=YES into mk.conf. If, during
a fetch step, an incomplete distfile is found, pkgsrc will try to resume it.

You can also use a different program than the platform default program by
changing the FETCH_USING variable. You can specify the program by using of ftp,
fetch, wget or curl. Alternatively, fetching can be disabled by using the value
manual. A value of custom disables the system defaults and dependency tracking
for the fetch program. In that case you have to provide FETCH_CMD,
FETCH_BEFORE_ARGS, FETCH_RESUME_ARGS, FETCH_OUTPUT_ARGS, FETCH_AFTER_ARGS.

For example, if you want to use wget to download, you'll have to use something
like:

FETCH_USING=    wget

9.6. How can I install/use modular X.org from pkgsrc?

If you want to use modular X.org from pkgsrc instead of your system's own X11
(/usr/X11R6, /usr/openwin, ...) you will have to add the following line into
mk.conf:

X11_TYPE=modular

Note

The DragonFly operating system defaults to using modular X.org from pkgsrc.

9.7. How to fetch files from behind a firewall

If you are sitting behind a firewall which does not allow direct connections to
Internet hosts (i.e. non-NAT), you may specify the relevant proxy hosts. This
is done using an environment variable in the form of a URL, e.g. in Amdahl, the
machine "orpheus.amdahl.com" is one of the firewalls, and it uses port 80 as
the proxy port number. So the proxy environment variables are:

ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/

9.8. How to fetch files from HTTPS sites

Some fetch tools are not prepared to support HTTPS by default (for example, the
one in NetBSD 6.0), or the one installed by the pkgsrc bootstrap (to avoid an
openssl dependency that low in the dependency graph).

Usually you won't notice, because distribution files are mirrored weekly to "
ftp.NetBSD.org", but that might not be often enough if you are following
pkgsrc-current. In that case, set FETCH_USING in your mk.conf file to "curl" or
"wget", which are both compiled with HTTPS support by default. Of course, these
tools need to be installed before you can use them this way.

9.9. How do I tell make fetch to do passive FTP?

This depends on which utility is used to retrieve distfiles. From bsd.pkg.mk,
FETCH_CMD is assigned the first available command from the following list:

  * ${LOCALBASE}/bin/ftp

  * /usr/bin/ftp

On a default NetBSD installation, this will be /usr/bin/ftp, which
automatically tries passive connections first, and falls back to active
connections if the server refuses to do passive. For the other tools, add the
following to your mk.conf file: PASSIVE_FETCH=1.

Having that option present will prevent /usr/bin/ftp from falling back to
active transfers.

9.10. How to fetch all distfiles at once

You would like to download all the distfiles in a single batch from work or
university, where you can't run a make fetch. There is an archive of distfiles
on ftp.NetBSD.org, but downloading the entire directory may not be appropriate.

The answer here is to do a make fetch-list in /usr/pkgsrc or one of its
subdirectories, carry the resulting list to your machine at work/school and use
it there. If you don't have a NetBSD-compatible ftp(1) (like tnftp) at work,
don't forget to set FETCH_CMD to something that fetches a URL:

At home:

% cd /usr/pkgsrc
% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles >/tmp/fetch.sh
% scp /tmp/fetch.sh work:/tmp

At work:

% sh /tmp/fetch.sh

then tar up /tmp/distfiles and take it home.

If you have a machine running NetBSD, and you want to get all distfiles (even
ones that aren't for your machine architecture), you can do so by using the
above-mentioned make fetch-list approach, or fetch the distfiles directly by
running:

% make mirror-distfiles

If you even decide to ignore NO_{SRC,BIN}_ON_{FTP,CDROM}, then you can get
everything by running:

% make fetch NO_SKIP=yes

9.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?

When compiling the pkgtools/pkg_install package, you get the error from make
that it doesn't know how to make /usr/share/tmac/tmac.andoc? This indicates
that you don't have installed the "text" set (nroff, ...) from the NetBSD base
distribution on your machine. It is recommended to do that to format man pages.

In the case of the pkgtools/pkg_install package, you can get away with setting
NOMAN=YES either in the environment or in mk.conf.

9.12. What does "Could not find bsd.own.mk" mean?

You didn't install the compiler set, comp.tgz, when you installed your NetBSD
machine. Please get and install it, by extracting it in /:

# cd /
# tar --unlink -zxvpf .../comp.tgz

comp.tgz is part of every NetBSD release. Get the one that corresponds to your
release (determine via uname -r).

9.13. Using 'sudo' with pkgsrc

When installing packages as non-root user and using the just-in-time su(1)
feature of pkgsrc, it can become annoying to type in the root password for each
required package installed. To avoid this, the sudo package can be used, which
does password caching over a limited time. To use it, install sudo (either as
binary package or from security/sudo) and then put the following into your
mk.conf, somewhere after the definition of the LOCALBASE variable:

.if exists(${LOCALBASE}/bin/sudo)
SU_CMD=        ${LOCALBASE}/bin/sudo /bin/sh -c
.endif

9.14. How do I change the location of configuration files?

As the system administrator, you can choose where configuration files are
installed. The default settings make all these files go into ${PREFIX}/etc or
some of its subdirectories; this may be suboptimal depending on your
expectations (e.g., a read-only, NFS-exported PREFIX with a need of per-machine
configuration of the provided packages).

In order to change the defaults, you can modify the PKG_SYSCONFBASE variable
(in mk.conf) to point to your preferred configuration directory; some common
examples include /etc or /etc/pkg.

Furthermore, you can change this value on a per-package basis by setting the
PKG_SYSCONFDIR.${PKG_SYSCONFVAR} variable. PKG_SYSCONFVAR's value usually
matches the name of the package you would like to modify, that is, the contents
of PKGBASE.

Note that after changing these settings, you must rebuild and reinstall any
affected packages.

9.15. Automated security checks

Please be aware that there can often be bugs in third-party software, and some
of these bugs can leave a machine vulnerable to exploitation by attackers. In
an effort to lessen the exposure, the NetBSD packages team maintains a database
of known-exploits to packages which have at one time been included in pkgsrc.
The database can be downloaded automatically, and a security audit of all
packages installed on a system can take place. To do this, refer to the
following two tools (installed as part of the pkgtools/pkg_install package):

 1. pkg_admin fetch-pkg-vulnerabilities, an easy way to download a list of the
    security vulnerabilities information. This list is kept up to date by the
    pkgsrc security team, and is distributed from the NetBSD ftp server:

    ftp://ftp.NetBSD.org/pkgsrc/distfiles/pkg-vulnerabilities

 2. pkg_admin audit, an easy way to audit the current machine, checking each
    known vulnerability. If a vulnerable package is installed, it will be shown
    by output to stdout, including a description of the type of vulnerability,
    and a URL containing more information.

Use of these tools is strongly recommended! After "pkg_install" is installed,
please read the package's message, which you can get by running pkg_info -D
pkg_install.

If this package is installed, pkgsrc builds will use it to perform a security
check before building any package. See Section 5.2, "Variables affecting the
build process" for ways to control this check.

9.16. Why do some packages ignore my CFLAGS?

When you add your own preferences to the CFLAGS variable in your mk.conf, these
flags are passed in environment variables to the ./configure scripts and to
make(1). Some package authors ignore the CFLAGS from the environment variable
by overriding them in the Makefiles of their package.

Currently there is no solution to this problem. If you really need the package
to use your CFLAGS you should run make patch in the package directory and then
inspect any Makefile and Makefile.in for whether they define CFLAGS explicitly.
Usually you can remove these lines. But be aware that some "smart" programmers
write so bad code that it only works for the specific combination of CFLAGS
they have chosen.

9.17. A package does not build. What shall I do?

 1. Make sure that your copy of pkgsrc is consistent. A case that occurs often
    is that people only update pkgsrc in parts, because of performance reasons.
    Since pkgsrc is one large system, not a collection of many small systems,
    there are sometimes changes that only work when the whole pkgsrc tree is
    updated.

 2. Make sure that you don't have any CVS conflicts. Search for "<<<<<<" or "
    >>>>>>" in all your pkgsrc files.

 3. Make sure that you don't have old copies of the packages extracted. Run 
    make clean clean-depends to verify this.

 4. If the problem still exists, write a mail to the pkgsrc-users mailing list.

9.18. What does "Makefile appears to contain unresolved cvs/rcs/??? merge
conflicts" mean?

You have modified a file from pkgsrc, and someone else has modified that same
file afterwards in the CVS repository. Both changes are in the same region of
the file, so when you updated pkgsrc, the cvs command marked the conflicting
changes in the file. Because of these markers, the file is no longer a valid
Makefile.

Have a look at that file, and if you don't need your local changes anymore, you
can remove that file and run cvs -q update -dP in that directory to download
the current version.

Part II. The pkgsrc developer's guide

This part of the book deals with creating and modifying packages. It starts
with a "HOWTO"-like guide on creating a new package. The remaining chapters are
more like a reference manual for pkgsrc.

Table of Contents

10. Creating a new pkgsrc package from scratch

    10.1. Common types of packages

        10.1.1. Perl modules
        10.1.2. KDE applications
        10.1.3. Python modules and programs

    10.2. Examples

        10.2.1. How the www/nvu package came into pkgsrc

11. Package components - files, directories and contents

    11.1. Makefile
    11.2. distinfo
    11.3. patches/*

        11.3.1. Structure of a single patch file
        11.3.2. Creating patch files
        11.3.3. Sources where the patch files come from
        11.3.4. Patching guidelines
        11.3.5. Feedback to the author

    11.4. Other mandatory files
    11.5. Optional files

        11.5.1. Files affecting the binary package
        11.5.2. Files affecting the build process
        11.5.3. Files affecting nothing at all

    11.6. work*
    11.7. files/*

12. Programming in Makefiles

    12.1. Caveats
    12.2. Makefile variables

        12.2.1. Naming conventions

    12.3. Code snippets

        12.3.1. Adding things to a list
        12.3.2. Converting an internal list into an external list
        12.3.3. Passing variables to a shell command
        12.3.4. Quoting guideline
        12.3.5. Workaround for a bug in BSD Make

13. PLIST issues

    13.1. RCS ID
    13.2. Semi-automatic PLIST generation
    13.3. Tweaking output of make print-PLIST
    13.4. Variable substitution in PLIST
    13.5. Man page compression
    13.6. Changing PLIST source with PLIST_SRC
    13.7. Platform-specific and differing PLISTs
    13.8. Sharing directories between packages

14. Buildlink methodology

    14.1. Converting packages to use buildlink3
    14.2. Writing buildlink3.mk files

        14.2.1. Anatomy of a buildlink3.mk file
        14.2.2. Updating BUILDLINK_API_DEPENDS.pkg and BUILDLINK_ABI_DEPENDS.
            pkg in buildlink3.mk files

    14.3. Writing builtin.mk files

        14.3.1. Anatomy of a builtin.mk file
        14.3.2. Global preferences for native or pkgsrc software

15. The pkginstall framework

    15.1. Files and directories outside the installation prefix

        15.1.1. Directory manipulation
        15.1.2. File manipulation

    15.2. Configuration files

        15.2.1. How PKG_SYSCONFDIR is set
        15.2.2. Telling the software where configuration files are
        15.2.3. Patching installations
        15.2.4. Disabling handling of configuration files

    15.3. System startup scripts

        15.3.1. Disabling handling of system startup scripts

    15.4. System users and groups
    15.5. System shells

        15.5.1. Disabling shell registration

    15.6. Fonts

        15.6.1. Disabling automatic update of the fonts databases

16. Options handling

    16.1. Global default options
    16.2. Converting packages to use bsd.options.mk
    16.3. Option Names
    16.4. Determining the options of dependencies

17. The build process

    17.1. Introduction
    17.2. Program location
    17.3. Directories used during the build process
    17.4. Running a phase
    17.5. The fetch phase

        17.5.1. What to fetch and where to get it from
        17.5.2. How are the files fetched?

    17.6. The checksum phase
    17.7. The extract phase
    17.8. The patch phase
    17.9. The tools phase
    17.10. The wrapper phase
    17.11. The configure phase
    17.12. The build phase
    17.13. The test phase
    17.14. The install phase
    17.15. The package phase
    17.16. Cleaning up
    17.17. Other helpful targets

18. Tools needed for building or running

    18.1. Tools for pkgsrc builds
    18.2. Tools needed by packages
    18.3. Tools provided by platforms
    18.4. Questions regarding the tools

19. Making your package work

    19.1. General operation

        19.1.1. Portability of packages
        19.1.2. How to pull in user-settable variables from mk.conf
        19.1.3. User interaction
        19.1.4. Handling licenses
        19.1.5. Restricted packages
        19.1.6. Handling dependencies
        19.1.7. Handling conflicts with other packages
        19.1.8. Packages that cannot or should not be built
        19.1.9. Packages which should not be deleted, once installed
        19.1.10. Handling packages with security problems
        19.1.11. How to handle incrementing versions when fixing an existing
            package
        19.1.12. Substituting variable text in the package files (the SUBST
            framework)

    19.2. Fixing problems in the fetch phase

        19.2.1. Packages whose distfiles aren't available for plain downloading
        19.2.2. How to handle modified distfiles with the 'old' name

    19.3. Fixing problems in the configure phase

        19.3.1. Shared libraries - libtool
        19.3.2. Using libtool on GNU packages that already support libtool
        19.3.3. GNU Autoconf/Automake

    19.4. Programming languages

        19.4.1. C, C++, and Fortran
        19.4.2. Java
        19.4.3. Packages containing perl scripts
        19.4.4. Packages containing shell scripts
        19.4.5. Other programming languages

    19.5. Fixing problems in the build phase

        19.5.1. Compiling C and C++ code conditionally
        19.5.2. How to handle compiler bugs
        19.5.3. Undefined reference to "..."
        19.5.4. Running out of memory

    19.6. Fixing problems in the install phase

        19.6.1. Creating needed directories
        19.6.2. Where to install documentation
        19.6.3. Installing highscore files
        19.6.4. Adding DESTDIR support to packages
        19.6.5. Packages with hardcoded paths to other interpreters
        19.6.6. Packages installing perl modules
        19.6.7. Packages installing info files
        19.6.8. Packages installing man pages
        19.6.9. Packages installing GConf data files
        19.6.10. Packages installing scrollkeeper/rarian data files
        19.6.11. Packages installing X11 fonts
        19.6.12. Packages installing GTK2 modules
        19.6.13. Packages installing SGML or XML data
        19.6.14. Packages installing extensions to the MIME database
        19.6.15. Packages using intltool
        19.6.16. Packages installing startup scripts
        19.6.17. Packages installing TeX modules
        19.6.18. Packages supporting running binaries in emulation
        19.6.19. Packages installing hicolor theme icons
        19.6.20. Packages installing desktop files

    19.7. Marking packages as having problems

20. Debugging
21. Submitting and Committing

    21.1. Submitting binary packages
    21.2. Submitting source packages (for non-NetBSD-developers)
    21.3. General notes when adding, updating, or removing packages
    21.4. Committing: Adding a package to CVS
    21.5. Updating a package to a newer version
    21.6. Renaming a package in pkgsrc
    21.7. Moving a package in pkgsrc

22. Frequently Asked Questions
23. GNOME packaging and porting

    23.1. Meta packages
    23.2. Packaging a GNOME application
    23.3. Updating GNOME to a newer version
    23.4. Patching guidelines

Chapter 10. Creating a new pkgsrc package from scratch

Table of Contents

10.1. Common types of packages

    10.1.1. Perl modules
    10.1.2. KDE applications
    10.1.3. Python modules and programs

10.2. Examples

    10.2.1. How the www/nvu package came into pkgsrc

When you find a package that is not yet in pkgsrc, you most likely have a URL
from where you can download the source code. Starting with this URL, creating a
package involves only a few steps.

 1. First, install the packages pkgtools/url2pkg and pkgtools/pkglint.

 2. Then, choose one of the top-level directories as the category in which you
    want to place your package. You can also create a directory of your own
    (maybe called local). In that category directory, create another directory
    for your package and change into it.

 3. Run the program url2pkg, which will ask you for a URL. Enter the URL of the
    distribution file (in most cases a .tar.gz file) and watch how the basic
    ingredients of your package are created automatically. The distribution
    file is extracted automatically to fill in some details in the Makefile
    that would otherwise have to be done manually.

 4. Examine the extracted files to determine the dependencies of your package.
    Ideally, this is mentioned in some README file, but things may differ. For
    each of these dependencies, look where it exists in pkgsrc, and if there is
    a file called buildlink3.mk in that directory, add a line to your package
    Makefile which includes that file just before the last line. If the
    buildlink3.mk file does not exist, it must be created first. The
    buildlink3.mk file makes sure that the package's include files and
    libraries are provided.

    If you just need binaries from a package, add a DEPENDS line to the
    Makefile, which specifies the version of the dependency and where it can be
    found in pkgsrc. This line should be placed in the third paragraph. If the
    dependency is only needed for building the package, but not when using it,
    use BUILD_DEPENDS instead of DEPENDS. Your package may then look like this:

    [...]

    BUILD_DEPENDS+= lua>=5.0:../../lang/lua
    DEPENDS+=       screen-[0-9]*:../../misc/screen
    DEPENDS+=       screen>=4.0:../../misc/screen

    [...]

    .include "../../category/package/buildlink3.mk"
    .include "../../devel/glib2/buildlink3.mk"
    .include "../../mk/bsd.pkg.mk"

 5. Run pkglint to see what things still need to be done to make your package a
    "good" one. If you don't know what pkglint's warnings want to tell you, try
    pkglint --explain or pkglint -e, which outputs additional explanations.

 6. In many cases the package is not yet ready to build. You can find
    instructions for the most common cases in the next section, Section 10.1,
    "Common types of packages". After you have followed the instructions over
    there, you can hopefully continue here.

 7. Run bmake clean to clean the working directory from the extracted files.
    Besides these files, a lot of cache files and other system information has
    been saved in the working directory, which may become wrong after you
    edited the Makefile.

 8. Now, run bmake to build the package. For the various things that can go
    wrong in this phase, consult Chapter 19, Making your package work.

 9. When the package builds fine, the next step is to install the package. Run 
    bmake install and hope that everything works.

10. Up to now, the file PLIST, which contains a list of the files that are
    installed by the package, is nearly empty. Run bmake print-PLIST >PLIST to
    generate a probably correct list. Check the file using your preferred text
    editor to see if the list of files looks plausible.

11. Run pkglint again to see if the generated PLIST contains garbage or not.

12. When you ran bmake install, the package has been registered in the database
    of installed files, but with an empty list of files. To fix this, run bmake
    deinstall and bmake install again. Now the package is registered with the
    list of files from PLIST.

13. Run bmake package to create a binary package from the set of installed
    files.

10.1. Common types of packages

10.1.1. Perl modules

Simple Perl modules are handled automatically by url2pkg, including
dependencies.

10.1.2. KDE applications

KDE applications should always include meta-pkgs/kde3/kde3.mk, which contains
numerous settings that are typical of KDE packages.

10.1.3. Python modules and programs

Python modules and programs packages are easily created using a set of
predefined variables.

If some Python versions are not supported by the software, set the
PYTHON_VERSIONS_INCOMPATIBLE variable to the Python versions that are not
supported, e.g.

PYTHON_VERSIONS_INCOMPATIBLE=       26

If the packaged software is a Python module, include "../../lang/python/
extension.mk". In this case, the package directory should be called "
py-software" and PKGNAME should be set to "${PYPKGPREFIX}-${DISTNAME}", e.g.

DISTNAME=   foopymodule-1.2.10
PKGNAME=    ${PYPKGPREFIX}-${DISTNAME}

If it is an application, include "../../lang/python/application.mk". In order
to correctly set the path to the Python interpreter, use the REPLACE_PYTHON
variable and set it to the list of files (paths relative to WRKSRC) that must
be corrected. For example:

REPLACE_PYTHON=   *.py

Most Python packages use either "distutils" or easy-setup ("eggs"). If the
software uses "distutils", include "../../lang/python/distutils.mk". so pkgsrc
will use this framework. "distutils" uses a script called setup.py, if the "
distutils" driver is not called setup.py, set the PYSETUP variable to the name
of the script.

Otherwise, if the packaged software is egg-aware, you only need to include "..
/../lang/python/egg.mk".

Some Python modules have separate distributions for Python-2.x and Python-3.x
support. In pkgsrc this is handled by the versioned_dependencies.mk file. Set
PYTHON_VERSIONED_DEPENDENCIES to the list of packages that should be depended
upon and include "../../lang/python/versioned_dependencies.mk", then the pkgsrc
infrastructure will depend on the appropriate package version. For example:

PYTHON_VERSIONED_DEPENDENCIES=dateutil dns

Look inside versioned_dependencies.mk for a list of supported packages.

10.2. Examples

10.2.1. How the www/nvu package came into pkgsrc

10.2.1.1. The initial package

Looking at the file pkgsrc/doc/TODO, I saw that the "nvu" package has not yet
been imported into pkgsrc. As the description says it has to do with the web,
the obvious choice for the category is "www".

$ mkdir www/nvu
$ cd www/nvu

The web site says that the sources are available as a tar file, so I fed that
URL to the url2pkg program:

$ url2pkg http://cvs.nvu.com/download/nvu-1.0-sources.tar.bz2

My editor popped up, and I added a PKGNAME line below the DISTNAME line, as the
package name should not have the word "sources" in it. I also filled in the
MAINTAINER, HOMEPAGE and COMMENT fields. Then the package Makefile looked like
that:

# $NetBSD$
#

DISTNAME=       nvu-1.0-sources
PKGNAME=        nvu-1.0
CATEGORIES=     www
MASTER_SITES=   http://cvs.nvu.com/download/
EXTRACT_SUFX=   .tar.bz2

MAINTAINER=     rillig@NetBSD.org
HOMEPAGE=       http://cvs.nvu.com/
COMMENT=        Web Authoring System

# url2pkg-marker (please do not remove this line.)
.include "../../mk/bsd.pkg.mk"

Then, I quit the editor and watched pkgsrc downloading a large source archive:

url2pkg> Running "make makesum" ...
=> Required installed package digest>=20010302: digest-20060826 found
=> Fetching nvu-1.0-sources.tar.bz2
Requesting http://cvs.nvu.com/download/nvu-1.0-sources.tar.bz2
100% |*************************************| 28992 KB  150.77 KB/s00:00 ETA
29687976 bytes retrieved in 03:12 (150.77 KB/s)
url2pkg> Running "make extract" ...
=> Required installed package digest>=20010302: digest-20060826 found
=> Checksum SHA1 OK for nvu-1.0-sources.tar.bz2
=> Checksum RMD160 OK for nvu-1.0-sources.tar.bz2
work.bacc -> /tmp/roland/pkgsrc/www/nvu/work.bacc
===> Installing dependencies for nvu-1.0
===> Overriding tools for nvu-1.0
===> Extracting for nvu-1.0
url2pkg> Adjusting the Makefile.

Remember to correct CATEGORIES, HOMEPAGE, COMMENT, and DESCR when you're done!

Good luck! (See pkgsrc/doc/pkgsrc.txt for some more help :-)

10.2.1.2. Fixing all kinds of problems to make the package work

Now that the package has been extracted, let's see what's inside it. The
package has a README.txt, but that only says something about mozilla, so it's
probably useless for seeing what dependencies this package has. But since there
is a GNU configure script in the package, let's hope that it will complain
about everything it needs.

$ bmake
=> Required installed package digest>=20010302: digest-20060826 found
=> Checksum SHA1 OK for nvu-1.0-sources.tar.bz2
=> Checksum RMD160 OK for nvu-1.0-sources.tar.bz2
===> Patching for nvu-1.0
===> Creating toolchain wrappers for nvu-1.0
===> Configuring for nvu-1.0
[...]
configure: error: Perl 5.004 or higher is required.
[...]
WARNING: Please add USE_TOOLS+=perl to the package Makefile.
[...]

That worked quite well. So I opened the package Makefile in my editor, and
since it already has a USE_TOOLS line, I just appended "perl" to it. Since the
dependencies of the package have changed now, and since a perl wrapper is
automatically installed in the "tools" phase, I need to build the package from
scratch.

$ bmake clean
===> Cleaning for nvu-1.0
$ bmake
[...]
*** /tmp/roland/pkgsrc/www/nvu/work.bacc/.tools/bin/make is not \
GNU Make.  You will not be able to build Mozilla without GNU Make.
[...]

So I added "gmake" to the USE_TOOLS line and tried again (from scratch).

[...]
checking for GTK - version >= 1.2.0... no
*** Could not run GTK test program, checking why...
[...]

Now to the other dependencies. The first question is: Where is the GTK package
hidden in pkgsrc?

$ echo ../../*/gtk*
[many packages ...]
$ echo ../../*/gtk
../../x11/gtk
$ echo ../../*/gtk2
../../x11/gtk2
$ echo ../../*/gtk2/bui*
../../x11/gtk2/buildlink3.mk

The first try was definitely too broad. The second one had exactly one result,
which is very good. But there is one pitfall with GNOME packages. Before GNOME
2 had been released, there were already many GNOME 1 packages in pkgsrc. To be
able to continue to use these packages, the GNOME 2 packages were imported as
separate packages, and their names usually have a "2" appended. So I checked
whether this was the case here, and indeed it was.

Since the GTK2 package has a buildlink3.mk file, adding the dependency is very
easy. I just inserted an .include line before the last line of the package
Makefile, so that it now looks like this:

[...]
.include "../../x11/gtk2/buildlink3.mk"
.include "../../mk/bsd.pkg.mk

After another bmake clean && bmake, the answer was:

[...]
checking for gtk-config... /home/roland/pkg/bin/gtk-config
checking for GTK - version >= 1.2.0... no
*** Could not run GTK test program, checking why...
*** The test program failed to compile or link. See the file config.log for the
*** exact error that occured. This usually means GTK was incorrectly installed
*** or that you have moved GTK since it was installed. In the latter case, you
*** may want to edit the gtk-config script: /home/roland/pkg/bin/gtk-config
configure: error: Test for GTK failed.
[...]

In this particular case, the assumption that "every package prefers GNOME 2"
had been wrong. The first of the lines above told me that this package really
wanted to have the GNOME 1 version of GTK. If the package had looked for GTK2,
it would have looked for pkg-config instead of gtk-config. So I changed the x11
/gtk2 to x11/gtk in the package Makefile, and tried again.

[...]
cc -o xpidl.o -c -DOSTYPE=\"NetBSD3\" -DOSARCH=\"NetBSD\"  [...]
In file included from xpidl.c:42:
xpidl.h:53:24: libIDL/IDL.h: No such file or directory
In file included from xpidl.c:42:
xpidl.h:132: error: parse error before "IDL_ns"
[...]

The package still does not find all of its dependencies. Now the question is:
Which package provides the libIDL/IDL.h header file?

$ echo ../../*/*idl*
../../devel/py-idle ../../wip/idled ../../x11/acidlaunch
$ echo ../../*/*IDL*
../../net/libIDL

Let's take the one from the second try. So I included the ../../net/libIDL/
buildlink3.mk file and tried again. But the error didn't change. After digging
through some of the code, I concluded that the build process of the package was
broken and couldn't have ever worked, but since the Mozilla source tree is
quite large, I didn't want to fix it. So I added the following to the package
Makefile and tried again:

CPPFLAGS+=              -I${BUILDLINK_PREFIX.libIDL}/include/libIDL-2.0
BUILDLINK_TRANSFORM+=   -l:IDL:IDL-2

The latter line is needed because the package expects the library libIDL.so,
but only libIDL-2.so is available. So I told the compiler wrapper to rewrite
that on the fly.

The next problem was related to a recent change of the FreeType interface. I
looked up in www/seamonkey which patch files were relevant for this issue and
copied them to the patches directory. Then I retried, fixed the patches so that
they applied cleanly and retried again. This time, everything worked.

10.2.1.3. Installing the package

$ bmake CHECK_FILES=no install
[...]
$ bmake print-PLIST >PLIST
$ bmake deinstall
$ bmake install

Chapter 11. Package components - files, directories and contents

Table of Contents

11.1. Makefile
11.2. distinfo
11.3. patches/*

    11.3.1. Structure of a single patch file
    11.3.2. Creating patch files
    11.3.3. Sources where the patch files come from
    11.3.4. Patching guidelines
    11.3.5. Feedback to the author

11.4. Other mandatory files
11.5. Optional files

    11.5.1. Files affecting the binary package
    11.5.2. Files affecting the build process
    11.5.3. Files affecting nothing at all

11.6. work*
11.7. files/*

Whenever you're preparing a package, there are a number of files involved which
are described in the following sections.

11.1. Makefile

Building, installation and creation of a binary package are all controlled by
the package's Makefile. The Makefile describes various things about a package,
for example from where to get it, how to configure, build, and install it.

A package Makefile contains several sections that describe the package.

In the first section there are the following variables, which should appear
exactly in the order given here. The order and grouping of the variables is
mostly historical and has no further meaning.

  * DISTNAME is the basename of the distribution file to be downloaded from the
    package's website.

  * PKGNAME is the name of the package, as used by pkgsrc. You only need to
    provide it if DISTNAME (which is the default) is not a good name for the
    package in pkgsrc. Usually it is the pkgsrc directory name together with
    the version number. It must match the regular expression ^[A-Za-z0-9]
    [A-Za-z0-9-_.+]*$, that is, it starts with a letter or digit, and contains
    only letters, digits, dashes, underscores, dots and plus signs.

  * SVR4_PKGNAME is the name of the package file to create if the PKGNAME isn't
    unique on a SVR4 system. The default is PKGNAME, which may be shortened
    when you use pkgtools/gensolpkg. Only add SVR4_PKGNAME if PKGNAME does not
    produce an unique package name on a SVR4 system. The length of SVR4_PKGNAME
    is limited to 5 characters.

  * CATEGORIES is a list of categories which the package fits in. You can
    choose any of the top-level directories of pkgsrc for it.

    Currently the following values are available for CATEGORIES. If more than
    one is used, they need to be separated by spaces:

    archivers     cross         geography     meta-pkgs     security
    audio         databases     graphics      misc          shells
    benchmarks    devel         ham           multimedia    sysutils
    biology       editors       inputmethod   net           textproc
    cad           emulators     lang          news          time
    chat          finance       mail          parallel      wm
    comms         fonts         math          pkgtools      www
    converters    games         mbone         print         x11

  * MASTER_SITES, DYNAMIC_MASTER_SITES, DIST_SUBDIR, EXTRACT_SUFX and DISTFILES
    are discussed in detail in Section 17.5, "The fetch phase".

The second section contains information about separately downloaded patches, if
any.

  * PATCHFILES: Name(s) of additional files that contain distribution patches.
    There is no default. pkgsrc will look for them at PATCH_SITES. They will
    automatically be uncompressed before patching if the names end with .gz or
    .Z.

  * PATCH_SITES: Primary location(s) for distribution patch files (see
    PATCHFILES below) if not found locally.

The third section contains the following variables.

  * MAINTAINER is the email address of the person who feels responsible for
    this package, and who is most likely to look at problems or questions
    regarding this package which have been reported with send-pr(1). Other
    developers may contact the MAINTAINER before making changes to the package,
    but are not required to do so. When packaging a new program, set MAINTAINER
    to yourself. If you really can't maintain the package for future updates,
    set it to <pkgsrc-users@NetBSD.org>.

  * OWNER should be used instead of MAINTAINER when you do not want other
    developers to update or change the package without contacting you first. A
    package Makefile should contain one of MAINTAINER or OWNER, but not both.

  * HOMEPAGE is a URL where users can find more information about the package.

  * COMMENT is a one-line description of the package (should not include the
    package name).

Other variables that affect the build:

  * WRKSRC: The directory where the interesting distribution files of the
    package are found. The default is ${WRKDIR}/${DISTNAME}, which works for
    most packages.

    If a package doesn't create a subdirectory for itself (most GNU software
    does, for instance), but extracts itself in the current directory, you
    should set WRKSRC=${WRKDIR}.

    If a package doesn't create a subdirectory with the name of DISTNAME but
    some different name, set WRKSRC to point to the proper name in ${WRKDIR},
    for example WRKSRC=${WRKDIR}/${DISTNAME}/unix. See lang/tcl and x11/tk for
    other examples.

    The name of the working directory created by pkgsrc is taken from the
    WRKDIR_BASENAME variable. By default, its value is work. If you want to use
    the same pkgsrc tree for building different kinds of binary packages, you
    can change the variable according to your needs. Two other variables handle
    common cases of setting WRKDIR_BASENAME individually. If OBJHOSTNAME is
    defined in mk.conf, the first component of the host's name is attached to
    the directory name. If OBJMACHINE is defined, the platform name is
    attached, which might look like work.i386 or work.sparc.

Please pay attention to the following gotchas:

  * Add MANCOMPRESSED if man pages are installed in compressed form by the
    package. For packages using BSD-style makefiles which honor MANZ, there is
    MANCOMPRESSED_IF_MANZ.

  * Replace /usr/local with "${PREFIX}" in all files (see patches, below).

  * If the package installs any info files, see Section 19.6.7, "Packages
    installing info files".

11.2. distinfo

The distinfo file contains the message digest, or checksum, of each distfile
needed for the package. This ensures that the distfiles retrieved from the
Internet have not been corrupted during transfer or altered by a malign force
to introduce a security hole. Due to recent rumor about weaknesses of digest
algorithms, all distfiles are protected using both SHA1 and RMD160 message
digests, as well as the file size.

The distinfo file also contains the checksums for all the patches found in the
patches directory (see Section 11.3, "patches/*").

To regenerate the distinfo file, use the make makedistinfo or make mdi command.

Some packages have different sets of distfiles depending on the platform, for
example lang/openjdk7. These are kept in the same distinfo file and care should
be taken when upgrading such a package to ensure distfile information is not
lost.

11.3. patches/*

Many packages still don't work out-of-the box on the various platforms that are
supported by pkgsrc. Therefore, a number of custom patch files are needed to
make the package work. These patch files are found in the patches/ directory.

In the patch phase, these patches are applied to the files in WRKSRC directory
after extracting them, in alphabetic order.

11.3.1. Structure of a single patch file

The patch-* files should be in diff -bu format, and apply without a fuzz to
avoid problems. (To force patches to apply with fuzz you can set
PATCH_FUZZ_FACTOR=-F2). Furthermore, each patch should contain only changes for
a single file, and no file should be patched by more than one patch file. This
helps to keep future modifications simple.

Each patch file is structured as follows: In the first line, there is the RCS
Id of the patch itself. The second line should be empty for aesthetic reasons.
After that, there should be a comment for each change that the patch does.
There are a number of standard cases:

  * Patches for commonly known vulnerabilities should mention the vulnerability
    ID (CAN, CVE).

  * Patches that change source code should mention the platform and other
    environment (for example, the compiler) that the patch is needed for.

In all, the patch should be commented so that any developer who knows the code
of the application can make some use of the patch. Special care should be taken
for the upstream developers, since we generally want that they accept our
patches, so we have less work in the future.

11.3.2. Creating patch files

One important thing to mention is to pay attention that no RCS IDs get stored
in the patch files, as these will cause problems when later checked into the
NetBSD CVS tree. Use the pkgdiff command from the pkgtools/pkgdiff package to
avoid these problems.

For even more automation, we recommend using mkpatches from the same package to
make a whole set of patches. You just have to backup files before you edit them
to filename.orig, e.g. with cp -p filename filename.orig or, easier, by using 
pkgvi again from the same package. If you upgrade a package this way, you can
easily compare the new set of patches with the previously existing one with 
patchdiff. The files in patches are replaced by new files, so carefully check
if you want to take all the changes.

When you have finished a package, remember to generate the checksums for the
patch files by using the make makepatchsum command, see Section 11.2,
"distinfo".

When adding a patch that corrects a problem in the distfile (rather than e.g.
enforcing pkgsrc's view of where man pages should go), send the patch as a bug
report to the maintainer. This benefits non-pkgsrc users of the package, and
usually makes it possible to remove the patch in future version.

The file names of the patch files are usually of the form patch-
path_to_file__with__underscores.c. Many packages still use the previous
convention patch-[a-z][a-z], but new patches should be of the form containing
the filename. mkpatches included in pkgtools/pkgdiff takes care of the name
automatically.

11.3.3. Sources where the patch files come from

If you want to share patches between multiple packages in pkgsrc, e.g. because
they use the same distfiles, set PATCHDIR to the path where the patch files can
be found, e.g.:

PATCHDIR= ${.CURDIR}/../xemacs/patches

Patch files that are distributed by the author or other maintainers can be
listed in PATCHFILES.

If it is desired to store any patches that should not be committed into pkgsrc,
they can be kept outside the pkgsrc tree in the $LOCALPATCHES directory. The
directory tree there is expected to have the same "category/package" structure
as pkgsrc, and patches are expected to be stored inside these dirs (also known
as $LOCALPATCHES/$PKGPATH). For example, if you want to keep a private patch
for pkgsrc/graphics/png, keep it in $LOCALPATCHES/graphics/png/mypatch. All
files in the named directory are expected to be patch files, and they are
applied after pkgsrc patches are applied.

11.3.4. Patching guidelines

When fixing a portability issue in the code do not use preprocessor magic to
check for the current operating system nor platform. Doing so hurts portability
to other platforms because the OS-specific details are not abstracted
appropriately.

The general rule to follow is: instead of checking for the operating system the
application is being built on, check for the specific features you need. For
example, instead of assuming that kqueue is available under NetBSD and using
the __NetBSD__ macro to conditionalize kqueue support, add a check that detects
kqueue itself ? yes, this generally involves patching the configure script.
There is absolutely nothing that prevents some OSes from adopting interfaces
from other OSes (e.g. Linux implementing kqueue), something that the above
checks cannot take into account.

Of course, checking for features generally involves more work on the
developer's side, but the resulting changes are cleaner and there are chances
they will work on many other platforms. Not to mention that there are higher
chances of being later integrated into the mainstream sources. Remember: It
doesn't work unless it is right!

Some typical examples:

Table 11.1. Patching examples

+-------------------------------------------------------------------------------------------+
|  Where  |        Incorrect         |                       Correct                        |
|---------+--------------------------+------------------------------------------------------|
|         |case ${target_os} in      |                                                      |
|configure|netbsd*) have_kvm=yes ;;  |AC_CHECK_LIB(kvm, kvm_open, have_kvm=yes, have_kvm=no)|
|script   |*)       have_kvm=no  ;;  |                                                      |
|         |esac                      |                                                      |
|---------+--------------------------+------------------------------------------------------|
|C source |#if defined(__NetBSD__)   |#if defined(HAVE_SYS_EVENT_H)                         |
|file     |#  include <sys/event.h>  |#  include <sys/event.h>                              |
|         |#endif                    |#endif                                                |
|---------+--------------------------+------------------------------------------------------|
|         |int                       |int                                                   |
|         |monitor_file(...)         |monitor_file(...)                                     |
|         |{                         |{                                                     |
|         |#if defined(__NetBSD__)   |#if defined(HAVE_KQUEUE)                              |
|C source |        int fd = kqueue();|        int fd = kqueue();                            |
|file     |        ...               |        ...                                           |
|         |#else                     |#else                                                 |
|         |        ...               |        ...                                           |
|         |#endif                    |#endif                                                |
|         |}                         |}                                                     |
+-------------------------------------------------------------------------------------------+


For more information, please read the Making packager-friendly software article
(part 1, part 2). It summarizes multiple details on how to make software easier
to package; all the suggestions in it were collected from our experience in
pkgsrc work, so they are possibly helpful when creating patches too.

11.3.5. Feedback to the author

Always, always, always feed back any portability fixes or improvements you do
to a package to the mainstream developers. This is the only way to get their
attention on portability issues and to ensure that future versions can be built
out-of-the box on NetBSD. Furthermore, any user that gets newer distfiles will
get the fixes straight from the packaged code.

This generally involves cleaning up the patches (because sometimes the patches
that are added to pkgsrc are quick hacks), filing bug reports in the
appropriate trackers for the projects and working with the mainstream authors
to accept your changes. It is extremely important that you do it so that the
packages in pkgsrc are kept simple and thus further changes can be done without
much hassle.

When you have done this, please add a URL to the upstream bug report to the
patch comment.

Support the idea of free software!

11.4. Other mandatory files

DESCR

    A multi-line description of the piece of software. This should include any
    credits where they are due. Please bear in mind that others do not share
    your sense of humour (or spelling idiosyncrasies), and that others will
    read everything that you write here.

PLIST

    This file governs the files that are installed on your system: all the
    binaries, manual pages, etc. There are other directives which may be
    entered in this file, to control the creation and deletion of directories,
    and the location of inserted files. See Chapter 13, PLIST issues for more
    information.

11.5. Optional files

11.5.1. Files affecting the binary package

INSTALL

    This shell script is invoked twice by pkg_add(1). First time after package
    extraction and before files are moved in place, the second time after the
    files to install are moved in place. This can be used to do any custom
    procedures not possible with @exec commands in PLIST. See pkg_add(1) and
    pkg_create(1) for more information. See also Section 15.1, "Files and
    directories outside the installation prefix". Please note that you can
    modify variables in it easily by using FILES_SUBST in the package's
    Makefile:

    FILES_SUBST+=  SOMEVAR="somevalue"

    replaces "@SOMEVAR@" with "somevalue" in the INSTALL. By default,
    substitution is performed for PREFIX, LOCALBASE, X11BASE, VARBASE, and a
    few others, type make help topic=FILES_SUBST for a complete list.

DEINSTALL

    This script is executed before and after any files are removed. It is this
    script's responsibility to clean up any additional messy details around the
    package's installation, since all pkg_delete knows is how to delete the
    files created in the original distribution. See pkg_delete(1) and
    pkg_create(1) for more information. The same methods to replace variables
    can be used as for the INSTALL file.

MESSAGE

    This file is displayed after installation of the package. Useful for things
    like legal notices on almost-free software and hints for updating config
    files after installing modules for apache, PHP etc. Please note that you
    can modify variables in it easily by using MESSAGE_SUBST in the package's
    Makefile:

    MESSAGE_SUBST+=  SOMEVAR="somevalue"

    replaces "${SOMEVAR}" with "somevalue" in MESSAGE. By default, substitution
    is performed for PKGNAME, PKGBASE, PREFIX, LOCALBASE, X11PREFIX, X11BASE,
    PKG_SYSCONFDIR, ROOT_GROUP, and ROOT_USER.

    You can display a different or additional files by setting the MESSAGE_SRC
    variable. Its default is MESSAGE, if the file exists.

ALTERNATIVES

    FIXME: There is no documentation on the alternatives framework.

11.5.2. Files affecting the build process

Makefile.common

    This file contains arbitrary things that could also go into a Makefile, but
    its purpose is to be used by more than one package. This file should only
    be used when the packages that will use the file are known in advance. For
    other purposes it is often better to write a *.mk file and give it a good
    name that describes what it does.

buildlink3.mk

    This file contains the dependency information for the buildlink3 framework
    (see Chapter 14, Buildlink methodology).

hacks.mk

    This file contains workarounds for compiler bugs and similar things. It is
    included automatically by the pkgsrc infrastructure, so you don't need an
    extra .include line for it.

options.mk

    This file contains the code for the package-specific options (see
    Chapter 16, Options handling) that can be selected by the user. If a
    package has only one or two options, it is equally acceptable to put the
    code directly into the Makefile.

11.5.3. Files affecting nothing at all

README*

    These files do not take place in the creation of a package and thus are
    purely informative to the package developer.

TODO

    This file contains things that need to be done to make the package even
    better.

11.6. work*

When you type make, the distribution files are unpacked into the directory
denoted by WRKDIR. It can be removed by running make clean. Besides the
sources, this directory is also used to keep various timestamp files. The
directory gets removed completely on clean. The default is ${.CURDIR}/work or $
{.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINE is set.

11.7. files/*

If you have any files that you wish to be placed in the package prior to
configuration or building, you could place these files here and use a ${CP}
command in the "pre-configure" target to achieve this. Alternatively, you could
simply diff the file against /dev/null and use the patch mechanism to manage
the creation of this file.

If you want to share files in this way with other packages, set the FILESDIR
variable to point to the other package's files directory, e.g.:

FILESDIR=${.CURDIR}/../xemacs/files

Chapter 12. Programming in Makefiles

Table of Contents

12.1. Caveats
12.2. Makefile variables

    12.2.1. Naming conventions

12.3. Code snippets

    12.3.1. Adding things to a list
    12.3.2. Converting an internal list into an external list
    12.3.3. Passing variables to a shell command
    12.3.4. Quoting guideline
    12.3.5. Workaround for a bug in BSD Make

Pkgsrc consists of many Makefile fragments, each of which forms a well-defined
part of the pkgsrc system. Using the make(1) system as a programming language
for a big system like pkgsrc requires some discipline to keep the code correct
and understandable.

The basic ingredients for Makefile programming are variables (which are
actually macros) and shell commands. Among these shell commands may even be
more complex ones like awk(1) programs. To make sure that every shell command
runs as intended it is necessary to quote all variables correctly when they are
used.

This chapter describes some patterns, that appear quite often in Makefiles,
including the pitfalls that come along with them.

12.1. Caveats

  * When you are creating a file as a target of a rule, always write the data
    to a temporary file first and finally rename that file. Otherwise there
    might occur an error in the middle of generating the file, and when the
    user runs make(1) for the second time, the file exists and will not be
    regenerated properly. Example:

    wrong:
            @echo "line 1" > ${.TARGET}
            @echo "line 2" >> ${.TARGET}
            @false

    correct:
            @echo "line 1" > ${.TARGET}.tmp
            @echo "line 2" >> ${.TARGET}.tmp
            @false
            @mv ${.TARGET}.tmp ${.TARGET}

    When you run make wrong twice, the file wrong will exist, although there
    was an error message in the first run. On the other hand, running make
    correct gives an error message twice, as expected.

    You might remember that make(1) sometimes removes ${.TARGET} in case of
    error, but this only happens when it is interrupted, for example by
    pressing ^C. This does not happen when one of the commands fails (like
    false(1) above).

12.2. Makefile variables

Makefile variables contain strings that can be processed using the five
operators ``='', ``+='', ``?='', ``:='', and ``!='', which are described in the
make(1) man page.

When a variable's value is parsed from a Makefile, the hash character ``#'' and
the backslash character ``\'' are handled specially. If a backslash is followed
by a newline, any whitespace immediately in front of the backslash, the
backslash, the newline, and any whitespace immediately behind the newline are
replaced with a single space. A backslash character and an immediately
following hash character are replaced with a single hash character. Otherwise,
the backslash is passed as is. In a variable assignment, any hash character
that is not preceded by a backslash starts a comment that continues upto the
end of the logical line.

Note: Because of this parsing algorithm the only way to create a variable
consisting of a single backslash is using the ``!='' operator, for example:
BACKSLASH!=echo "\\".

So far for defining variables. The other thing you can do with variables is
evaluating them. A variable is evaluated when it is part of the right side of
the ``:='' or the ``!='' operator, or directly before executing a shell command
which the variable is part of. In all other cases, make(1) performs lazy
evaluation, that is, variables are not evaluated until there's no other way.
The ``modifiers'' mentioned in the man page also evaluate the variable.

Some of the modifiers split the string into words and then operate on the
words, others operate on the string as a whole. When a string is split into
words, it is split as you would expect it from sh(1).

No rule without exception?the .for loop does not follow the shell quoting rules
but splits at sequences of whitespace.

There are several types of variables that should be handled differently.
Strings and two types of lists.

  * Strings can contain arbitrary characters. Nevertheless, you should restrict
    yourself to only using printable characters. Examples are PREFIX and
    COMMENT.

  * Internal lists are lists that are never exported to any shell command.
    Their elements are separated by whitespace. Therefore, the elements
    themselves cannot have embedded whitespace. Any other characters are
    allowed. Internal lists can be used in .for loops. Examples are DEPENDS and
    BUILD_DEPENDS.

  * External lists are lists that may be exported to a shell command. Their
    elements can contain any characters, including whitespace. That's why they
    cannot be used in .for loops. Examples are DISTFILES and MASTER_SITES.

12.2.1. Naming conventions

  * All variable names starting with an underscore are reserved for use by the
    pkgsrc infrastructure. They shall not be used by package Makefiles.

  * In .for loops you should use lowercase variable names for the iteration
    variables.

  * All list variables should have a ``plural'' name, e.g. PKG_OPTIONS or
    DISTFILES.

12.3. Code snippets

This section presents you with some code snippets you should use in your own
code. If you don't find anything appropriate here, you should test your code
and add it here.

12.3.1. Adding things to a list

STRING=                 foo * bar `date`
INT_LIST=               # empty
ANOTHER_INT_LIST=       apache-[0-9]*:../../www/apache
EXT_LIST=               # empty
ANOTHER_EXT_LIST=       a=b c=d

INT_LIST+=              ${STRING}               # 1
INT_LIST+=              ${ANOTHER_INT_LIST}     # 2
EXT_LIST+=              ${STRING:Q}             # 3
EXT_LIST+=              ${ANOTHER_EXT_LIST}     # 4

When you add a string to an external list (example 3), it must be quoted. In
all other cases, you must not add a quoting level. You must not merge internal
and external lists, unless you are sure that all entries are correctly
interpreted in both lists.

12.3.2. Converting an internal list into an external list

EXT_LIST=       # empty
.for i in ${INT_LIST}
EXT_LIST+=      ${i:Q}""
.endfor

This code converts the internal list INT_LIST into the external list EXT_LIST.
As the elements of an internal list are unquoted they must be quoted here. The
reason for appending "" is explained below.

12.3.3. Passing variables to a shell command

Sometimes you may want to print an arbitrary string. There are many ways to get
it wrong and only few that can handle every nastiness.

STRING=         foo bar <    > * `date` $$HOME ' "
EXT_LIST=       string=${STRING:Q} x=second\ item

all:
        echo ${STRING}                  # 1
        echo "${STRING}"                # 2
        echo "${STRING:Q}"              # 3
        echo ${STRING:Q}                # 4
        echo x${STRING:Q} | sed 1s,.,,  # 5
        printf "%s\\n" ${STRING:Q}""    # 6
        env ${EXT_LIST} /bin/sh -c 'echo "$$string"; echo "$$x"'

Example 1 leads to a syntax error in the shell, as the characters are just
copied.

Example 2 leads to a syntax error too, and if you leave out the last "
character from ${STRING}, date(1) will be executed. The $HOME shell variable
would be evaluated, too.

Example 3 outputs each space character preceded by a backslash (or not),
depending on the implementation of the echo(1) command.

Example 4 handles correctly every string that does not start with a dash. In
that case, the result depends on the implementation of the echo(1) command. As
long as you can guarantee that your input does not start with a dash, this form
is appropriate.

Example 5 handles even the case of a leading dash correctly.

Example 6 also works with every string and is the light-weight solution, since
it does not involve a pipe, which has its own problems.

The EXT_LIST does not need to be quoted because the quoting has already been
done when adding elements to the list.

As internal lists shall not be passed to the shell, there is no example for it.

12.3.4. Quoting guideline

There are many possible sources of wrongly quoted variables. This section lists
some of the commonly known ones.

  * Whenever you use the value of a list, think about what happens to leading
    or trailing whitespace. If the list is a well-formed shell expression, you
    can apply the :M* modifier to strip leading and trailing whitespace from
    each word. The :M operator first splits its argument according to the rules
    of the shell, and then creates a new list consisting of all words that
    match the shell glob expression *, that is: all. One class of situations
    where this is needed is when adding a variable like CPPFLAGS to
    CONFIGURE_ARGS. If the configure script invokes other configure scripts, it
    strips the leading and trailing whitespace from the variable and then
    passes it to the other configure scripts. But these configure scripts
    expect the (child) CPPFLAGS variable to be the same as the parent CPPFLAGS.
    That's why we better pass the CPPFLAGS value properly trimmed. And here is
    how we do it:

    CPPFLAGS=               # empty
    CPPFLAGS+=              -Wundef -DPREFIX=\"${PREFIX:Q}\"
    CPPFLAGS+=              ${MY_CPPFLAGS}

    CONFIGURE_ARGS+=        CPPFLAGS=${CPPFLAGS:M*:Q}

    all:
            echo x${CPPFLAGS:Q}x            # leading and trailing whitespace
            echo x${CONFIGURE_ARGS}x        # properly trimmed

  * The example above contains one bug: The ${PREFIX} is a properly quoted
    shell expression, but there is the C compiler after it, which also expects
    a properly quoted string (this time in C syntax). The version above is
    therefore only correct if ${PREFIX} does not have embedded backslashes or
    double quotes. If you want to allow these, you have to add another layer of
    quoting to each variable that is used as a C string literal. You cannot use
    the :Q operator for it, as this operator only works for the shell.

  * Whenever a variable can be empty, the :Q operator can have surprising
    results. Here are two completely different cases which can be solved with
    the same trick.

    EMPTY=                  # empty
    empty_test:
            for i in a ${EMPTY:Q} c; do \
                echo "$$i"; \
            done

    for_test:
    .for i in a:\ a:\test.txt
            echo ${i:Q}
            echo "foo"
    .endfor

    The first example will only print two of the three lines we might have
    expected. This is because ${EMPTY:Q} expands to the empty string, which the
    shell cannot see. The workaround is to write ${EMPTY:Q}"". This pattern can
    be often found as ${TEST} -z ${VAR:Q} or as ${TEST} -f ${FNAME:Q} (both of
    these are wrong).

    The second example will only print three lines instead of four. The first
    line looks like a:\ echo foo. This is because the backslash of the value a:
    \ is interpreted as a line-continuation by make(1), which makes the second
    line the arguments of the echo(1) command from the first line. To avoid
    this, write ${i:Q}"".

12.3.5. Workaround for a bug in BSD Make

The pkgsrc bmake program does not handle the following assignment correctly. In
case _othervar_ contains a ``-'' character, one of the closing braces is
included in ${VAR} after this code executes.

VAR:=   ${VAR:N${_othervar_:C/-//}}

For a more complex code snippet and a workaround, see the package regress/
make-quoting, testcase bug1.

Chapter 13. PLIST issues

Table of Contents

13.1. RCS ID
13.2. Semi-automatic PLIST generation
13.3. Tweaking output of make print-PLIST
13.4. Variable substitution in PLIST
13.5. Man page compression
13.6. Changing PLIST source with PLIST_SRC
13.7. Platform-specific and differing PLISTs
13.8. Sharing directories between packages

The PLIST file contains a package's "packing list", i.e. a list of files that
belong to the package (relative to the ${PREFIX} directory it's been installed
in) plus some additional statements - see the pkg_create(1) man page for a full
list. This chapter addresses some issues that need attention when dealing with
the PLIST file (or files, see below!).

13.1. RCS ID

Be sure to add a RCS ID line as the first thing in any PLIST file you write:

@comment $NetBSD$


13.2. Semi-automatic PLIST generation

You can use the make print-PLIST command to output a PLIST that matches any new
files since the package was extracted. See Section 17.17, "Other helpful
targets" for more information on this target.

13.3. Tweaking output of make print-PLIST

If you have used any of the *-dirs packages, as explained in Section 13.8,
"Sharing directories between packages", you may have noticed that make
print-PLIST outputs a set of @comments instead of real @dirrm lines. You can
also do this for specific directories and files, so that the results of that
command are very close to reality. This helps a lot during the update of
packages.

The PRINT_PLIST_AWK variable takes a set of AWK patterns and actions that are
used to filter the output of print-PLIST. You can append any chunk of AWK
scripting you like to it, but be careful with quoting.

For example, to get all files inside the libdata/foo directory removed from the
resulting PLIST:

PRINT_PLIST_AWK+=       /^libdata\/foo/ { next; }


And to get all the @dirrm lines referring to a specific (shared) directory
converted to @comments:

PRINT_PLIST_AWK+=       /^@dirrm share\/specific/ { print "@comment " $$0; next; }


13.4. Variable substitution in PLIST

A number of variables are substituted automatically in PLISTs when a package is
installed on a system. This includes the following variables:

${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}

    Some packages like emacs and perl embed information about which
    architecture they were built on into the pathnames where they install their
    files. To handle this case, PLIST will be preprocessed before actually
    used, and the symbol "${MACHINE_ARCH}" will be replaced by what uname -p
    gives. The same is done if the string ${MACHINE_GNU_ARCH} is embedded in
    PLIST somewhere - use this on packages that have GNU autoconf-created
    configure scripts.

    Legacy note

    There used to be a symbol "$ARCH" that was replaced by the output of uname
    -m, but that's no longer supported and has been removed.

${OPSYS}, ${LOWER_OPSYS}, ${OS_VERSION}

    Some packages want to embed the OS name and version into some paths. To do
    this, use these variables in the PLIST:

      + ${OPSYS} - output of "uname -s"

      + ${LOWER_OPSYS} - lowercase common name (eg. "solaris")

      + ${OS_VERSION} - "uname -r"

For a complete list of values which are replaced by default, please look in
bsd.pkg.mk (and search for PLIST_SUBST).

If you want to change other variables not listed above, you can add variables
and their expansions to this variable in the following way, similar to
MESSAGE_SUBST (see Section 11.5, "Optional files"):

PLIST_SUBST+=   SOMEVAR="somevalue"


This replaces all occurrences of "${SOMEVAR}" in the PLIST with "somevalue".

The PLIST_VARS variable can be used to simplify the common case of
conditionally including some PLIST entries. It can be done by adding
PLIST_VARS+=foo and setting the corresponding PLIST.foo variable to yes if the
entry should be included. This will substitute "${PLIST.foo}" in the PLIST with
either """" or ""@comment "". For example, in Makefile:

PLIST_VARS+=    foo
.if condition
PLIST.foo=      yes
.else


And then in PLIST:

@comment $NetBSD$
bin/bar
man/man1/bar.1
${PLIST.foo}bin/foo
${PLIST.foo}man/man1/foo.1
${PLIST.foo}share/bar/foo.data
${PLIST.foo}@dirrm share/bar


13.5. Man page compression

Man pages should be installed in compressed form if MANZ is set (in
bsd.own.mk), and uncompressed otherwise. To handle this in the PLIST file, the
suffix ".gz" is appended/removed automatically for man pages according to MANZ
and MANCOMPRESSED being set or not, see above for details. This modification of
the PLIST file is done on a copy of it, not PLIST itself.

13.6. Changing PLIST source with PLIST_SRC

To use one or more files as source for the PLIST used in generating the binary
package, set the variable PLIST_SRC to the names of that file(s). The files are
later concatenated using cat(1), and the order of things is important. The
default for PLIST_SRC is ${PKGDIR}/PLIST.

13.7. Platform-specific and differing PLISTs

Some packages decide to install a different set of files based on the operating
system being used. These differences can be automatically handled by using the
following files:

  * PLIST.common

  * PLIST.${OPSYS}

  * PLIST.${MACHINE_ARCH}

  * PLIST.${OPSYS}-${MACHINE_ARCH}

  * PLIST.common_end

13.8. Sharing directories between packages

A "shared directory" is a directory where multiple (and unrelated) packages
install files. These directories were problematic because you had to add
special tricks in the PLIST to conditionally remove them, or have some
centralized package handle them.

In pkgsrc, it is now easy: Each package should create directories and install
files as needed; pkg_delete will remove any directories left empty after
uninstalling a package.

If a package needs an empty directory to work, create the directory during
installation as usual, and also add an entry to the PLIST:

@pkgdir path/to/empty/directory


Chapter 14. Buildlink methodology

Table of Contents

14.1. Converting packages to use buildlink3
14.2. Writing buildlink3.mk files

    14.2.1. Anatomy of a buildlink3.mk file
    14.2.2. Updating BUILDLINK_API_DEPENDS.pkg and BUILDLINK_ABI_DEPENDS.pkg in
        buildlink3.mk files

14.3. Writing builtin.mk files

    14.3.1. Anatomy of a builtin.mk file
    14.3.2. Global preferences for native or pkgsrc software

Buildlink is a framework in pkgsrc that controls what headers and libraries are
seen by a package's configure and build processes. This is implemented in a two
step process:

 1. Symlink headers and libraries for dependencies into BUILDLINK_DIR, which by
    default is a subdirectory of WRKDIR.

 2. Create wrapper scripts that are used in place of the normal compiler tools
    that translate -I${LOCALBASE}/include and -L${LOCALBASE}/lib into
    references to BUILDLINK_DIR. The wrapper scripts also make native compiler
    on some operating systems look like GCC, so that packages that expect GCC
    won't require modifications to build with those native compilers.

This normalizes the environment in which a package is built so that the package
may be built consistently despite what other software may be installed. Please
note that the normal system header and library paths, e.g. /usr/include, /usr/
lib, etc., are always searched -- buildlink3 is designed to insulate the
package build from non-system-supplied software.

14.1. Converting packages to use buildlink3

The process of converting packages to use the buildlink3 framework ("bl3ifying"
) is fairly straightforward. The things to keep in mind are:

 1. Ensure that the build always calls the wrapper scripts instead of the
    actual toolchain. Some packages are tricky, and the only way to know for
    sure is the check ${WRKDIR}/.work.log to see if the wrappers are being
    invoked.

 2. Don't override PREFIX from within the package Makefile, e.g. Java VMs,
    standalone shells, etc., because the code to symlink files into $
    {BUILDLINK_DIR} looks for files relative to "pkg_info -qp pkgname".

 3. Remember that only the buildlink3.mk files that you list in a package's
    Makefile are added as dependencies for that package.

If a dependency on a particular package is required for its libraries and
headers, then we replace:

DEPENDS+=       foo>=1.1.0:../../category/foo

with

.include "../../category/foo/buildlink3.mk"

The buildlink3.mk files usually define the required dependencies. If you need a
newer version of the dependency when using buildlink3.mk files, then you can
define it in your Makefile; for example:

BUILDLINK_API_DEPENDS.foo+=   foo>=1.1.0
.include "../../category/foo/buildlink3.mk"

There are several buildlink3.mk files in pkgsrc/mk that handle special package
issues:

  * bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB
    implementation based on the values of BDB_ACCEPTED and BDB_DEFAULT.

  * curses.buildlink3.mk: If the system comes with neither Curses nor NCurses,
    this will take care to install the devel/ncurses package.

  * krb5.buildlink3.mk uses the value of KRB5_ACCEPTED to choose between adding
    a dependency on Heimdal or MIT-krb5 for packages that require a Kerberos 5
    implementation.

  * motif.buildlink3.mk checks for a system-provided Motif installation or adds
    a dependency on x11/lesstif, x11/motif or x11/openmotif. The user can set
    MOTIF_TYPE to "dt", "lesstif", "motif" or "openmotif" to choose which Motif
    version will be used.

  * readline.buildlink3.mk checks for a system-provided GNU readline or
    editline (libedit) installation, or adds a dependency on devel/readline,
    devel/editline. The user can set READLINE_DEFAULT to choose readline
    implementation. If your package really needs GNU readline library, its
    Makefile should include devel/readline/buildlink3.mk instead of
    readline.buildlink3.mk.

  * oss.buildlink3.mk defines several variables that may be used by packages
    that use the Open Sound System (OSS) API.

  * pgsql.buildlink3.mk will accept any of the Postgres versions in the
    variable PGSQL_VERSIONS_ACCEPTED and default to the version
    PGSQL_VERSION_DEFAULT. See the file for more information.

  * pthread.buildlink3.mk uses the value of PTHREAD_OPTS and checks for native
    pthreads or adds a dependency on devel/pth as needed.

  * xaw.buildlink3.mk uses the value of XAW_TYPE to choose a particular Athena
    widgets library.

The comments in those buildlink3.mk files provide a more complete description
of how to use them properly.

14.2. Writing buildlink3.mk files

A package's buildlink3.mk file is included by Makefiles to indicate the need to
compile and link against header files and libraries provided by the package. A
buildlink3.mk file should always provide enough information to add the correct
type of dependency relationship and include any other buildlink3.mk files that
it needs to find headers and libraries that it needs in turn.

To generate an initial buildlink3.mk file for further editing, Rene Hexel's
pkgtools/createbuildlink package is highly recommended. For most packages, the
following command will generate a good starting point for buildlink3.mk files:

% cd pkgsrc/category/pkgdir
% createbuildlink >buildlink3.mk


14.2.1. Anatomy of a buildlink3.mk file

The following real-life example buildlink3.mk is taken from pkgsrc/graphics/
tiff:

# $NetBSD: buildlink3.mk,v 1.16 2009/03/20 19:24:45 joerg Exp $

BUILDLINK_TREE+=        tiff

.if !defined(TIFF_BUILDLINK3_MK)
TIFF_BUILDLINK3_MK:=

BUILDLINK_API_DEPENDS.tiff+=    tiff>=3.6.1
BUILDLINK_ABI_DEPENDS.tiff+=    tiff>=3.7.2nb1
BUILDLINK_PKGSRCDIR.tiff?=      ../../graphics/tiff

.include "../../devel/zlib/buildlink3.mk"
.include "../../graphics/jpeg/buildlink3.mk"
.endif # TIFF_BUILDLINK3_MK

BUILDLINK_TREE+=        -tiff

The header and footer manipulate BUILDLINK_TREE, which is common across all
buildlink3.mk files and is used to track the dependency tree.

The main section is protected from multiple inclusion and controls how the
dependency on pkg is added. Several important variables are set in the section:

  * BUILDLINK_API_DEPENDS.pkg is the actual dependency recorded in the
    installed package; this should always be set using += to ensure that we're
    appending to any pre-existing list of values. This variable should be set
    to the first version of the package that had an backwards-incompatible API
    change.

  * BUILDLINK_PKGSRCDIR.pkg is the location of the pkg pkgsrc directory.

  * BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we use
    BUILD_DEPENDS or DEPENDS to add the dependency on pkg. The build dependency
    is selected by setting BUILDLINK_DEPMETHOD.pkg to "build". By default, the
    full dependency is used.

  * BUILDLINK_INCDIRS.pkg and BUILDLINK_LIBDIRS.pkg (not shown above) are lists
    of subdirectories of ${BUILDLINK_PREFIX.pkg} to add to the header and
    library search paths. These default to "include" and "lib" respectively.

  * BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags
    to add to CPPFLAGS, which are passed on to the configure and build phases.
    The "-I" option should be avoided and instead be handled using
    BUILDLINK_INCDIRS.pkg as above.

The following variables are all optionally defined within this second section
(protected against multiple inclusion) and control which package files are
symlinked into ${BUILDLINK_DIR} and how their names are transformed during the
symlinking:

  * BUILDLINK_FILES.pkg (not shown above) is a shell glob pattern relative to $
    {BUILDLINK_PREFIX.pkg} to be symlinked into ${BUILDLINK_DIR}, e.g. include/
    *.h.

  * BUILDLINK_FILES_CMD.pkg (not shown above) is a shell pipeline that outputs
    to stdout a list of files relative to ${BUILDLINK_PREFIX.pkg}. The
    resulting files are to be symlinked into ${BUILDLINK_DIR}. By default, this
    takes the +CONTENTS of a pkg and filters it through $
    {BUILDLINK_CONTENTS_FILTER.pkg}.

  * BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that
    filters +CONTENTS input into a list of files relative to $
    {BUILDLINK_PREFIX.pkg} on stdout. By default for overwrite packages,
    BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of the include and lib
    directories in the package +CONTENTS, and for pkgviews packages, it outputs
    any libtool archives in lib directories.

  * BUILDLINK_FNAME_TRANSFORM.pkg (not shown above) is a list of sed arguments
    used to transform the name of the source filename into a destination
    filename, e.g. -e "s|/curses.h|/ncurses.h|g".

This section can additionally include any buildlink3.mk needed for pkg's
library dependencies. Including these buildlink3.mk files means that the
headers and libraries for these dependencies are also symlinked into $
{BUILDLINK_DIR} whenever the pkg buildlink3.mk file is included. Dependencies
are only added for directly include buildlink3.mk files.

When providing a buildlink3.mk and including other buildlink3.mk files in it,
please only add necessary ones, i.e., those whose libraries or header files are
automatically exposed when the package is use.

In particular, if only an executable (bin/foo) is linked against a library,
that library does not need to be propagated in the buildlink3.mk file.

The following steps should help you decide if a buildlink3.mk file needs to be
included:

  * Look at the installed header files: What headers do they include? The
    packages providing these files must be buildlinked.

  * Run ldd on all installed libraries and look against what other libraries
    they link. Some of the packages providing these probably need to be
    buildlinked; however, it's not automatic, since e.g. GTK on some systems
    pulls in the X libraries, so they will show up in the ldd output, while on
    others (like OS X) it won't. ldd output can thus only be used as a hint.

14.2.2. Updating BUILDLINK_API_DEPENDS.pkg and BUILDLINK_ABI_DEPENDS.pkg in
buildlink3.mk files

These two variables differ in that one describes source compatibility (API) and
the other binary compatibility (ABI). The difference is that a change in the
API breaks compilation of programs while changes in the ABI stop compiled
programs from running.

Changes to the BUILDLINK_API_DEPENDS.pkg variable in a buildlink3.mk file
happen very rarely. One possible reason is that all packages depending on this
already need a newer version. In case it is bumped see the description below.

The most common example of an ABI change is that the major version of a shared
library is increased. In this case, BUILDLINK_ABI_DEPENDS.pkg should be
adjusted to require at least the new package version. Then the packages that
depend on this package need their PKGREVISIONs increased and, if they have
buildlink3.mk files, their BUILDLINK_ABI_DEPENDS.pkg adjusted, too. This is
needed so pkgsrc will require the correct package dependency and not settle for
an older one when building the source.

See Section 19.1.6, "Handling dependencies" for more information about
dependencies on other packages, including the BUILDLINK_ABI_DEPENDS and
ABI_DEPENDS definitions.

Please take careful consideration before adjusting BUILDLINK_API_DEPENDS.pkg or
BUILDLINK_ABI_DEPENDS.pkg as we don't want to cause unneeded package deletions
and rebuilds. In many cases, new versions of packages work just fine with older
dependencies.

Also it is not needed to set BUILDLINK_ABI_DEPENDS.pkg when it is identical to
BUILDLINK_API_DEPENDS.pkg.

14.3. Writing builtin.mk files

Some packages in pkgsrc install headers and libraries that coincide with
headers and libraries present in the base system. Aside from a buildlink3.mk
file, these packages should also include a builtin.mk file that includes the
necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk file for pkg are:

 1. It should set USE_BUILTIN.pkg to either "yes" or "no" after it is included.

 2. It should not override any USE_BUILTIN.pkg which is already set before the
    builtin.mk file is included.

 3. It should be written to allow multiple inclusion. This is very important
    and takes careful attention to Makefile coding.

14.3.1. Anatomy of a builtin.mk file

The following is the recommended template for builtin.mk files:

.if !defined(IS_BUILTIN.foo)
#
# IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
# genuinely exists in the system or not.
#
IS_BUILTIN.foo?=        no

# BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
# version can be determined.
#
.  if !empty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?=       foo-1.0
.  endif
.endif  # IS_BUILTIN.foo

.if !defined(USE_BUILTIN.foo)
USE_BUILTIN.foo?=       ${IS_BUILTIN.foo}
.  if defined(BUILTIN_PKG.foo)
.    for _depend_ in ${BUILDLINK_API_DEPENDS.foo}
.      if !empty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!=                                                       \
        ${PKG_ADMIN} pmatch '${_depend_}' ${BUILTIN_PKG.foo}            \
        && ${ECHO} "yes" || ${ECHO} "no"
.      endif
.    endfor
.  endif
.endif  # USE_BUILTIN.foo

CHECK_BUILTIN.foo?=     no
.if !empty(CHECK_BUILTIN.foo:M[nN][oO])
#
# Here we place code that depends on whether USE_BUILTIN.foo is set to
# "yes" or "no".
#
.endif  # CHECK_BUILTIN.foo

The first section sets IS_BUILTIN.pkg depending on if pkg really exists in the
base system. This should not be a base system software with similar
functionality to pkg; it should only be "yes" if the actual package is included
as part of the base system. This variable is only used internally within the
builtin.mk file.

The second section sets BUILTIN_PKG.pkg to the version of pkg in the base
system if it exists (if IS_BUILTIN.pkg is "yes"). This variable is only used
internally within the builtin.mk file.

The third section sets USE_BUILTIN.pkg and is required in all builtin.mk files.
The code in this section must make the determination whether the built-in
software is adequate to satisfy the dependencies listed in
BUILDLINK_API_DEPENDS.pkg. This is typically done by comparing BUILTIN_PKG.pkg
against each of the dependencies in BUILDLINK_API_DEPENDS.pkg. USE_BUILTIN.pkg 
must be set to the correct value by the end of the builtin.mk file. Note that
USE_BUILTIN.pkg may be "yes" even if IS_BUILTIN.pkg is "no" because we may make
the determination that the built-in version of the software is similar enough
to be used as a replacement.

The last section is guarded by CHECK_BUILTIN.pkg, and includes code that uses
the value of USE_BUILTIN.pkg set in the previous section. This typically
includes, e.g., adding additional dependency restrictions and listing
additional files to symlink into ${BUILDLINK_DIR} (via BUILDLINK_FILES.pkg).

14.3.2. Global preferences for native or pkgsrc software

When building packages, it's possible to choose whether to set a global
preference for using either the built-in (native) version or the pkgsrc version
of software to satisfy a dependency. This is controlled by setting
PREFER_PKGSRC and PREFER_NATIVE. These variables take values of either "yes", "
no", or a list of packages. PREFER_PKGSRC tells pkgsrc to use the pkgsrc
versions of software, while PREFER_NATIVE tells pkgsrc to use the built-in
versions. Preferences are determined by the most specific instance of the
package in either PREFER_PKGSRC or PREFER_NATIVE. If a package is specified in
neither or in both variables, then PREFER_PKGSRC has precedence over
PREFER_NATIVE. For example, to require using pkgsrc versions of software for
all but the most basic bits on a NetBSD system, you can set:

PREFER_PKGSRC=  yes
PREFER_NATIVE=  getopt skey tcp_wrappers

A package must have a builtin.mk file to be listed in PREFER_NATIVE, otherwise
it is simply ignored in that list.

Chapter 15. The pkginstall framework

Table of Contents

15.1. Files and directories outside the installation prefix

    15.1.1. Directory manipulation
    15.1.2. File manipulation

15.2. Configuration files

    15.2.1. How PKG_SYSCONFDIR is set
    15.2.2. Telling the software where configuration files are
    15.2.3. Patching installations
    15.2.4. Disabling handling of configuration files

15.3. System startup scripts

    15.3.1. Disabling handling of system startup scripts

15.4. System users and groups
15.5. System shells

    15.5.1. Disabling shell registration

15.6. Fonts

    15.6.1. Disabling automatic update of the fonts databases

This chapter describes the framework known as pkginstall, whose key features
are:

  * Generic installation and manipulation of directories and files outside the
    pkgsrc-handled tree, LOCALBASE.

  * Automatic handling of configuration files during installation, provided
    that packages are correctly designed.

  * Generation and installation of system startup scripts.

  * Registration of system users and groups.

  * Registration of system shells.

  * Automatic updating of fonts databases.

The following sections inspect each of the above points in detail.

You may be thinking that many of the things described here could be easily done
with simple code in the package's post-installation target (post-install). This
is incorrect, as the code in them is only executed when building from source.
Machines using binary packages could not benefit from it at all (as the code
itself could be unavailable). Therefore, the only way to achieve any of the
items described above is by means of the installation scripts, which are
automatically generated by pkginstall.

15.1. Files and directories outside the installation prefix

As you already know, the PLIST file holds a list of files and directories that
belong to a package. The names used in it are relative to the installation
prefix (${PREFIX}), which means that it cannot register files outside this
directory (absolute path names are not allowed). Despite this restriction, some
packages need to install files outside this location; e.g., under ${VARBASE} or
${PKG_SYSCONFDIR}. The only way to achieve this is to create such files during
installation time by using installation scripts.

The generic installation scripts are shell scripts that can contain arbitrary
code. The list of scripts to execute is taken from the INSTALL_FILE variable,
which defaults to INSTALL. A similar variable exists for package removal
(DEINSTALL_FILE, whose default is DEINSTALL). These scripts can run arbitrary
commands, so they have the potential to create and manage files anywhere in the
file system.

Using these general installation files is not recommended, but may be needed in
some special cases. One reason for avoiding them is that the user has to trust
the packager that there is no unwanted or simply erroneous code included in the
installation script. Also, previously there were many similar scripts for the
same functionality, and fixing a common error involved finding and changing all
of them.

The pkginstall framework offers another, standardized way. It provides generic
scripts to abstract the manipulation of such files and directories based on
variables set in the package's Makefile. The rest of this section describes
these variables.

15.1.1. Directory manipulation

The following variables can be set to request the creation of directories
anywhere in the file system:

  * MAKE_DIRS and OWN_DIRS contain a list of directories that should be created
    and should attempt to be destroyed by the installation scripts. The
    difference between the two is that the latter prompts the administrator to
    remove any directories that may be left after deinstallation (because they
    were not empty), while the former does not.

  * MAKE_DIRS_PERMS and OWN_DIRS_PERMS contain a list of tuples describing
    which directories should be created and should attempt to be destroyed by
    the installation scripts. Each tuple holds the following values, separated
    by spaces: the directory name, its owner, its group and its numerical mode.
    For example:

    MAKE_DIRS_PERMS+=         ${VARBASE}/foo/private ${ROOT_USER} ${ROOT_GROUP} 0700

    The difference between the two is exactly the same as their non-PERMS
    counterparts.

15.1.2. File manipulation

Creating non-empty files outside the installation prefix is tricky because the
PLIST forces all files to be inside it. To overcome this problem, the only
solution is to extract the file in the known place (i.e., inside the
installation prefix) and copy it to the appropriate location during
installation (done by the installation scripts generated by pkginstall). We
will call the former the master file in the following paragraphs, which
describe the variables that can be used to automatically and consistently
handle files outside the installation prefix:

  * CONF_FILES and REQD_FILES are pairs of master and target files. During
    installation time, the master file is copied to the target one if and only
    if the latter does not exist. Upon deinstallation, the target file is
    removed provided that it was not modified by the installation.

    The difference between the two is that the latter prompts the administrator
    to remove any files that may be left after deinstallation (because they
    were not empty), while the former does not.

  * CONF_FILES_PERMS and REQD_FILES_PERMS contain tuples describing master
    files as well as their target locations. For each of them, it also
    specifies their owner, their group and their numeric permissions, in this
    order. For example:

    REQD_FILES_PERMS+= ${PREFIX}/share/somefile ${VARBASE}/somefile ${ROOT_USER} ${ROOT_GROUP} 0700

    The difference between the two is exactly the same as their non-PERMS
    counterparts.

15.2. Configuration files

Configuration files are special in the sense that they are installed in their
own specific directory, PKG_SYSCONFDIR, and need special treatment during
installation (most of which is automated by pkginstall). The main concept you
must bear in mind is that files marked as configuration files are automatically
copied to the right place (somewhere inside PKG_SYSCONFDIR) during installation
if and only if they didn't exist before. Similarly, they will not be removed if
they have local modifications. This ensures that administrators never lose any
custom changes they may have made.

15.2.1. How PKG_SYSCONFDIR is set

As said before, the PKG_SYSCONFDIR variable specifies where configuration files
shall be installed. Its contents are set based upon the following variables:

  * PKG_SYSCONFBASE: The configuration's root directory. Defaults to ${PREFIX}/
    etc although it may be overridden by the user to point to his preferred
    location (e.g., /etc, /etc/pkg, etc.). Packages must not use it directly.

  * PKG_SYSCONFSUBDIR: A subdirectory of PKG_SYSCONFBASE under which the
    configuration files for the package being built shall be installed. The
    definition of this variable only makes sense in the package's Makefile
    (i.e., it is not user-customizable).

    As an example, consider the Apache package, www/apache2, which places its
    configuration files under the httpd/ subdirectory of PKG_SYSCONFBASE. This
    should be set in the package Makefile.

  * PKG_SYSCONFVAR: Specifies the name of the variable that holds this
    package's configuration directory (if different from PKG_SYSCONFBASE). It
    defaults to PKGBASE's value, and is always prefixed with PKG_SYSCONFDIR.

  * PKG_SYSCONFDIR.${PKG_SYSCONFVAR}: Holds the directory where the
    configuration files for the package identified by PKG_SYSCONFVAR's shall be
    placed.

Based on the above variables, pkginstall determines the value of
PKG_SYSCONFDIR, which is the only variable that can be used within a package to
refer to its configuration directory. The algorithm used to set its value is
basically the following:

 1. If PKG_SYSCONFDIR.${PKG_SYSCONFVAR} is set, its value is used.

 2. If the previous variable is not defined but PKG_SYSCONFSUBDIR is set in the
    package's Makefile, the resulting value is ${PKG_SYSCONFBASE}/$
    {PKG_SYSCONFSUBDIR}.

 3. Otherwise, it is set to ${PKG_SYSCONFBASE}.

It is worth mentioning that ${PKG_SYSCONFDIR} is automatically added to
OWN_DIRS. See Section 15.1.1, "Directory manipulation" what this means. This
does not apply to subdirectories of ${PKG_SYSCONFDIR}, they still have to be
created with OWN_DIRS or MAKE_DIRS.

15.2.2. Telling the software where configuration files are

Given that pkgsrc (and users!) expect configuration files to be in a known
place, you need to teach each package where it shall install its files. In some
cases you will have to patch the package Makefiles to achieve it. If you are
lucky, though, it may be as easy as passing an extra flag to the configuration
script; this is the case of GNU Autoconf- generated files:

CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}

Note that this specifies where the package has to look for its configuration
files, not where they will be originally installed (although the difference is
never explicit, unfortunately).

15.2.3. Patching installations

As said before, pkginstall automatically handles configuration files. This
means that the packages themselves must not touch the contents of $
{PKG_SYSCONFDIR} directly. Bad news is that many software installation scripts
will, out of the box, mess with the contents of that directory. So what is the
correct procedure to fix this issue?

You must teach the package (usually by manually patching it) to install any
configuration files under the examples hierarchy, share/examples/${PKGBASE}/.
This way, the PLIST registers them and the administrator always has the
original copies available.

Once the required configuration files are in place (i.e., under the examples
hierarchy), the pkginstall framework can use them as master copies during the
package installation to update what is in ${PKG_SYSCONFDIR}. To achieve this,
the variables CONF_FILES and CONF_FILES_PERMS are used. Check out
Section 15.1.2, "File manipulation" for information about their syntax and
their purpose. Here is an example, taken from the mail/mutt package:

EGDIR=        ${PREFIX}/share/doc/mutt/samples
CONF_FILES=   ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc

Note that the EGDIR variable is specific to that package and has no meaning
outside it.

15.2.4. Disabling handling of configuration files

The automatic copying of config files can be toggled by setting the environment
variable PKG_CONFIG prior to package installation.

15.3. System startup scripts

System startup scripts are special files because they must be installed in a
place known by the underlying OS, usually outside the installation prefix.
Therefore, the same rules described in Section 15.1, "Files and directories
outside the installation prefix" apply, and the same solutions can be used.
However, pkginstall provides a special mechanism to handle these files.

In order to provide system startup scripts, the package has to:

 1. Store the script inside ${FILESDIR}, with the .sh suffix appended.
    Considering the print/cups package as an example, it has a cupsd.sh in its
    files directory.

 2. Tell pkginstall to handle it, appending the name of the script, without its
    extension, to the RCD_SCRIPTS variable. Continuing the previous example:

    RCD_SCRIPTS+=   cupsd

Once this is done, pkginstall will do the following steps for each script in an
automated fashion:

 1. Process the file found in the files directory applying all the
    substitutions described in the FILES_SUBST variable.

 2. Copy the script from the files directory to the examples hierarchy, $
    {PREFIX}/share/examples/rc.d/. Note that this master file must be
    explicitly registered in the PLIST.

 3. Add code to the installation scripts to copy the startup script from the
    examples hierarchy into the system-wide startup scripts directory.

15.3.1. Disabling handling of system startup scripts

The automatic copying of config files can be toggled by setting the environment
variable PKG_RCD_SCRIPTS prior to package installation. Note that the scripts
will be always copied inside the examples hierarchy, ${PREFIX}/share/examples/
rc.d/, no matter what the value of this variable is.

15.4. System users and groups

If a package needs to create special users and/or groups during installation,
it can do so by using the pkginstall framework.

Users can be created by adding entries to the PKG_USERS variable. Each entry
has the following syntax:

user:group

Further specification of user details may be done by setting per-user
variables. PKG_UID.user is the numeric UID for the user. PKG_GECOS.user is the
user's description or comment. PKG_HOME.user is the user's home directory, and
defaults to /nonexistent if not specified. PKG_SHELL.user is the user's shell,
and defaults to /sbin/nologin if not specified.

Similarly, groups can be created by adding entries to the PKG_GROUPS variable,
whose syntax is:

group

The numeric GID of the group may be set by defining PKG_GID.group.

If a package needs to create the users and groups at an earlier stage, then it
can set USERGROUP_PHASE to either configure or build to indicate the phase
before which the users and groups are created. In this case, the numeric UIDs
and GIDs of the created users and groups are automatically hardcoded into the
final installation scripts.

15.5. System shells

Packages that install system shells should register them in the shell database,
/etc/shells, to make things easier to the administrator. This must be done from
the installation scripts to keep binary packages working on any system.
pkginstall provides an easy way to accomplish this task.

When a package provides a shell interpreter, it has to set the PKG_SHELL
variable to its absolute file name. This will add some hooks to the
installation scripts to handle it. Consider the following example, taken from
shells/zsh:

PKG_SHELL=      ${PREFIX}/bin/zsh

15.5.1. Disabling shell registration

The automatic registration of shell interpreters can be disabled by the
administrator by setting the PKG_REGISTER_SHELLS environment variable to NO.

15.6. Fonts

Packages that install X11 fonts should update the database files that index the
fonts within each fonts directory. This can easily be accomplished within the
pkginstall framework.

When a package installs X11 fonts, it must list the directories in which fonts
are installed in the FONTS_DIRS.type variables, where type can be one of "ttf",
"type1" or "x11". This will add hooks to the installation scripts to run the
appropriate commands to update the fonts database files within each of those
directories. For convenience, if the directory path is relative, it is taken to
be relative to the package's installation prefix. Consider the following
example, taken from fonts/dbz-ttf:

FONTS_DIRS.ttf= ${PREFIX}/lib/X11/fonts/TTF

15.6.1. Disabling automatic update of the fonts databases

The automatic update of fonts databases can be disabled by the administrator by
setting the PKG_UPDATE_FONTS_DB environment variable to NO.

Chapter 16. Options handling

Table of Contents

16.1. Global default options
16.2. Converting packages to use bsd.options.mk
16.3. Option Names
16.4. Determining the options of dependencies

Many packages have the ability to be built to support different sets of
features. bsd.options.mk is a framework in pkgsrc that provides generic
handling of those options that determine different ways in which the packages
can be built. It's possible for the user to specify exactly which sets of
options will be built into a package or to allow a set of global default
options apply.

There are two broad classes of behaviors that one might want to control via
options. One is whether some particular feature is enabled in a program that
will be built anyway, often by including or not including a dependency on some
other package. The other is whether or not an additional program will be built
as part of the package. Generally, it is better to make a split package for
such additional programs instead of using options, because it enables binary
packages to be built which can then be added separately. For example, the foo
package might have minimal dependencies (those packages without which foo
doesn't make sense), and then the foo-gfoo package might include the GTK
frontend program gfoo. This is better than including a gtk option to foo that
adds gfoo, because either that option is default, in which case binary users
can't get foo without gfoo, or not default, in which case they can't get gfoo.
With split packages, they can install foo without having GTK, and later decide
to install gfoo (pulling in GTK at that time). This is an advantage to source
users too, avoiding the need for rebuilds.

Plugins with widely varying dependencies should usually be split instead of
options.

It is often more work to maintain split packages, especially if the upstream
package does not support this. The decision of split vs. option should be made
based on the likelihood that users will want or object to the various pieces,
the size of the dependencies that are included, and the amount of work.

A further consideration is licensing. Non-free parts, or parts that depend on
non-free dependencies (especially plugins) should almost always be split if
feasible.

16.1. Global default options

Global default options are listed in PKG_DEFAULT_OPTIONS, which is a list of
the options that should be built into every package if that option is
supported. This variable should be set in mk.conf.

16.2. Converting packages to use bsd.options.mk

The following example shows how bsd.options.mk should be used by the
hypothetical ``wibble'' package, either in the package Makefile, or in a file,
e.g. options.mk, that is included by the main package Makefile.

PKG_OPTIONS_VAR=                PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS=          wibble-foo ldap
PKG_OPTIONS_OPTIONAL_GROUPS=    database
PKG_OPTIONS_GROUP.database=     mysql pgsql
PKG_SUGGESTED_OPTIONS=          wibble-foo
PKG_OPTIONS_LEGACY_VARS+=       WIBBLE_USE_OPENLDAP:ldap
PKG_OPTIONS_LEGACY_OPTS+=       foo:wibble-foo

.include "../../mk/bsd.prefs.mk"

# this package was previously named wibble2
.if defined(PKG_OPTIONS.wibble2)
PKG_LEGACY_OPTIONS+=            ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+= \
        "Deprecated variable PKG_OPTIONS.wibble2 used, use ${PKG_OPTIONS_VAR} instead."
.endif

.include "../../mk/bsd.options.mk"

# Package-specific option-handling

###
### FOO support
###
.if !empty(PKG_OPTIONS:Mwibble-foo)
CONFIGURE_ARGS+=    --enable-foo
.endif

###
### LDAP support
###
.if !empty(PKG_OPTIONS:Mldap)
.  include "../../databases/openldap-client/buildlink3.mk"
CONFIGURE_ARGS+=    --enable-ldap=${BUILDLINK_PREFIX.openldap-client}
.endif

###
### database support
###
.if !empty(PKG_OPTIONS:Mmysql)
.  include "../../mk/mysql.buildlink3.mk"
.endif
.if !empty(PKG_OPTIONS:Mpgsql)
.  include "../../mk/pgsql.buildlink3.mk"
.endif

The first section contains the information about which build options are
supported by the package, and any default options settings if needed.

 1. PKG_OPTIONS_VAR is the name of the make(1) variable that the user can set
    to override the default options. It should be set to PKG_OPTIONS.pkgbase.
    Do not set it to PKG_OPTIONS.${PKGBASE}, since PKGBASE is not defined at
    the point where the options are processed.

 2. PKG_SUPPORTED_OPTIONS is a list of build options supported by the package.

 3. PKG_OPTIONS_OPTIONAL_GROUPS is a list of names of groups of mutually
    exclusive options. The options in each group are listed in
    PKG_OPTIONS_GROUP.groupname. The most specific setting of any option from
    the group takes precedence over all other options in the group. Options
    from the groups will be automatically added to PKG_SUPPORTED_OPTIONS.

 4. PKG_OPTIONS_REQUIRED_GROUPS is like PKG_OPTIONS_OPTIONAL_GROUPS, but
    building the packages will fail if no option from the group is selected.

 5. PKG_OPTIONS_NONEMPTY_SETS is a list of names of sets of options. At least
    one option from each set must be selected. The options in each set are
    listed in PKG_OPTIONS_SET.setname. Options from the sets will be
    automatically added to PKG_SUPPORTED_OPTIONS. Building the package will
    fail if no option from the set is selected.

 6. PKG_SUGGESTED_OPTIONS is a list of build options which are enabled by
    default.

 7. PKG_OPTIONS_LEGACY_VARS is a list of "USE_VARIABLE:option" pairs that map
    legacy mk.conf variables to their option counterparts. Pairs should be
    added with "+=" to keep the listing of global legacy variables. A warning
    will be issued if the user uses a legacy variable.

 8. PKG_OPTIONS_LEGACY_OPTS is a list of "old-option:new-option" pairs that map
    options that have been renamed to their new counterparts. Pairs should be
    added with "+=" to keep the listing of global legacy options. A warning
    will be issued if the user uses a legacy option.

 9. PKG_LEGACY_OPTIONS is a list of options implied by deprecated variables
    used. This can be used for cases that neither PKG_OPTIONS_LEGACY_VARS nor
    PKG_OPTIONS_LEGACY_OPTS can handle, e. g. when PKG_OPTIONS_VAR is renamed.

10. PKG_OPTIONS_DEPRECATED_WARNINGS is a list of warnings about deprecated
    variables or options used, and what to use instead.

A package should never modify PKG_DEFAULT_OPTIONS or the variable named in
PKG_OPTIONS_VAR. These are strictly user-settable. To suggest a default set of
options, use PKG_SUGGESTED_OPTIONS.

PKG_OPTIONS_VAR must be defined before including bsd.options.mk. If none of
PKG_SUPPORTED_OPTIONS, PKG_OPTIONS_OPTIONAL_GROUPS, and
PKG_OPTIONS_REQUIRED_GROUPS are defined (as can happen with platform-specific
options if none of them is supported on the current platform), PKG_OPTIONS is
set to the empty list and the package is otherwise treated as not using the
options framework.

After the inclusion of bsd.options.mk, the variable PKG_OPTIONS contains the
list of selected build options, properly filtered to remove unsupported and
duplicate options.

The remaining sections contain the logic that is specific to each option. The
correct way to check for an option is to check whether it is listed in
PKG_OPTIONS:

.if !empty(PKG_OPTIONS:Moption)

16.3. Option Names

Options that enable similar features in different packages (like optional
support for a library) should use a common name in all packages that support it
(like the name of the library). If another package already has an option with
the same meaning, use the same name.

Options that enable features specific to one package, where it's unlikely that
another (unrelated) package has the same (or a similar) optional feature,
should use a name prefixed with pkgname-.

If a group of related packages share an optional feature specific to that
group, prefix it with the name of the "main" package (e. g.
djbware-errno-hack).

For new options, add a line to mk/defaults/options.description. Lines have two
fields, separated by tab. The first field is the option name, the second its
description. The description should be a whole sentence (starting with an
uppercase letter and ending with a period) that describes what enabling the
option does. E. g. "Enable ispell support." The file is sorted by option names.

16.4. Determining the options of dependencies

When writing buildlink3.mk files, it is often necessary to list different
dependencies based on the options with which the package was built. For
querying these options, the file pkgsrc/mk/pkg-build-options.mk should be used.
A typical example looks like this:

pkgbase := libpurple
.include "../../mk/pkg-build-options.mk"

.if !empty(PKG_BUILD_OPTIONS.libpurple:Mdbus)
...
.endif

Including pkg-build-options.mk here will set the variable
PKG_BUILD_OPTIONS.libpurple to the build options of the libpurple package,
which can then be queried like PKG_OPTIONS in the options.mk file. See the file
pkg-build-options.mk for more details.

Chapter 17. The build process

Table of Contents

17.1. Introduction
17.2. Program location
17.3. Directories used during the build process
17.4. Running a phase
17.5. The fetch phase

    17.5.1. What to fetch and where to get it from
    17.5.2. How are the files fetched?

17.6. The checksum phase
17.7. The extract phase
17.8. The patch phase
17.9. The tools phase
17.10. The wrapper phase
17.11. The configure phase
17.12. The build phase
17.13. The test phase
17.14. The install phase
17.15. The package phase
17.16. Cleaning up
17.17. Other helpful targets

17.1. Introduction

This chapter gives a detailed description on how a package is built. Building a
package is separated into different phases (for example fetch, build, install),
all of which are described in the following sections. Each phase is split into
so-called stages, which take the name of the containing phase, prefixed by one
of pre-, do- or post-. (Examples are pre-configure, post-build.) Most of the
actual work is done in the do-* stages.

Never override the regular targets (like fetch), if you have to, override the
do-* ones instead.

The basic steps for building a program are always the same. First the program's
source (distfile) must be brought to the local system and then extracted. After
any pkgsrc-specific patches to compile properly are applied, the software can
be configured, then built (usually by compiling), and finally the generated
binaries, etc. can be put into place on the system.

To get more details about what is happening at each step, you can set the
PKG_VERBOSE variable, or the PATCH_DEBUG variable if you are just interested in
more details about the patch step.

17.2. Program location

Before outlining the process performed by the NetBSD package system in the next
section, here's a brief discussion on where programs are installed, and which
variables influence this.

The automatic variable PREFIX indicates where all files of the final program
shall be installed. It is usually set to LOCALBASE (/usr/pkg), or CROSSBASE for
pkgs in the cross category. The value of PREFIX needs to be put into the
various places in the program's source where paths to these files are encoded.
See Section 11.3, "patches/*" and Section 19.3.1, "Shared libraries - libtool"
for more details.

When choosing which of these variables to use, follow the following rules:

  * PREFIX always points to the location where the current pkg will be
    installed. When referring to a pkg's own installation path, use "${PREFIX}"
    .

  * LOCALBASE is where all non-X11 pkgs are installed. If you need to construct
    a -I or -L argument to the compiler to find includes and libraries
    installed by another non-X11 pkg, use "${LOCALBASE}". The name LOCALBASE
    stems from FreeBSD, which installed all packages in /usr/local. As pkgsrc
    leaves /usr/local for the system administrator, this variable is a
    misnomer.

  * X11BASE is where the actual X11 distribution (from xsrc, etc.) is
    installed. When looking for standard X11 includes (not those installed by a
    package), use "${X11BASE}".

  * X11-based packages are special in that they may be installed in either
    X11BASE or LOCALBASE.

    Usually, X11 packages should be installed under LOCALBASE whenever
    possible. Note that you will need to include ../../mk/x11.buildlink3.mk in
    them to request the presence of X11 and to get the right compilation flags.

    Even though, there are some packages that cannot be installed under
    LOCALBASE: those that come with app-defaults files. These packages are
    special and they must be placed under X11BASE. To accomplish this, set
    either USE_X11BASE or USE_IMAKE in your package.

    Some notes: If you need to find includes or libraries installed by a pkg
    that has USE_IMAKE or USE_X11BASE in its pkg Makefile, you need to look in 
    both ${X11BASE} and ${LOCALBASE}. To force installation of all X11 packages
    in LOCALBASE, the pkgtools/xpkgwedge package is enabled by default.

  * X11PREFIX should be used to refer to the installed location of an X11
    package. X11PREFIX will be set to X11BASE if xpkgwedge is not installed,
    and to LOCALBASE if xpkgwedge is installed.

  * If xpkgwedge is installed, it is possible to have some packages installed
    in X11BASE and some in LOCALBASE. To determine the prefix of an installed
    package, the EVAL_PREFIX definition can be used. It takes pairs in the
    format "DIRNAME=<package>", and the make(1) variable DIRNAME will be set to
    the prefix of the installed package <package>, or "${X11PREFIX}" if the
    package is not installed.

    This is best illustrated by example.

    The following lines are taken from pkgsrc/wm/scwm/Makefile:

    EVAL_PREFIX+=           GTKDIR=gtk+
    CONFIGURE_ARGS+=        --with-guile-prefix=${LOCALBASE:Q}
    CONFIGURE_ARGS+=        --with-gtk-prefix=${GTKDIR:Q}
    CONFIGURE_ARGS+=        --enable-multibyte

    Specific defaults can be defined for the packages evaluated using
    EVAL_PREFIX, by using a definition of the form:

    GTKDIR_DEFAULT= ${LOCALBASE}

    where GTKDIR corresponds to the first definition in the EVAL_PREFIX pair.

  * Within ${PREFIX}, packages should install files according to hier(7), with
    the exception that manual pages go into ${PREFIX}/man, not ${PREFIX}/share/
    man.

17.3. Directories used during the build process

When building a package, various directories are used to store source files,
temporary files, pkgsrc-internal files, and so on. These directories are
explained here.

Some of the directory variables contain relative pathnames. There are two
common base directories for these relative directories: PKGSRCDIR/PKGPATH is
used for directories that are pkgsrc-specific. WRKSRC is used for directories
inside the package itself.

PKGSRCDIR

    This is an absolute pathname that points to the pkgsrc root directory.
    Generally, you don't need it.

PKGDIR

    This is an absolute pathname that points to the current package.

PKGPATH

    This is a pathname relative to PKGSRCDIR that points to the current
    package.

WRKDIR

    This is an absolute pathname pointing to the directory where all work takes
    place. The distfiles are extracted to this directory. It also contains
    temporary directories and log files used by the various pkgsrc frameworks,
    like buildlink or the wrappers.

WRKSRC

    This is an absolute pathname pointing to the directory where the distfiles
    are extracted. It is usually a direct subdirectory of WRKDIR, and often
    it's the only directory entry that isn't hidden. This variable may be
    changed by a package Makefile.

The CREATE_WRKDIR_SYMLINK definition takes either the value yes or no and
defaults to no. It indicates whether a symbolic link to the WRKDIR is to be
created in the pkgsrc entry's directory. If users would like to have their
pkgsrc trees behave in a read-only manner, then the value of
CREATE_WRKDIR_SYMLINK should be set to no.

17.4. Running a phase

You can run a particular phase by typing make phase, where phase is the name of
the phase. This will automatically run all phases that are required for this
phase. The default phase is build, that is, when you run make without
parameters in a package directory, the package will be built, but not
installed.

17.5. The fetch phase

The first step in building a package is to fetch the distribution files
(distfiles) from the sites that are providing them. This is the task of the 
fetch phase.

17.5.1. What to fetch and where to get it from

In simple cases, MASTER_SITES defines all URLs from where the distfile, whose
name is derived from the DISTNAME variable, is fetched. The more complicated
cases are described below.

The variable DISTFILES specifies the list of distfiles that have to be fetched.
Its value defaults to ${DISTNAME}${EXTRACT_SUFX}, so that most packages don't
need to define it at all. EXTRACT_SUFX is .tar.gz by default, but can be
changed freely. Note that if your package requires additional distfiles to the
default one, you cannot just append the additional filenames using the +=
operator, but you have write for example:

DISTFILES=      ${DISTNAME}${EXTRACT_SUFX} additional-files.tar.gz

Each distfile is fetched from a list of sites, usually MASTER_SITES. If the
package has multiple DISTFILES or multiple PATCHFILES from different sites, you
can set SITES.distfile to the list of URLs where the file distfile (including
the suffix) can be found.

DISTFILES=      ${DISTNAME}${EXTRACT_SUFX}
DISTFILES+=     foo-file.tar.gz
SITES.foo-file.tar.gz= \
http://www.somewhere.com/somehow/ \
http://www.somewhereelse.com/mirror/somehow/

When actually fetching the distfiles, each item from MASTER_SITES or SITES.*
gets the name of each distfile appended to it, without an intermediate slash.
Therefore, all site values have to end with a slash or other separator
character. This allows for example to set MASTER_SITES to a URL of a CGI script
that gets the name of the distfile as a parameter. In this case, the definition
would look like:

MASTER_SITES=   http://www.example.com/download.cgi?file=

The exception to this rule are URLs starting with a dash. In that case the URL
is taken as is, fetched and the result stored under the name of the distfile.

There are some predefined values for MASTER_SITES, which can be used in
packages. The names of the variables should speak for themselves.

${MASTER_SITE_APACHE}
${MASTER_SITE_BACKUP}
${MASTER_SITE_CYGWIN}
${MASTER_SITE_DEBIAN}
${MASTER_SITE_FREEBSD}
${MASTER_SITE_FREEBSD_LOCAL}
${MASTER_SITE_GENTOO}
${MASTER_SITE_GNOME}
${MASTER_SITE_GNU}
${MASTER_SITE_GNUSTEP}
${MASTER_SITE_IFARCHIVE}
${MASTER_SITE_KDE}
${MASTER_SITE_MOZILLA}
${MASTER_SITE_MYSQL}
${MASTER_SITE_OPENOFFICE}
${MASTER_SITE_PERL_CPAN}
${MASTER_SITE_PGSQL}
${MASTER_SITE_R_CRAN}
${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_SOURCEFORGE_JP}
${MASTER_SITE_SUNSITE}
${MASTER_SITE_SUSE}
${MASTER_SITE_TEX_CTAN}
${MASTER_SITE_XCONTRIB}
${MASTER_SITE_XEMACS}

Some explanations for the less self-explaining ones: MASTER_SITE_BACKUP
contains backup sites for packages that are maintained in ftp://ftp.NetBSD.org/
pub/pkgsrc/distfiles/${DIST_SUBDIR}. MASTER_SITE_LOCAL contains local package
source distributions that are maintained in ftp://ftp.NetBSD.org/pub/pkgsrc/
distfiles/LOCAL_PORTS/.

If you choose one of these predefined sites, you may want to specify a
subdirectory of that site. Since these macros may expand to more than one
actual site, you must use the following construct to specify a subdirectory:

MASTER_SITES=   ${MASTER_SITE_GNU:=subdirectory/name/}
MASTER_SITES=   ${MASTER_SITE_SOURCEFORGE:=project_name/}

Note the trailing slash after the subdirectory name.

17.5.2. How are the files fetched?

The fetch phase makes sure that all the distfiles exist in a local directory
(DISTDIR, which can be set by the pkgsrc user). If the files do not exist, they
are fetched using commands of the form

${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FETCH_AFTER_ARGS}

where ${site} varies through several possibilities in turn: first,
MASTER_SITE_OVERRIDE is tried, then the sites specified in either SITES.file if
defined, else MASTER_SITES or PATCH_SITES, as applies, then finally the value
of MASTER_SITE_BACKUP. The order of all except the first and the last can be
optionally sorted by the user, via setting either MASTER_SORT_RANDOM, and
MASTER_SORT_AWK or MASTER_SORT_REGEX.

The specific command and arguments used depend on the FETCH_USING parameter.
The example above is for FETCH_USING=custom.

The distfiles mirror run by the NetBSD Foundation uses the mirror-distfiles
target to mirror the distfiles, if they are freely distributable. Packages
setting NO_SRC_ON_FTP (usually to "${RESTRICTED}") will not have their
distfiles mirrored.

17.6. The checksum phase

After the distfile(s) are fetched, their checksum is generated and compared
with the checksums stored in the distinfo file. If the checksums don't match,
the build is aborted. This is to ensure the same distfile is used for building,
and that the distfile wasn't changed, e.g. by some malign force, deliberately
changed distfiles on the master distribution site or network lossage.

17.7. The extract phase

When the distfiles are present on the local system, they need to be extracted,
as they usually come in the form of some compressed archive format.

By default, all DISTFILES are extracted. If you only need some of them, you can
set the EXTRACT_ONLY variable to the list of those files.

Extracting the files is usually done by a little program, mk/extract/extract,
which already knows how to extract various archive formats, so most likely you
will not need to change anything here. But if you need, the following variables
may help you:

EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}

    Use these variables to override the default options for an extract command,
    which are defined in mk/extract/extract.

EXTRACT_USING

    This variable can be set to bsdtar, gtar, nbtar (which is the default
    value), pax, or an absolute pathname pointing to the command with which tar
    archives should be extracted. It is preferred to choose bsdtar over gtar if
    NetBSD's pax-as-tar is not good enough.

If the extract program doesn't serve your needs, you can also override the
EXTRACT_CMD variable, which holds the command used for extracting the files.
This command is executed in the ${WRKSRC} directory. During execution of this
command, the shell variable extract_file holds the absolute pathname of the
file that is going to be extracted.

And if that still does not suffice, you can override the do-extract target in
the package Makefile.

17.8. The patch phase

After extraction, all the patches named by the PATCHFILES, those present in the
patches subdirectory of the package as well as in $LOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png) are applied. Patchfiles ending in .Z or .gz
are uncompressed before they are applied, files ending in .orig or .rej are
ignored. Any special options to patch(1) can be handed in PATCH_DIST_ARGS. See
Section 11.3, "patches/*" for more details.

By default patch(1) is given special args to make it fail if the patches apply
with some lines of fuzz. Please fix (regen) the patches so that they apply
cleanly. The rationale behind this is that patches that don't apply cleanly may
end up being applied in the wrong place, and cause severe harm there.

17.9. The tools phase

This is covered in Chapter 18, Tools needed for building or running.

17.10. The wrapper phase

This phase creates wrapper programs for the compilers and linkers. The
following variables can be used to tweak the wrappers.

ECHO_WRAPPER_MSG

    The command used to print progress messages. Does nothing by default. Set
    to ${ECHO} to see the progress messages.

WRAPPER_DEBUG

    This variable can be set to yes (default) or no, depending on whether you
    want additional information in the wrapper log file.

WRAPPER_UPDATE_CACHE

    This variable can be set to yes or no, depending on whether the wrapper
    should use its cache, which will improve the speed. The default value is
    yes, but is forced to no if the platform does not support it.

WRAPPER_REORDER_CMDS

    A list of reordering commands. A reordering command has the form reorder:l:
    lib1:lib2. It ensures that that -llib1 occurs before -llib2.

WRAPPER_TRANSFORM_CMDS

    A list of transformation commands. [TODO: investigate further]

17.11. The configure phase

Most pieces of software need information on the header files, system calls, and
library routines which are available on the platform they run on. The process
of determining this information is known as configuration, and is usually
automated. In most cases, a script is supplied with the distfiles, and its
invocation results in generation of header files, Makefiles, etc.

If the package contains a configure script, this can be invoked by setting
HAS_CONFIGURE to "yes". If the configure script is a GNU autoconf script, you
should set GNU_CONFIGURE to "yes" instead. What happens in the configure phase
is roughly:

.for d in ${CONFIGURE_DIRS}
        cd ${WRKSRC} \
        && cd ${d} \
        && env ${CONFIGURE_ENV} ${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS}
.endfor

CONFIGURE_DIRS (default: ".") is a list of pathnames relative to WRKSRC. In
each of these directories, the configure script is run with the environment
CONFIGURE_ENV and arguments CONFIGURE_ARGS. The variables CONFIGURE_ENV,
CONFIGURE_SCRIPT (default: "./configure") and CONFIGURE_ARGS may all be changed
by the package.

If the program uses the Perl way of configuration (mainly Perl modules, but not
only), i.e. a file called Makefile.PL, it should include ../../lang/perl5/
module.mk. To set any parameter for Makefile.PL use the MAKE_PARAMS variable
(e.g., MAKE_PARAMS+=foo=bar

If the program uses an Imakefile for configuration, the appropriate steps can
be invoked by setting USE_IMAKE to "yes". (If you only want the package
installed in ${X11PREFIX} but xmkmf not being run, set USE_X11BASE instead.)
You can add variables to xmkmf's environment by adding them to the SCRIPTS_ENV
variable.

If the program uses cmake for configuration, the appropriate steps can be
invoked by setting USE_CMAKE to "yes". You can add variables to cmake's
environment by adding them to the CONFIGURE_ENV variable and arguments to cmake
by adding them to the CMAKE_ARGS variable. The top directory argument is given
by the CMAKE_ARG_PATH variable, that defaults to "." (relative to
CONFIGURE_DIRS)

If there is no configure step at all, set NO_CONFIGURE to "yes".

17.12. The build phase

For building a package, a rough equivalent of the following code is executed.

.for d in ${BUILD_DIRS}
        cd ${WRKSRC} \
        && cd ${d} \
        && env ${MAKE_ENV} \
            ${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \
                -f ${MAKE_FILE} \
                ${BUILD_TARGET}
.endfor

BUILD_DIRS (default: ".") is a list of pathnames relative to WRKSRC. In each of
these directories, MAKE_PROGRAM is run with the environment MAKE_ENV and
arguments BUILD_MAKE_FLAGS. The variables MAKE_ENV, BUILD_MAKE_FLAGS, MAKE_FILE
and BUILD_TARGET may all be changed by the package.

The default value of MAKE_PROGRAM is "gmake" if USE_TOOLS contains "gmake", "
make" otherwise. The default value of MAKE_FILE is "Makefile", and BUILD_TARGET
defaults to "all".

If there is no build step at all, set NO_BUILD to "yes".

17.13. The test phase

[TODO]

17.14. The install phase

Once the build stage has completed, the final step is to install the software
in public directories, so users can access the programs and files.

In the install phase, a rough equivalent of the following code is executed.
Additionally, before and after this code, much magic is performed to do
consistency checks, registering the package, and so on.

.for d in ${INSTALL_DIRS}
        cd ${WRKSRC} \
        && cd ${d} \
        && env ${MAKE_ENV} \
            ${MAKE_PROGRAM} ${INSTALL_MAKE_FLAGS} \
                -f ${MAKE_FILE} \
                ${INSTALL_TARGET}
.endfor

The variable's meanings are analogous to the ones in the build phase.
INSTALL_DIRS defaults to BUILD_DIRS. INSTALL_TARGET is "install" by default,
plus "install.man" if USE_IMAKE is defined and NO_INSTALL_MANPAGES is not
defined.

In the install phase, the following variables are useful. They are all
variations of the install(1) command that have the owner, group and permissions
preset. INSTALL is the plain install command. The specialized variants,
together with their intended use, are:

INSTALL_PROGRAM_DIR

    directories that contain binaries

INSTALL_SCRIPT_DIR

    directories that contain scripts

INSTALL_LIB_DIR

    directories that contain shared and static libraries

INSTALL_DATA_DIR

    directories that contain data files

INSTALL_MAN_DIR

    directories that contain man pages

INSTALL_PROGRAM

    binaries that can be stripped from debugging symbols

INSTALL_SCRIPT

    binaries that cannot be stripped

INSTALL_GAME

    game binaries

INSTALL_LIB

    shared and static libraries

INSTALL_DATA

    data files

INSTALL_GAME_DATA

    data files for games

INSTALL_MAN

    man pages

Some other variables are:

INSTALLATION_DIRS

    A list of directories relative to PREFIX that are created by pkgsrc at the
    beginning of the install phase. The package is supposed to create all
    needed directories itself before installing files to it and list all other
    directories here.

In the rare cases that a package shouldn't install anything, set NO_INSTALL to 
"yes". This is mostly relevant for packages in the regress category.

17.15. The package phase

Once the install stage has completed, a binary package of the installed files
can be built. These binary packages can be used for quick installation without
previous compilation, e.g. by the make bin-install or by using pkg_add.

By default, the binary packages are created in ${PACKAGES}/All and symlinks are
created in ${PACKAGES}/category, one for each category in the CATEGORIES
variable. PACKAGES defaults to pkgsrc/packages.

17.16. Cleaning up

Once you're finished with a package, you can clean the work directory by
running make clean. If you want to clean the work directories of all
dependencies too, use make clean-depends.

17.17. Other helpful targets

pre/post-*

    For any of the main targets described in the previous section, two
    auxiliary targets exist with "pre-" and "post-" used as a prefix for the
    main target's name. These targets are invoked before and after the main
    target is called, allowing extra configuration or installation steps be
    performed from a package's Makefile, for example, which a program's
    configure script or install target omitted.

do-*

    Should one of the main targets do the wrong thing, and should there be no
    variable to fix this, you can redefine it with the do-* target. (Note that
    redefining the target itself instead of the do-* target is a bad idea, as
    the pre-* and post-* targets won't be called anymore, etc.) You will not
    usually need to do this.

reinstall

    If you did a make install and you noticed some file was not installed
    properly, you can repeat the installation with this target, which will
    ignore the "already installed" flag.

    This is the default value of DEPENDS_TARGET except in the case of make
    update and make package, where the defaults are "package" and "update",
    respectively.

deinstall

    This target does a pkg_delete(1) in the current directory, effectively
    de-installing the package. The following variables can be used to tune the
    behaviour:

    PKG_VERBOSE

        Add a "-v" to the pkg_delete(1) command.

    DEINSTALLDEPENDS

        Remove all packages that require (depend on) the given package. This
        can be used to remove any packages that may have been pulled in by a
        given package, e.g. if make deinstall DEINSTALLDEPENDS=1 is done in
        pkgsrc/x11/kde, this is likely to remove whole KDE. Works by adding "-R
        " to the pkg_delete(1) command line.

bin-install

    Install a binary package from local disk and via FTP from a list of sites
    (see the BINPKG_SITES variable), and do a make package if no binary package
    is available anywhere. The arguments given to pkg_add can be set via
    BIN_INSTALL_FLAGS e.g., to do verbose operation, etc.

update

    This target causes the current package to be updated to the latest version.
    The package and all depending packages first get de-installed, then current
    versions of the corresponding packages get compiled and installed. This is
    similar to manually noting which packages are currently installed, then
    performing a series of make deinstall and make install (or whatever
    UPDATE_TARGET is set to) for these packages.

    You can use the "update" target to resume package updating in case a
    previous make update was interrupted for some reason. However, in this
    case, make sure you don't call make clean or otherwise remove the list of
    dependent packages in WRKDIR. Otherwise, you lose the ability to
    automatically update the current package along with the dependent packages
    you have installed.

    Resuming an interrupted make update will only work as long as the package
    tree remains unchanged. If the source code for one of the packages to be
    updated has been changed, resuming make update will most certainly fail!

    The following variables can be used either on the command line or in
    mk.conf to alter the behaviour of make update:

    UPDATE_TARGET

        Install target to recursively use for the updated package and the
        dependent packages. Defaults to DEPENDS_TARGET if set, "install"
        otherwise for make update. Other good targets are "package" or "
        bin-install". Do not set this to "update" or you will get stuck in an
        endless loop!

    NOCLEAN

        Don't clean up after updating. Useful if you want to leave the work
        sources of the updated packages around for inspection or other
        purposes. Be sure you eventually clean up the source tree (see the "
        clean-update" target below) or you may run into troubles with old
        source code still lying around on your next make or make update.

    REINSTALL

        Deinstall each package before installing (making DEPENDS_TARGET). This
        may be necessary if the "clean-update" target (see below) was called
        after interrupting a running make update.

    DEPENDS_TARGET

        Allows you to disable recursion and hardcode the target for packages.
        The default is "update" for the update target, facilitating a recursive
        update of prerequisite packages. Only set DEPENDS_TARGET if you want to
        disable recursive updates. Use UPDATE_TARGET instead to just set a
        specific target for each package to be installed during make update
        (see above).

clean-update

    Clean the source tree for all packages that would get updated if make
    update was called from the current directory. This target should not be
    used if the current package (or any of its depending packages) have already
    been de-installed (e.g., after calling make update) or you may lose some
    packages you intended to update. As a rule of thumb: only use this target 
    before the first time you run make update and only if you have a dirty
    package tree (e.g., if you used NOCLEAN).

    If you are unsure about whether your tree is clean, you can either perform
    a make clean at the top of the tree, or use the following sequence of
    commands from the directory of the package you want to update (before
    running make update for the first time, otherwise you lose all the packages
    you wanted to update!):

    # make clean-update
    # make clean CLEANDEPENDS=YES
    # make update


    The following variables can be used either on the command line or in
    mk.conf to alter the behaviour of make clean-update:

    CLEAR_DIRLIST

        After make clean, do not reconstruct the list of directories to update
        for this package. Only use this if make update successfully installed
        all packages you wanted to update. Normally, this is done automatically
        on make update, but may have been suppressed by the NOCLEAN variable
        (see above).

replace

    Update the installation of the current package. This differs from update in
    that it does not replace dependent packages. You will need to install
    pkgtools/pkg_tarup for this target to work.

    Be careful when using this target! There are no guarantees that dependent
    packages will still work, in particular they will most certainly break if
    you make replace a library package whose shared library major version
    changed between your installed version and the new one. For this reason,
    this target is not officially supported and only recommended for advanced
    users.

info

    This target invokes pkg_info(1) for the current package. You can use this
    to check which version of a package is installed.

index

    This is a top-level command, i.e. it should be used in the pkgsrc
    directory. It creates a database of all packages in the local pkgsrc tree,
    including dependencies, comment, maintainer, and some other useful
    information. Individual entries are created by running make describe in the
    packages' directories. This index file is saved as pkgsrc/INDEX. It can be
    displayed in verbose format by running make print-index. You can search in
    it with make search key=something. You can extract a list of all packages
    that depend on a particular one by running make show-deps PKG=somepackage.

    Running this command takes a very long time, some hours even on fast
    machines!

readme

    This target generates a README.html file, which can be viewed using a
    browser such as www/firefox or www/links. The generated files contain
    references to any packages which are in the PACKAGES directory on the local
    host. The generated files can be made to refer to URLs based on
    FTP_PKG_URL_HOST and FTP_PKG_URL_DIR. For example, if I wanted to generate
    README.html files which pointed to binary packages on the local machine, in
    the directory /usr/packages, set FTP_PKG_URL_HOST=file://localhost and
    FTP_PKG_URL_DIR=/usr/packages. The ${PACKAGES} directory and its
    subdirectories will be searched for all the binary packages.

    The target can be run at the toplevel or in category directories, in which
    case it descends recursively.

readme-all

    This is a top-level command, run it in pkgsrc. Use this target to create a
    file README-all.html which contains a list of all packages currently
    available in the NetBSD Packages Collection, together with the category
    they belong to and a short description. This file is compiled from the
    pkgsrc/*/README.html files, so be sure to run this after a make readme.

cdrom-readme

    This is very much the same as the "readme" target (see above), but is to be
    used when generating a pkgsrc tree to be written to a CD-ROM. This target
    also produces README.html files, and can be made to refer to URLs based on
    CDROM_PKG_URL_HOST and CDROM_PKG_URL_DIR.

show-distfiles

    This target shows which distfiles and patchfiles are needed to build the
    package (ALLFILES, which contains all DISTFILES and PATCHFILES, but not
    patches/*).

show-downlevel

    This target shows nothing if the package is not installed. If a version of
    this package is installed, but is not the version provided in this version
    of pkgsrc, then a warning message is displayed. This target can be used to
    show which of your installed packages are downlevel, and so the old
    versions can be deleted, and the current ones added.

show-pkgsrc-dir

    This target shows the directory in the pkgsrc hierarchy from which the
    package can be built and installed. This may not be the same directory as
    the one from which the package was installed. This target is intended to be
    used by people who may wish to upgrade many packages on a single host, and
    can be invoked from the top-level pkgsrc Makefile by using the "
    show-host-specific-pkgs" target.

show-installed-depends

    This target shows which installed packages match the current package's
    DEPENDS. Useful if out of date dependencies are causing build problems.

check-shlibs

    After a package is installed, check all its binaries and (on ELF platforms)
    shared libraries to see if they find the shared libs they need. Run by
    default if PKG_DEVELOPER is set in mk.conf.

print-PLIST

    After a "make install" from a new or upgraded pkg, this prints out an
    attempt to generate a new PLIST from a find -newer work/.extract_done. An
    attempt is made to care for shared libs etc., but it is strongly
    recommended to review the result before putting it into PLIST. On upgrades,
    it's useful to diff the output of this command against an already existing
    PLIST file.

    If the package installs files via tar(1) or other methods that don't update
    file access times, be sure to add these files manually to your PLIST, as
    the "find -newer" command used by this target won't catch them!

    See Section 13.3, "Tweaking output of make print-PLIST" for more
    information on this target.

bulk-package

    Used to do bulk builds. If an appropriate binary package already exists, no
    action is taken. If not, this target will compile, install and package it
    (and its depends, if PKG_DEPENDS is set properly. See Section 7.3.1,
    "Configuration"). After creating the binary package, the sources, the
    just-installed package and its required packages are removed, preserving
    free disk space.

    Beware that this target may deinstall all packages installed on a system!

bulk-install

    Used during bulk-installs to install required packages. If an up-to-date
    binary package is available, it will be installed via pkg_add(1). If not, 
    make bulk-package will be executed, but the installed binary won't be
    removed.

    A binary package is considered "up-to-date" to be installed via pkg_add(1)
    if:

      + None of the package's files (Makefile, ...) were modified since it was
        built.

      + None of the package's required (binary) packages were modified since it
        was built.

    Beware that this target may deinstall all packages installed on a system!

Chapter 18. Tools needed for building or running

Table of Contents

18.1. Tools for pkgsrc builds
18.2. Tools needed by packages
18.3. Tools provided by platforms
18.4. Questions regarding the tools

The USE_TOOLS definition is used both internally by pkgsrc and also for
individual packages to define what commands are needed for building a package
(like BUILD_DEPENDS) or for later run-time of an installed packaged (such as
DEPENDS). If the native system provides an adequate tool, then in many cases, a
pkgsrc package will not be used.

When building a package, the replacement tools are made available in a
directory (as symlinks or wrapper scripts) that is early in the executable
search path. Just like the buildlink system, this helps with consistent builds.

A tool may be needed to help build a specific package. For example, perl, GNU
make (gmake) or yacc may be needed.

Also a tool may be needed, for example, because the native system's supplied
tool may be inefficient for building a package with pkgsrc. For example, a
package may need GNU awk, bison (instead of yacc) or a better sed.

The tools used by a package can be listed by running make show-tools.

18.1. Tools for pkgsrc builds

The default set of tools used by pkgsrc is defined in bsd.pkg.mk. This includes
standard Unix tools, such as: cat, awk, chmod, test, and so on. These can be
seen by running: make show-var VARNAME=USE_TOOLS.

If a package needs a specific program to build then the USE_TOOLS variable can
be used to define the tools needed.

18.2. Tools needed by packages

In the following examples, the :run means that it is needed at run-time (and
becomes a DEPENDS). The default is a build dependency which can be set with
:build. (So in this example, it is the same as gmake:build and
pkg-config:build.)

USE_TOOLS+=     gmake perl:run pkg-config

When using the tools framework, a TOOLS_PATH.foo variable is defined which
contains the full path to the appropriate tool. For example, TOOLS_PATH.bash
could be "/bin/bash" on Linux systems.

If you always need a pkgsrc version of the tool at run-time, then just use
DEPENDS instead.

18.3. Tools provided by platforms

When improving or porting pkgsrc to a new platform, have a look at (or create)
the corresponding platform specific make file fragment under pkgsrc/mk/tools/
tools.${OPSYS}.mk which defines the name of the common tools. For example:

.if exists(/usr/bin/bzcat)
TOOLS_PLATFORM.bzcat?=          /usr/bin/bzcat
.elif exists(/usr/bin/bzip2)
TOOLS_PLATFORM.bzcat?=          /usr/bin/bzip2 -cd
.endif

TOOLS_PLATFORM.true?=           true                    # shell builtin

18.4. Questions regarding the tools

18.4.1. How do I add a new tool?
18.4.2. How do I get a list of all available tools?
18.4.3. How can I get a list of all the tools that a package is using while
    being built? I want to know whether it uses sed or not.

18.4.1. How do I add a new tool?

        TODO

18.4.2. How do I get a list of all available tools?

        TODO

18.4.3. How can I get a list of all the tools that a package is using while
        being built? I want to know whether it uses sed or not.

        Currently, you can't. (TODO: But I want to be able to do it.)

Chapter 19. Making your package work

Table of Contents

19.1. General operation

    19.1.1. Portability of packages
    19.1.2. How to pull in user-settable variables from mk.conf
    19.1.3. User interaction
    19.1.4. Handling licenses
    19.1.5. Restricted packages
    19.1.6. Handling dependencies
    19.1.7. Handling conflicts with other packages
    19.1.8. Packages that cannot or should not be built
    19.1.9. Packages which should not be deleted, once installed
    19.1.10. Handling packages with security problems
    19.1.11. How to handle incrementing versions when fixing an existing
        package
    19.1.12. Substituting variable text in the package files (the SUBST
        framework)

19.2. Fixing problems in the fetch phase

    19.2.1. Packages whose distfiles aren't available for plain downloading
    19.2.2. How to handle modified distfiles with the 'old' name

19.3. Fixing problems in the configure phase

    19.3.1. Shared libraries - libtool
    19.3.2. Using libtool on GNU packages that already support libtool
    19.3.3. GNU Autoconf/Automake

19.4. Programming languages

    19.4.1. C, C++, and Fortran
    19.4.2. Java
    19.4.3. Packages containing perl scripts
    19.4.4. Packages containing shell scripts
    19.4.5. Other programming languages

19.5. Fixing problems in the build phase

    19.5.1. Compiling C and C++ code conditionally
    19.5.2. How to handle compiler bugs
    19.5.3. Undefined reference to "..."
    19.5.4. Running out of memory

19.6. Fixing problems in the install phase

    19.6.1. Creating needed directories
    19.6.2. Where to install documentation
    19.6.3. Installing highscore files
    19.6.4. Adding DESTDIR support to packages
    19.6.5. Packages with hardcoded paths to other interpreters
    19.6.6. Packages installing perl modules
    19.6.7. Packages installing info files
    19.6.8. Packages installing man pages
    19.6.9. Packages installing GConf data files
    19.6.10. Packages installing scrollkeeper/rarian data files
    19.6.11. Packages installing X11 fonts
    19.6.12. Packages installing GTK2 modules
    19.6.13. Packages installing SGML or XML data
    19.6.14. Packages installing extensions to the MIME database
    19.6.15. Packages using intltool
    19.6.16. Packages installing startup scripts
    19.6.17. Packages installing TeX modules
    19.6.18. Packages supporting running binaries in emulation
    19.6.19. Packages installing hicolor theme icons
    19.6.20. Packages installing desktop files

19.7. Marking packages as having problems

19.1. General operation

19.1.1. Portability of packages

One appealing feature of pkgsrc is that it runs on many different platforms. As
a result, it is important to ensure, where possible, that packages in pkgsrc
are portable. This chapter mentions some particular details you should pay
attention to while working on pkgsrc.

19.1.2. How to pull in user-settable variables from mk.conf

The pkgsrc user can configure pkgsrc by overriding several variables in the
file pointed to by MAKECONF, which is mk.conf by default. When you want to use
those variables in the preprocessor directives of make(1) (for example .if or
.for), you need to include the file ../../mk/bsd.prefs.mk before, which in turn
loads the user preferences.

But note that some variables may not be completely defined after ../../mk/
bsd.prefs.mk has been included, as they may contain references to variables
that are not yet defined. In shell commands this is no problem, since variables
are actually macros, which are only expanded when they are used. But in the
preprocessor directives mentioned above and in dependency lines (of the form
target: dependencies) the variables are expanded at load time.

Note

Currently there is no exhaustive list of all variables that tells you whether
they can be used at load time or only at run time, but it is in preparation.

19.1.3. User interaction

Occasionally, packages require interaction from the user, and this can be in a
number of ways:

  * When fetching the distfiles, some packages require user interaction such as
    entering username/password or accepting a license on a web page.

  * When extracting the distfiles, some packages may ask for passwords.

  * help to configure the package before it is built

  * help during the build process

  * help during the installation of a package

The INTERACTIVE_STAGE definition is provided to notify the pkgsrc mechanism of
an interactive stage which will be needed, and this should be set in the
package's Makefile, e.g.:

INTERACTIVE_STAGE=      build


Multiple interactive stages can be specified:

INTERACTIVE_STAGE=      configure install


The user can then decide to skip this package by setting the BATCH variable.

19.1.4. Handling licenses

Authors of software can choose the licence under which software can be copied.
This is due to copyright law, and reasons for license choices are outside the
scope of pkgsrc. The pkgsrc system recognizes that there are a number of
licenses which some users may find objectionable or difficult or impossible to
comply with. The Free Software Foundation has declared some licenses "Free",
and the Open Source Initiative has a definition of "Open Source". The pkgsrc
system, as a policy choice, does not label packages which have licenses that
are Free or Open Source. However, packages without a license meeting either of
those tests are labeled with a license tag denoting the license. Note that a
package with no license to copy trivially does not meet either the Free or Open
Source test.

For packages which are not Free or Open Source, pkgsrc will not build the
package unless the user has indicated to pkgsrc that packages with that
particular license may be built. Note that this documentation avoids the term
"accepted the license". The pkgsrc system is merely providing a mechanism to
avoid accidentally building a package with a non-free license; judgement and
responsibility remain with the user. (Installation of binary packages are not
currently subject to this mechanism; this is a bug.)

One might want to only install packages with a BSD license, or the GPL, and not
the other. The free licenses are added to the default ACCEPTABLE_LICENSES
variable. The user can override the default by setting the ACCEPTABLE_LICENSES
variable with "=" instead of "+=". The licenses accepted by default are:

        apache-1.1 apache-2.0
        arphic-public
        artistic artistic-2.0
        boost-license
        cc-by-sa-v3.0
        cc0-1.0-universal
        cddl-1.0
        cpl-1.0
        epl-v1.0
        gnu-fdl-v1.1 gnu-fdl-v1.2 gnu-fdl-v1.3
        gnu-gpl-v1
        gnu-gpl-v2 gnu-lgpl-v2 gnu-lgpl-v2.1
        gnu-gpl-v3 gnu-lgpl-v3
        ibm-public-license-1.0
        ipafont
        isc
        lppl-1.3c
        lucent
        miros
        mit
        mpl-1.0 mpl-1.1 mpl-2.0
        mplusfont
        ofl-v1.0 ofl-v1.1
        original-bsd modified-bsd 2-clause-bsd
        php
        png-license
        postgresql-license
        public-domain
        python-software-foundation
        qpl-v1.0
        sgi-free-software-b-v2.0
        sleepycat-public
        unlicense
        x11
        zlib
        zpl


The license tag mechanism is intended to address copyright-related issues
surrounding building, installing and using a package, and not to address
redistribution issues (see RESTRICTED and NO_SRC_ON_FTP, etc.). Packages with
redistribution restrictions should set these tags.

Denoting that a package may be copied according to a particular license is done
by placing the license in pkgsrc/licenses and setting the LICENSE variable to a
string identifying the license, e.g. in graphics/xv:

LICENSE=        xv-license


When trying to build, the user will get a notice that the package is covered by
a license which has not been placed in the ACCEPTABLE_LICENSES variable:

% make
===> xv-3.10anb9 has an unacceptable license: xv-license.
===>     To view the license, enter "/usr/bin/make show-license".
===>     To indicate acceptance, add this line to your /etc/mk.conf:
===>     ACCEPTABLE_LICENSES+=xv-license
*** Error code 1


The license can be viewed with make show-license, and if the user so chooses,
the line printed above can be added to mk.conf to convey to pkgsrc that it
should not in the future fail because of that license:

ACCEPTABLE_LICENSES+=xv-license


When adding a package with a new license, the following steps are required:

 1. Check if the file can avoid the -license filename tag as described above by
    referencing Various Licenses and Comments about Them and Licenses by Name |
    Open Source Initiative. If this is the case, additionally add the license
    filename to:

      + DEFAULT_ACCEPTABLE_LICENSES in pkgsrc/mk/license.mk

      + default_acceptable_licenses in pkgsrc/pkgtools/pkg_install/files/lib/
        license.c

      + the ACCEPTABLE_LICENSES list in pkgsrc/doc/guide/files/fixes.xml

    with the proper syntax as demonstrated in those files, respectively.

 2. The license text should be added to pkgsrc/licenses for displaying. A list
    of known licenses can be seen in this directory.

When the license changes (in a way other than formatting), please make sure
that the new license has a different name (e.g., append the version number if
it exists, or the date). Just because a user told pkgsrc to build programs
under a previous version of a license does not mean that pkgsrc should build
programs under the new licenses. The higher-level point is that pkgsrc does not
evaluate licenses for reasonableness; the only test is a mechanistic test of
whether a particular text has been approved by either of two bodies.

The use of LICENSE=shareware, LICENSE=no-commercial-use, and similar language
is deprecated because it does not crisply refer to a particular license text.
Another problem with such usage is that it does not enable a user to tell
pkgsrc to proceed for a single package without also telling pkgsrc to proceed
for all packages with that tag.

19.1.5. Restricted packages

Some licenses restrict how software may be re-distributed. Because a license
tag is required unless the package is Free or Open Source, all packages with
restrictions should have license tags. By declaring the restrictions, package
tools can automatically refrain from e.g. placing binary packages on FTP sites.

There are four restrictions that may be encoded, which are the cross product of
sources (distfiles) and binaries not being placed on FTP sites and CD-ROMs.
Because this is rarely the exact language in any license, and because non-Free
licenses tend to be different from each other, pkgsrc adopts a definition of
FTP and CD-ROM. Pkgsrc uses "FTP" to mean that the source or binary file should
not be made available over the Internet at no charge. Pkgsrc uses "CD-ROM" to
mean that the source or binary may not be made available on some kind of media,
together with other source and binary packages, and which is sold for a
distribution charge.

In order to encode these restrictions, the package system defines five make
variables that can be set to note these restrictions:

  * RESTRICTED

    This variable should be set whenever a restriction exists (regardless of
    its kind). Set this variable to a string containing the reason for the
    restriction. It should be understood that those wanting to understand the
    restriction will have to read the license, and perhaps seek advice of
    counsel.

  * NO_BIN_ON_CDROM

    Binaries may not be placed on CD-ROM containing other binary packages, for
    which a distribution charge may be made. In this case, set this variable to
    ${RESTRICTED}.

  * NO_BIN_ON_FTP

    Binaries may not made available on the Internet without charge. In this
    case, set this variable to ${RESTRICTED}. If this variable is set, binary
    packages will not be included on ftp.NetBSD.org.

  * NO_SRC_ON_CDROM

    Distfiles may not be placed on CD-ROM, together with other distfiles, for
    which a fee may be charged. In this case, set this variable to $
    {RESTRICTED}.

  * NO_SRC_ON_FTP

    Distfiles may not made available via FTP at no charge. In this case, set
    this variable to ${RESTRICTED}. If this variable is set, the distfile(s)
    will not be mirrored on ftp.NetBSD.org.

Please note that packages will to be removed from pkgsrc when the distfiles are
not distributable and cannot be obtained for a period of one full quarter
branch. Packages with manual / interactive fetch must have a maintainer and it
is his/her responsibility to ensure this.

19.1.6. Handling dependencies

Your package may depend on some other package being present - and there are
various ways of expressing this dependency. pkgsrc supports the BUILD_DEPENDS
and DEPENDS definitions, the USE_TOOLS definition, as well as dependencies via
buildlink3.mk, which is the preferred way to handle dependencies, and which
uses the variables named above. See Chapter 14, Buildlink methodology for more
information.

The basic difference between the two variables is as follows: The DEPENDS
definition registers that pre-requisite in the binary package so it will be
pulled in when the binary package is later installed, whilst the BUILD_DEPENDS
definition does not, marking a dependency that is only needed for building the
package.

This means that if you only need a package present whilst you are building, it
should be noted as a BUILD_DEPENDS.

The format for a BUILD_DEPENDS and a DEPENDS definition is:

<pre-req-package-name>:../../<category>/<pre-req-package>


Please note that the "pre-req-package-name" may include any of the wildcard
version numbers recognized by pkg_info(1).

 1. If your package needs another package's binaries or libraries to build and
    run, and if that package has a buildlink3.mk file available, use it:

    .include "../../graphics/jpeg/buildlink3.mk"


 2. If your package needs another package's binaries or libraries only for
    building, and if that package has a buildlink3.mk file available, use it:

    .include "../../graphics/jpeg/buildlink3.mk"


    but set BUILDLINK_DEPMETHOD.jpeg?=build to make it a build dependency only.
    This case is rather rare.

 3. If your package needs binaries from another package to build, use the
    BUILD_DEPENDS definition:

    BUILD_DEPENDS+= scons-[0-9]*:../../devel/scons


 4. If your package needs a library with which to link and there is no
    buildlink3.mk file available, create one. Using DEPENDS won't be sufficient
    because the include files and libraries will be hidden from the compiler.

 5. If your package needs some executable to be able to run correctly and if
    there's no buildlink3.mk file, this is specified using the DEPENDS
    variable. The print/lyx package needs to be able to execute the latex
    binary from the teTeX package when it runs, and that is specified:

    DEPENDS+=        teTeX-[0-9]*:../../print/teTeX


 6. You can use wildcards in package dependencies. Note that such wildcard
    dependencies are retained when creating binary packages. The dependency is
    checked when installing the binary package and any package which matches
    the pattern will be used. Wildcard dependencies should be used with care.

    The "-[0-9]*" should be used instead of "-*" to avoid potentially ambiguous
    matches such as "tk-postgresql" matching a "tk-*" DEPENDS.

    Wildcards can also be used to specify that a package will only build
    against a certain minimum version of a pre-requisite:

    DEPENDS+=       ImageMagick>=6.0:../../graphics/ImageMagick


    This means that the package will build using version 6.0 of ImageMagick or
    newer. Such a dependency may be warranted if, for example, the command line
    options of an executable have changed.

    If you need to depend on minimum versions of libraries, see the buildlink
    section of the pkgsrc guide.

    For security fixes, please update the package vulnerabilities file. See
    Section 19.1.10, "Handling packages with security problems" for more
    information.

 7. If the package depends on either one of two (or more) packages, specify the
    "pre-req-package-name" as a comma-separated list between curly braces.

    As an example, take a package that depends on the Perl "version" module,
    which has been part of Perl itself since version 5.10.0. This either/or
    dependency is expressed as:

    DEPENDS+=       {perl>=5.10.0,p5-version-[0-9]*}:../../devel/p5-version


If your package needs files from another package to build, add the relevant
distribution files to DISTFILES, so they will be extracted automatically. See
the print/ghostscript package for an example. (It relies on the jpeg sources
being present in source form during the build.)

19.1.7. Handling conflicts with other packages

Your package may conflict with other packages a user might already have
installed on his system, e.g. if your package installs the same set of files as
another package in the pkgsrc tree.

In this case you can set CONFLICTS to a space-separated list of packages
(including version string) your package conflicts with.

For example, x11/Xaw3d and x11/Xaw-Xpm install the same shared library, thus
you set in pkgsrc/x11/Xaw3d/Makefile:

CONFLICTS=      Xaw-Xpm-[0-9]*


and in pkgsrc/x11/Xaw-Xpm/Makefile:

CONFLICTS=      Xaw3d-[0-9]*


Packages will automatically conflict with other packages with the name prefix
and a different version string. "Xaw3d-1.5" e.g. will automatically conflict
with the older version "Xaw3d-1.3".

19.1.8. Packages that cannot or should not be built

There are several reasons why a package might be instructed to not build under
certain circumstances. If the package builds and runs on most platforms, the
exceptions should be noted with NOT_FOR_PLATFORM. If the package builds and
runs on a small handful of platforms, set ONLY_FOR_PLATFORM instead. Both
ONLY_FOR_PLATFORM and NOT_FOR_PLATFORM are OS triples (OS-version-platform)
that can use glob-style wildcards.

Some packages are tightly bound to a specific version of an operating system,
e.g. LKMs or sysutils/lsof. Such binary packages are not backwards compatible
with other versions of the OS, and should be uploaded to a version specific
directory on the FTP server. Mark these packages by setting OSVERSION_SPECIFIC
to "yes". This variable is not currently used by any of the package system
internals, but may be used in the future.

If the package should be skipped (for example, because it provides
functionality already provided by the system), set PKG_SKIP_REASON to a
descriptive message. If the package should fail because some preconditions are
not met, set PKG_FAIL_REASON to a descriptive message.

19.1.9. Packages which should not be deleted, once installed

To ensure that a package may not be deleted, once it has been installed, the
PKG_PRESERVE definition should be set in the package Makefile. This will be
carried into any binary package that is made from this pkgsrc entry. A "
preserved" package will not be deleted using pkg_delete(1) unless the "-f"
option is used.

19.1.10. Handling packages with security problems

When a vulnerability is found, this should be noted in localsrc/security/
advisories/pkg-vulnerabilities, and after committing that file, ask
pkgsrc-security@NetBSD.org to update the file on ftp.NetBSD.org.

After fixing the vulnerability by a patch, its PKGREVISION should be increased
(this is of course not necessary if the problem is fixed by using a newer
release of the software), and the pattern in the pkg-vulnerabilities file must
be updated.

Also, if the fix should be applied to the stable pkgsrc branch, be sure to
submit a pullup request!

Binary packages already on ftp.NetBSD.org will be handled semi-automatically by
a weekly cron job.

19.1.11. How to handle incrementing versions when fixing an existing package

When making fixes to an existing package it can be useful to change the version
number in PKGNAME. To avoid conflicting with future versions by the original
author, a "nb1", "nb2", ... suffix can be used on package versions by setting
PKGREVISION=1 (2, ...). The "nb" is treated like a "." by the package tools.
e.g.

DISTNAME=       foo-17.42
PKGREVISION=    9


will result in a PKGNAME of "foo-17.42nb9". If you want to use the original
value of PKGNAME without the "nbX" suffix, e.g. for setting DIST_SUBDIR, use
PKGNAME_NOREV.

When a new release of the package is released, the PKGREVISION should be
removed, e.g. on a new minor release of the above package, things should be
like:

DISTNAME=       foo-17.43


PKGREVISION should be incremented for any non-trivial change in the resulting
binary package. Without a PKGREVISION bump, someone with the previous version
installed has no way of knowing that their package is out of date. Thus,
changes without increasing PKGREVISION are essentially labeled "this is so
trivial that no reasonable person would want to upgrade", and this is the rough
test for when increasing PKGREVISION is appropriate. Examples of changes that
do not merit increasing PKGREVISION are:

  * Changing HOMEPAGE, MAINTAINER, OWNER, or comments in Makefile.

  * Changing build variables if the resulting binary package is the same.

  * Changing DESCR.

  * Adding PKG_OPTIONS if the default options don't change.

Examples of changes that do merit an increase to PKGREVISION include:

  * Security fixes

  * Changes or additions to a patch file

  * Changes to the PLIST

  * A dependency is changed or renamed.

PKGREVISION must also be incremented when dependencies have ABI changes.

19.1.12. Substituting variable text in the package files (the SUBST framework)

When you want to replace the same text in multiple files or when the
replacement text varies, patches alone cannot help. This is where the SUBST
framework comes in. It provides an easy-to-use interface for replacing text in
files. Example:

SUBST_CLASSES+=                 fix-paths
SUBST_STAGE.fix-paths=          pre-configure
SUBST_MESSAGE.fix-paths=        Fixing absolute paths.
SUBST_FILES.fix-paths=          src/*.c
SUBST_FILES.fix-paths+=         scripts/*.sh
SUBST_SED.fix-paths=            -e 's,"/usr/local,"${PREFIX},g'
SUBST_SED.fix-paths+=           -e 's,"/var/log,"${VARBASE}/log,g'


SUBST_CLASSES is a list of identifiers that are used to identify the different
SUBST blocks that are defined. The SUBST framework is heavily used by pkgsrc,
so it is important to always use the += operator with this variable. Otherwise
some substitutions may be skipped.

The remaining variables of each SUBST block are parameterized with the
identifier from the first line (fix-paths in this case.) They can be seen as
parameters to a function call.

SUBST_STAGE.* specifies the stage at which the replacement will take place. All
combinations of pre-, do- and post- together with a phase name are possible,
though only few are actually used. Most commonly used are post-patch and
pre-configure. Of these two, pre-configure should be preferred because then it
is possible to run bmake patch and have the state after applying the patches
but before making any other changes. This is especially useful when you are
debugging a package in order to create new patches for it. Similarly,
post-build is preferred over pre-install, because the install phase should
generally be kept as simple as possible. When you use post-build, you have the
same files in the working directory that will be installed later, so you can
check if the substitution has succeeded.

SUBST_MESSAGE.* is an optional text that is printed just before the
substitution is done.

SUBST_FILES.* is the list of shell globbing patterns that specifies the files
in which the substitution will take place. The patterns are interpreted
relatively to the WRKSRC directory.

SUBST_SED.* is a list of arguments to sed(1) that specify the actual
substitution. Every sed command should be prefixed with -e, so that all SUBST
blocks look uniform.

There are some more variables, but they are so seldomly used that they are only
documented in the mk/subst.mk file.

19.2. Fixing problems in the fetch phase

19.2.1. Packages whose distfiles aren't available for plain downloading

If you need to download from a dynamic URL you can set DYNAMIC_MASTER_SITES and
a make fetch will call files/getsite.sh with the name of each file to download
as an argument, expecting it to output the URL of the directory from which to
download it. graphics/ns-cult3d is an example of this usage.

If the download can't be automated, because the user must submit personal
information to apply for a password, or must pay for the source, or whatever,
you can set FETCH_MESSAGE to a list of lines that are displayed to the user
before aborting the build. Example:

FETCH_MESSAGE=  "Please download the files"
FETCH_MESSAGE+= "    "${DISTFILES:Q}
FETCH_MESSAGE+= "manually from "${MASTER_SITES:Q}"."


19.2.2. How to handle modified distfiles with the 'old' name

Sometimes authors of a software package make some modifications after the
software was released, and they put up a new distfile without changing the
package's version number. If a package is already in pkgsrc at that time, the
checksum will no longer match. The contents of the new distfile should be
compared against the old one before changing anything, to make sure the
distfile was really updated on purpose, and that no trojan horse or so crept
in. Please mention that the distfiles were compared and what was found in your
commit message.

Then, the correct way to work around this is to set DIST_SUBDIR to a unique
directory name, usually based on PKGNAME_NOREV. All DISTFILES and PATCHFILES
for this package will be put in that subdirectory of the local distfiles
directory. (See Section 19.1.11, "How to handle incrementing versions when
fixing an existing package" for more details.) In case this happens more often,
PKGNAME can be used (thus including the nbX suffix) or a date stamp can be
appended, like ${PKGNAME_NOREV}-YYYYMMDD.

DIST_SUBDIR is also used when a distfile's name does not contain a version and
the distfile is apt to change. In cases where the likelihood of this is very
small, DIST_SUBDIR might not be required. Additionally, DIST_SUBDIR must not be
removed unless the distfile name changes, even if a package is being moved or
renamed.

Do not forget regenerating the distinfo file after that, since it contains the
DIST_SUBDIR path in the filenames. Also, increase the PKGREVISION if the
installed package is different. Furthermore, a mail to the package's authors
seems appropriate telling them that changing distfiles after releases without
changing the file names is not good practice.

19.3. Fixing problems in the configure phase

19.3.1. Shared libraries - libtool

pkgsrc supports many different machines, with different object formats like
a.out and ELF, and varying abilities to do shared library and dynamic loading
at all. To accompany this, varying commands and options have to be passed to
the compiler, linker, etc. to get the Right Thing, which can be pretty annoying
especially if you don't have all the machines at your hand to test things. The
devel/libtool pkg can help here, as it just "knows" how to build both static
and dynamic libraries from a set of source files, thus being
platform-independent.

Here's how to use libtool in a package in seven simple steps:

 1. Add USE_LIBTOOL=yes to the package Makefile.

 2. For library objects, use "${LIBTOOL} --mode=compile ${CC}" in place of "$
    {CC}". You could even add it to the definition of CC, if only libraries are
    being built in a given Makefile. This one command will build both PIC and
    non-PIC library objects, so you need not have separate shared and
    non-shared library rules.

 3. For the linking of the library, remove any "ar", "ranlib", and "ld
    -Bshareable" commands, and instead use:

    ${LIBTOOL} --mode=link \
        ${CC} -o ${.TARGET:.a=.la} \
            ${OBJS:.o=.lo} \
            -rpath ${PREFIX}/lib \
            -version-info major:minor


    Note that the library is changed to have a .la extension, and the objects
    are changed to have a .lo extension. Change OBJS as necessary. This
    automatically creates all of the .a, .so.major.minor, and ELF symlinks (if
    necessary) in the build directory. Be sure to include "-version-info",
    especially when major and minor are zero, as libtool will otherwise strip
    off the shared library version.

    From the libtool manual:

    So, libtool library versions are described by three integers:

    CURRENT
    The most recent interface number that this library implements.

    REVISION
    The implementation number of the CURRENT interface.

    AGE
    The difference between the newest and oldest interfaces that
    this library implements.  In other words, the library implements
    all the interface numbers in the range from number `CURRENT -
    AGE' to `CURRENT'.

    If two libraries have identical CURRENT and AGE numbers, then the
    dynamic linker chooses the library with the greater REVISION number.


    The "-release" option will produce different results for a.out and ELF
    (excluding symlinks) in only one case. An ELF library of the form "
    libfoo-release.so.x.y" will have a symlink of "libfoo.so.x.y" on an a.out
    platform. This is handled automatically.

    The "-rpath argument" is the install directory of the library being built.

    In the PLIST, include only the .la file, the other files will be added
    automatically.

 4. When linking shared object (.so) files, i.e. files that are loaded via
    dlopen(3), NOT shared libraries, use "-module -avoid-version" to prevent
    them getting version tacked on.

    The PLIST file gets the foo.so entry.

 5. When linking programs that depend on these libraries before they are
    installed, preface the cc(1) or ld(1) line with "${LIBTOOL} --mode=link",
    and it will find the correct libraries (static or shared), but please be
    aware that libtool will not allow you to specify a relative path in -L
    (such as "-L../somelib"), because it expects you to change that argument to
    be the .la file. e.g.

    ${LIBTOOL} --mode=link ${CC} -o someprog -L../somelib -lsomelib


    should be changed to:

    ${LIBTOOL} --mode=link ${CC} -o someprog ../somelib/somelib.la


    and it will do the right thing with the libraries.

 6. When installing libraries, preface the install(1) or cp(1) command with "$
    {LIBTOOL} --mode=install", and change the library name to .la. e.g.

    ${LIBTOOL} --mode=install ${BSD_INSTALL_LIB} ${SOMELIB:.a=.la} ${PREFIX}/lib


    This will install the static .a, shared library, any needed symlinks, and
    run ldconfig(8).

 7. In your PLIST, include only the .la file (this is a change from previous
    behaviour).

19.3.2. Using libtool on GNU packages that already support libtool

Add USE_LIBTOOL=yes to the package Makefile. This will override the package's
own libtool in most cases. For older libtool using packages, libtool is made by
ltconfig script during the do-configure step; you can check the libtool script
location by doing make configure; find work*/ -name libtool.

LIBTOOL_OVERRIDE specifies which libtool scripts, relative to WRKSRC, to
override. By default, it is set to "libtool */libtool */*/libtool". If this
does not match the location of the package's libtool script(s), set it as
appropriate.

If you do not need *.a static libraries built and installed, then use
SHLIBTOOL_OVERRIDE instead.

If your package makes use of the platform-independent library for loading
dynamic shared objects, that comes with libtool (libltdl), you should include
devel/libltdl/buildlink3.mk.

Some packages use libtool incorrectly so that the package may not work or build
in some circumstances. Some of the more common errors are:

  * The inclusion of a shared object (-module) as a dependent library in an
    executable or library. This in itself isn't a problem if one of two things
    has been done:

     1. The shared object is named correctly, i.e. libfoo.la, not foo.la

     2. The -dlopen option is used when linking an executable.

  * The use of libltdl without the correct calls to initialisation routines.
    The function lt_dlinit() should be called and the macro
    LTDL_SET_PRELOADED_SYMBOLS included in executables.

19.3.3. GNU Autoconf/Automake

If a package needs GNU autoconf or automake to be executed to regenerate the
configure script and Makefile.in makefile templates, then they should be
executed in a pre-configure target.

For packages that need only autoconf:

AUTOCONF_REQD=  2.50            # if default version is not good enough
USE_TOOLS+=     autoconf        # use "autoconf213" for autoconf-2.13
...

pre-configure:
        cd ${WRKSRC} && autoconf

...


and for packages that need automake and autoconf:

AUTOMAKE_REQD=  1.7.1           # if default version is not good enough
USE_TOOLS+=     automake        # use "automake14" for automake-1.4
...

pre-configure:
        set -e; cd ${WRKSRC}; \
        aclocal; autoheader; automake -a --foreign -i; autoconf

...


Packages which use GNU Automake will almost certainly require GNU Make.

There are times when the configure process makes additional changes to the
generated files, which then causes the build process to try to re-execute the
automake sequence. This is prevented by touching various files in the configure
stage. If this causes problems with your package you can set AUTOMAKE_OVERRIDE=
NO in the package Makefile.

19.4. Programming languages

19.4.1. C, C++, and Fortran

Compilers for the C, C++, and Fortran languages comes with the NetBSD base
system. By default, pkgsrc assumes that a package is written in C and will hide
all other compilers (via the wrapper framework, see Chapter 14, Buildlink
methodology).

To declare which language's compiler a package needs, set the USE_LANGUAGES
variable. Allowed values currently are "c", "c++", and "fortran" (and any
combination). The default is "c". Packages using GNU configure scripts, even if
written in C++, usually need a C compiler for the configure phase.

19.4.2. Java

If a program is written in Java, use the Java framework in pkgsrc. The package
must include ../../mk/java-vm.mk. This Makefile fragment provides the following
variables:

  * USE_JAVA defines if a build dependency on the JDK is added. If USE_JAVA is
    set to "run", then there is only a runtime dependency on the JDK. The
    default is "yes", which also adds a build dependency on the JDK.

  * Set USE_JAVA2 to declare that a package needs a Java2 implementation. The
    supported values are "yes", "1.4", and "1.5". "yes" accepts any Java2
    implementation, "1.4" insists on versions 1.4 or above, and "1.5" only
    accepts versions 1.5 or above. This variable is not set by default.

  * PKG_JAVA_HOME is automatically set to the runtime location of the used Java
    implementation dependency. It may be used to set JAVA_HOME to a good value
    if the program needs this variable to be defined.

19.4.3. Packages containing perl scripts

If your package contains interpreted perl scripts, add "perl" to the USE_TOOLS
variable and set REPLACE_PERL to ensure that the proper interpreter path is
set. REPLACE_PERL should contain a list of scripts, relative to WRKSRC, that
you want adjusted. Every occurrence of */bin/perl will be replaced with the
full path to the perl executable.

If a particular version of perl is needed, set the PERL5_REQD variable to the
version number. The default is "5.0".

See Section 19.6.6, "Packages installing perl modules" for information about
handling perl modules.

19.4.4. Packages containing shell scripts

REPLACE_SH, REPLACE_BASH, REPLACE_CSH, and REPLACE_KSH can be used to replace
shell hash bangs in files. Please use the appropriate one, prefering REPLACE_SH
in case this shell is sufficient. When using REPLACE_BASH, don't forget to add
bash to USE_TOOLS.

19.4.5. Other programming languages

Currently, there is no special handling for other languages in pkgsrc. If a
compiler package provides a buildlink3.mk file, include that, otherwise just
add a (build) dependency on the appropriate compiler package.

19.5. Fixing problems in the build phase

The most common failures when building a package are that some platforms do not
provide certain header files, functions or libraries, or they provide the
functions in a library that the original package author didn't know. To work
around this, you can rewrite the source code in most cases so that it does not
use the missing functions or provides a replacement function.

19.5.1. Compiling C and C++ code conditionally

If a package already comes with a GNU configure script, the preferred way to
fix the build failure is to change the configure script, not the code. In the
other cases, you can utilize the C preprocessor, which defines certain macros
depending on the operating system and hardware architecture it compiles for.
These macros can be queried using for example #if defined(__i386). Almost every
operating system, hardware architecture and compiler has its own macro. For
example, if the macros __GNUC__, __i386__ and __NetBSD__ are all defined, you
know that you are using NetBSD on an i386 compatible CPU, and your compiler is
GCC.

The list of the following macros for hardware and operating system depends on
the compiler that is used. For example, if you want to conditionally compile
code on Solaris, don't use __sun__, as the SunPro compiler does not define it.
Use __sun instead.

19.5.1.1. C preprocessor macros to identify the operating system

To distinguish between 4.4 BSD-derived systems and the rest of the world, you
should use the following code.

#include <sys/param.h>
#if (defined(BSD) && BSD >= 199306)
/* BSD-specific code goes here */
#else
/* non-BSD-specific code goes here */
#endif

If this distinction is not fine enough, you can also test for the following
macros.

Cygwin      __CYGWIN__
DragonFly   __DragonFly__
FreeBSD     __FreeBSD__
Haiku       __HAIKU__
Interix     __INTERIX
IRIX        __sgi (TODO: get a definite source for this)
Linux       linux, __linux, __linux__
MirBSD      __MirBSD__ (__OpenBSD__ is also defined)
Minix3      __minix
NetBSD      __NetBSD__
OpenBSD     __OpenBSD__
Solaris     sun, __sun

19.5.1.2. C preprocessor macros to identify the hardware architecture

i386        i386, __i386, __i386__
MIPS        __mips
SPARC       sparc, __sparc

19.5.1.3. C preprocessor macros to identify the compiler

GCC         __GNUC__ (major version), __GNUC_MINOR__
MIPSpro     _COMPILER_VERSION (0x741 for MIPSpro 7.41)
SunPro      __SUNPRO_C (0x570 for Sun C 5.7)
SunPro C++  __SUNPRO_CC (0x580 for Sun C++ 5.8)

19.5.2. How to handle compiler bugs

Some source files trigger bugs in the compiler, based on combinations of
compiler version and architecture and almost always relation to optimisation
being enabled. Common symptoms are gcc internal errors or never finishing
compiling a file.

Typically, a workaround involves testing the MACHINE_ARCH and compiler version,
disabling optimisation for that combination of file, MACHINE_ARCH and compiler,
and documenting it in pkgsrc/doc/HACKS. See that file for a number of examples.

19.5.3. Undefined reference to "..."

This error message often means that a package did not link to a shared library
it needs. The following functions are known to cause this error message over
and over.

+-----------------------------------------------------+
|        Function         |Library |Affected platforms|
|-------------------------+--------+------------------|
|accept, bind, connect    |-lsocket|Solaris           |
|-------------------------+--------+------------------|
|crypt                    |-lcrypt |DragonFly, NetBSD |
|-------------------------+--------+------------------|
|dlopen, dlsym            |-ldl    |Linux             |
|-------------------------+--------+------------------|
|gethost*                 |-lnsl   |Solaris           |
|-------------------------+--------+------------------|
|inet_aton                |-lresolv|Solaris           |
|-------------------------+--------+------------------|
|nanosleep, sem_*, timer_*|-lrt    |Solaris           |
|-------------------------+--------+------------------|
|openpty                  |-lutil  |Linux             |
+-----------------------------------------------------+

To fix these linker errors, it is often sufficient to say LIBS.OperatingSystem+
= -lfoo to the package Makefile and then say bmake clean; bmake.

19.5.3.1. Special issue: The SunPro compiler

When you are using the SunPro compiler, there is another possibility. That
compiler cannot handle the following code:

extern int extern_func(int);

static inline int
inline_func(int x)
{
        return extern_func(x);
}

int main(void)
{
        return 0;
}

It generates the code for inline_func even if that function is never used. This
code then refers to extern_func, which can usually not be resolved. To solve
this problem you can try to tell the package to disable inlining of functions.

19.5.4. Running out of memory

Sometimes packages fail to build because the compiler runs into an operating
system specific soft limit. With the UNLIMIT_RESOURCES variable pkgsrc can be
told to unlimit the resources. Currently, the allowed values are "datasize" and
"stacksize" (or both). Setting this variable is similar to running the shell
builtin ulimit command to raise the maximum data segment size or maximum stack
size of a process, respectively, to their hard limits.

19.6. Fixing problems in the install phase

19.6.1. Creating needed directories

The BSD-compatible install supplied with some operating systems cannot create
more than one directory at a time. As such, you should call ${INSTALL_*_DIR}
like this:

${INSTALL_DATA_DIR} ${PREFIX}/dir1
${INSTALL_DATA_DIR} ${PREFIX}/dir2


You can also just append "dir1 dir2" to the INSTALLATION_DIRS variable, which
will automatically do the right thing.

19.6.2. Where to install documentation

In general, documentation should be installed into ${PREFIX}/share/doc/$
{PKGBASE} or ${PREFIX}/share/doc/${PKGNAME} (the latter includes the version
number of the package).

Many modern packages using GNU autoconf allow to set the directory where HTML
documentation is installed with the "--with-html-dir" option. Sometimes using
this flag is needed because otherwise the documentation ends up in ${PREFIX}/
share/doc/html or other places.

An exception to the above is that library API documentation generated with the
textproc/gtk-doc tools, for use by special browsers (devhelp) should be left at
their default location, which is ${PREFIX}/share/gtk-doc. Such documentation
can be recognized from files ending in .devhelp or .devhelp2. (It is also
acceptable to install such files in ${PREFIX}/share/doc/${PKGBASE} or ${PREFIX}
/share/doc/${PKGNAME}; the .devhelp* file must be directly in that directory
then, no additional subdirectory level is allowed in this case. This is usually
achieved by using "--with-html-dir=${PREFIX}/share/doc". ${PREFIX}/share/
gtk-doc is preferred though.)

19.6.3. Installing highscore files

Certain packages, most of them in the games category, install a score file that
allows all users on the system to record their highscores. In order for this to
work, the binaries need to be installed setgid and the score files owned by the
appropriate group and/or owner (traditionally the "games" user/group). Set
USE_GAMESGROUP to yes to support this. The following variables, documented in
more detail in mk/defaults/mk.conf, control this behaviour: GAMEDATAMODE,
GAMEDIRMODE, GAMES_GROUP, GAMEMODE, GAME_USER.

A package should therefore never hard code file ownership or access permissions
but rely on INSTALL_GAME and INSTALL_GAME_DATA to set these correctly.

19.6.4. Adding DESTDIR support to packages

DESTDIR support means that a package installs into a staging directory, not the
final location of the files. Then a binary package is created which can be used
for installation as usual. There are two ways: Either the package must install
as root ("destdir") or the package can install as non-root user ("user-destdir"
).

  * PKG_DESTDIR_SUPPORT has to be set to "none", "destdir", or "user-destdir".
    By default PKG_DESTDIR_SUPPORT is set to "user-destdir" to help catching
    more potential packaging problems. If bsd.prefs.mk is included in the
    Makefile, PKG_DESTDIR_SUPPORT needs to be set before the inclusion.

  * All installation operations have to be prefixed with ${DESTDIR}.

  * automake gets this DESTDIR mostly right automatically. Many manual rules
    and pre/post-install often are incorrect; fix them.

  * If files are installed with special owner/group use SPECIAL_PERMS.

  * In general, packages should support UNPRIVILEGED to be able to use DESTDIR.

19.6.5. Packages with hardcoded paths to other interpreters

Your package may also contain scripts with hardcoded paths to other
interpreters besides (or as well as) perl. To correct the full pathname to the
script interpreter, you need to set the following definitions in your Makefile
(we shall use tclsh in this example):

REPLACE_INTERPRETER+=   tcl
REPLACE.tcl.old=        .*/bin/tclsh
REPLACE.tcl.new=        ${PREFIX}/bin/tclsh
REPLACE_FILES.tcl=      # list of tcl scripts which need to be fixed,
# relative to ${WRKSRC}, just as in REPLACE_PERL


Note

Before March 2006, these variables were called _REPLACE.* and _REPLACE_FILES.*.

19.6.6. Packages installing perl modules

Makefiles of packages providing perl5 modules should include the Makefile
fragment ../../lang/perl5/module.mk. It provides a do-configure target for the
standard perl configuration for such modules as well as various hooks to tune
this configuration. See comments in this file for details.

Perl5 modules will install into different places depending on the version of
perl used during the build process. To address this, pkgsrc will append lines
to the PLIST corresponding to the files listed in the installed .packlist file
generated by most perl5 modules. This is invoked by defining PERL5_PACKLIST to
a space-separated list of packlist files relative to PERL5_PACKLIST_DIR
(PERL5_INSTALLVENDORARCH by default), e.g.:

PERL5_PACKLIST= auto/Pg/.packlist


The perl5 config variables installarchlib, installscript, installvendorbin,
installvendorscript, installvendorarch, installvendorlib, installvendorman1dir,
and installvendorman3dir represent those locations in which components of perl5
modules may be installed, provided as variable with uppercase and prefixed with
PERL5_, e.g. PERL5_INSTALLARCHLIB and may be used by perl5 packages that don't
have a packlist. These variables are also substituted for in the PLIST as
uppercase prefixed with PERL5_SUB_.

19.6.7. Packages installing info files

Some packages install info files or use the "makeinfo" or "install-info"
commands. INFO_FILES should be defined in the package Makefile so that INSTALL
and DEINSTALL scripts will be generated to handle registration of the info
files in the Info directory file. The "install-info" command used for the info
files registration is either provided by the system, or by a special purpose
package automatically added as dependency if needed.

PKGINFODIR is the directory under ${PREFIX} where info files are primarily
located. PKGINFODIR defaults to "info" and can be overridden by the user.

The info files for the package should be listed in the package PLIST; however
any split info files need not be listed.

A package which needs the "makeinfo" command at build time must add "makeinfo"
to USE_TOOLS in its Makefile. If a minimum version of the "makeinfo" command is
needed it should be noted with the TEXINFO_REQD variable in the package
Makefile. By default, a minimum version of 3.12 is required. If the system does
not provide a makeinfo command or if it does not match the required minimum, a
build dependency on the devel/gtexinfo package will be added automatically.

The build and installation process of the software provided by the package
should not use the install-info command as the registration of info files is
the task of the package INSTALL script, and it must use the appropriate 
makeinfo command.

To achieve this goal, the pkgsrc infrastructure creates overriding scripts for
the install-info and makeinfo commands in a directory listed early in PATH.

The script overriding install-info has no effect except the logging of a
message. The script overriding makeinfo logs a message and according to the
value of TEXINFO_REQD either runs the appropriate makeinfo command or exit on
error.

19.6.8. Packages installing man pages

All packages that install manual pages should install them into the same
directory, so that there is one common place to look for them. In pkgsrc, this
place is ${PREFIX}/${PKGMANDIR}, and this expression should be used in
packages. The default for PKGMANDIR is "man". Another often-used value is "
share/man".

Note

The support for a custom PKGMANDIR is far from complete.

The PLIST files can just use man/ as the top level directory for the man page
file entries, and the pkgsrc framework will convert as needed. In all other
places, the correct PKGMANDIR must be used.

Packages that are configured with GNU_CONFIGURE set as "yes", by default will
use the ./configure --mandir switch to set where the man pages should be
installed. The path is GNU_CONFIGURE_MANDIR which defaults to ${PREFIX}/$
{PKGMANDIR}.

Packages that use GNU_CONFIGURE but do not use --mandir, can set
CONFIGURE_HAS_MANDIR to "no". Or if the ./configure script uses a non-standard
use of --mandir, you can set GNU_CONFIGURE_MANDIR as needed.

See Section 13.5, "Man page compression" for information on installation of
compressed manual pages.

19.6.9. Packages installing GConf data files

If a package installs .schemas or .entries files, used by GConf, you need to
take some extra steps to make sure they get registered in the database:

 1. Include ../../devel/GConf/schemas.mk instead of its buildlink3.mk file.
    This takes care of rebuilding the GConf database at installation and
    deinstallation time, and tells the package where to install GConf data
    files using some standard configure arguments. It also disallows any access
    to the database directly from the package.

 2. Ensure that the package installs its .schemas files under ${PREFIX}/share/
    gconf/schemas. If they get installed under ${PREFIX}/etc, you will need to
    manually patch the package.

 3. Check the PLIST and remove any entries under the etc/gconf directory, as
    they will be handled automatically. See Section 9.14, "How do I change the
    location of configuration files?" for more information.

 4. Define the GCONF_SCHEMAS variable in your Makefile with a list of all
    .schemas files installed by the package, if any. Names must not contain any
    directories in them.

 5. Define the GCONF_ENTRIES variable in your Makefile with a list of all
    .entries files installed by the package, if any. Names must not contain any
    directories in them.

19.6.10. Packages installing scrollkeeper/rarian data files

If a package installs .omf files, used by scrollkeeper/rarian, you need to take
some extra steps to make sure they get registered in the database:

 1. Include ../../mk/omf-scrollkeeper.mk instead of rarian's buildlink3.mk
    file. This takes care of rebuilding the scrollkeeper database at
    installation and deinstallation time, and disallows any access to it
    directly from the package.

 2. Check the PLIST and remove any entries under the libdata/scrollkeeper
    directory, as they will be handled automatically.

 3. Remove the share/omf directory from the PLIST. It will be handled by
    rarian. (make print-PLIST does this automatically.)

19.6.11. Packages installing X11 fonts

If a package installs font files, you will need to rebuild the fonts database
in the directory where they get installed at installation and deinstallation
time. This can be automatically done by using the pkginstall framework.

You can list the directories where fonts are installed in the FONTS_DIRS.type
variables, where type can be one of "ttf", "type1" or "x11". Also make sure
that the database file fonts.dir is not listed in the PLIST.

Note that you should not create new directories for fonts; instead use the
standard ones to avoid that the user needs to manually configure his X server
to find them.

19.6.12. Packages installing GTK2 modules

If a package installs GTK2 immodules or loaders, you need to take some extra
steps to get them registered in the GTK2 database properly:

 1. Include ../../x11/gtk2/modules.mk instead of its buildlink3.mk file. This
    takes care of rebuilding the database at installation and deinstallation
    time.

 2. Set GTK2_IMMODULES=YES if your package installs GTK2 immodules.

 3. Set GTK2_LOADERS=YES if your package installs GTK2 loaders.

 4. Patch the package to not touch any of the GTK2 databases directly. These
    are:

      + libdata/gtk-2.0/gdk-pixbuf.loaders

      + libdata/gtk-2.0/gtk.immodules

 5. Check the PLIST and remove any entries under the libdata/gtk-2.0 directory,
    as they will be handled automatically.

19.6.13. Packages installing SGML or XML data

If a package installs SGML or XML data files that need to be registered in
system-wide catalogs (like DTDs, sub-catalogs, etc.), you need to take some
extra steps:

 1. Include ../../textproc/xmlcatmgr/catalogs.mk in your Makefile, which takes
    care of registering those files in system-wide catalogs at installation and
    deinstallation time.

 2. Set SGML_CATALOGS to the full path of any SGML catalogs installed by the
    package.

 3. Set XML_CATALOGS to the full path of any XML catalogs installed by the
    package.

 4. Set SGML_ENTRIES to individual entries to be added to the SGML catalog.
    These come in groups of three strings; see xmlcatmgr(1) for more
    information (specifically, arguments recognized by the 'add' action). Note
    that you will normally not use this variable.

 5. Set XML_ENTRIES to individual entries to be added to the XML catalog. These
    come in groups of three strings; see xmlcatmgr(1) for more information
    (specifically, arguments recognized by the 'add' action). Note that you
    will normally not use this variable.

19.6.14. Packages installing extensions to the MIME database

If a package provides extensions to the MIME database by installing .xml files
inside ${PREFIX}/share/mime/packages, you need to take some extra steps to
ensure that the database is kept consistent with respect to these new files:

 1. Include ../../databases/shared-mime-info/mimedb.mk (avoid using the
    buildlink3.mk file from this same directory, which is reserved for
    inclusion from other buildlink3.mk files). It takes care of rebuilding the
    MIME database at installation and deinstallation time, and disallows any
    access to it directly from the package.

 2. Check the PLIST and remove any entries under the share/mime directory, 
    except for files saved under share/mime/packages. The former are handled
    automatically by the update-mime-database program, but the latter are
    package-dependent and must be removed by the package that installed them in
    the first place.

 3. Remove any share/mime/* directories from the PLIST. They will be handled by
    the shared-mime-info package.

19.6.15. Packages using intltool

If a package uses intltool during its build, add intltool to the USE_TOOLS,
which forces it to use the intltool package provided by pkgsrc, instead of the
one bundled with the distribution file.

This tracks intltool's build-time dependencies and uses the latest available
version; this way, the package benefits of any bug fixes that may have appeared
since it was released.

19.6.16. Packages installing startup scripts

If a package contains a rc.d script, it won't be copied into the startup
directory by default, but you can enable it, by adding the option
PKG_RCD_SCRIPTS=YES in mk.conf. This option will copy the scripts into /etc/
rc.d when a package is installed, and it will automatically remove the scripts
when the package is deinstalled.

19.6.17. Packages installing TeX modules

If a package installs TeX packages into the texmf tree, the ls-R database of
the tree needs to be updated.

Note

Except the main TeX packages such as kpathsea, packages should install files
into ${PREFIX}/share/texmf-dist, not ${PREFIX}/share/texmf.

 1. Include ../../print/kpathsea/texmf.mk. This takes care of rebuilding the
    ls-R database at installation and deinstallation time.

 2. If your package installs files into a texmf tree other than the one at $
    {PREFIX}/share/texmf-dist, set TEX_TEXMF_DIRS to the list of all texmf
    trees that need database update.

    If your package also installs font map files that need to be registered
    using updmap, include ../../print/tex-tetex/map.mk and set TEX_MAP_FILES
    and/or TEX_MIXEDMAP_FILES to the list of all such font map files. Then 
    updmap will be run automatically at installation/deinstallation to enable/
    disable font map files for TeX output drivers.

 3. Make sure that none of ls-R databases are included in PLIST, as they will
    be removed only by the kpathsea package.

19.6.18. Packages supporting running binaries in emulation

There are some packages that provide libraries and executables for running
binaries from a one operating system on a different one (if the latter supports
it). One example is running Linux binaries on NetBSD.

The pkgtools/rpm2pkg helps in extracting and packaging Linux rpm packages.

The CHECK_SHLIBS can be set to no to avoid the check-shlibs target, which tests
if all libraries for each installed executable can be found by the dynamic
linker. Since the standard dynamic linker is run, this fails for emulation
packages, because the libraries used by the emulation are not in the standard
directories.

19.6.19. Packages installing hicolor theme icons

If a package installs images under the share/icons/hicolor and/or updates the
share/icons/hicolor/icon-theme.cache database, you need to take some extra
steps to make sure that the shared theme directory is handled appropriately and
that the cache database is rebuilt:

 1. Include ../../graphics/hicolor-icon-theme/buildlink3.mk.

 2. Check the PLIST and remove the entry that refers to the theme cache.

 3. Ensure that the PLIST does not remove the shared icon directories from the
    share/icons/hicolor hierarchy because they will be handled automatically.

The best way to verify that the PLIST is correct with respect to the last two
points is to regenerate it using make print-PLIST.

19.6.20. Packages installing desktop files

If a package installs .desktop files under share/applications and these include
MIME information (MimeType key), you need to take extra steps to ensure that
they are registered into the MIME database:

 1. Include ../../sysutils/desktop-file-utils/desktopdb.mk.

 2. Check the PLIST and remove the entry that refers to the share/applications/
    mimeinfo.cache file. It will be handled automatically.

The best way to verify that the PLIST is correct with respect to the last point
is to regenerate it using make print-PLIST.

19.7. Marking packages as having problems

In some cases one does not have the time to solve a problem immediately. In
this case, one can plainly mark a package as broken. For this, one just sets
the variable BROKEN to the reason why the package is broken (similar to the
RESTRICTED variable). A user trying to build the package will immediately be
shown this message, and the build will not be even tried.

BROKEN packages are removed from pkgsrc in irregular intervals.

Chapter 20. Debugging

To check out all the gotchas when building a package, here are the steps that I
do in order to get a package working. Please note this is basically the same as
what was explained in the previous sections, only with some debugging aids.

  * Be sure to set PKG_DEVELOPER=yes in mk.conf.

  * Install pkgtools/url2pkg, create a directory for a new package, change into
    it, then run url2pkg:

    % mkdir /usr/pkgsrc/category/examplepkg
    % cd /usr/pkgsrc/category/examplepkg
    % url2pkg http://www.example.com/path/to/distfile.tar.gz

  * Edit the Makefile as requested.

  * Fill in the DESCR file

  * Run make configure

  * Add any dependencies glimpsed from documentation and the configure step to
    the package's Makefile.

  * Make the package compile, doing multiple rounds of

    % make
    % pkgvi ${WRKSRC}/some/file/that/does/not/compile
    % mkpatches
    % patchdiff
    % mv ${WRKDIR}/.newpatches/* patches
    % make mps
    % make clean

    Doing this step as non-root user will ensure that no files are modified
    that shouldn't be, especially during the build phase. mkpatches, patchdiff
    and pkgvi are from the pkgtools/pkgdiff package.

  * Look at the Makefile, fix if necessary; see Section 11.1, "Makefile".

  * Generate a PLIST:

    # make install
    # make print-PLIST >PLIST
    # make deinstall
    # make install
    # make deinstall

    You usually need to be root to do this. Look if there are any files left:

    # make print-PLIST

    If this reveals any files that are missing in PLIST, add them.

  * Now that the PLIST is OK, install the package again and make a binary
    package:

    # make reinstall
    # make package

  * Delete the installed package:

    # pkg_delete examplepkg

  * Repeat the above make print-PLIST command, which shouldn't find anything
    now:

    # make print-PLIST

  * Reinstall the binary package:

    # pkg_add .../examplepkg.tgz

  * Play with it. Make sure everything works.

  * Run pkglint from pkgtools/pkglint, and fix the problems it reports:

    # pkglint

  * Submit (or commit, if you have cvs access); see Chapter 21, Submitting and
    Committing.

Chapter 21. Submitting and Committing

Table of Contents

21.1. Submitting binary packages
21.2. Submitting source packages (for non-NetBSD-developers)
21.3. General notes when adding, updating, or removing packages
21.4. Committing: Adding a package to CVS
21.5. Updating a package to a newer version
21.6. Renaming a package in pkgsrc
21.7. Moving a package in pkgsrc

21.1. Submitting binary packages

Our policy is that we accept binaries only from pkgsrc developers to guarantee
that the packages don't contain any trojan horses etc. This is not to annoy
anyone but rather to protect our users! You're still free to put up your
home-made binary packages and tell the world where to get them. NetBSD
developers doing bulk builds and wanting to upload them please see
Section 7.3.8, "Uploading results of a bulk build".

21.2. Submitting source packages (for non-NetBSD-developers)

First, check that your package is complete, compiles and runs well; see
Chapter 20, Debugging and the rest of this document. Next, generate an
uuencoded gzipped tar(1) archive that contains all files that make up the
package. Finally, send this package to the pkgsrc bug tracking system, either
with the send-pr(1) command, or if you don't have that, go to the web page
http://www.NetBSD.org/support/send-pr.html, which contains some instructions
and a link to a form where you can submit packages. The sysutils/gtk-send-pr
package is also available as a substitute for either of the above two tools.

In the form of the problem report, the category should be "pkg", the synopsis
should include the package name and version number, and the description field
should contain a short description of your package (contents of the COMMENT
variable or DESCR file are OK). The uuencoded package data should go into the "
fix" field.

If you want to submit several packages, please send a separate PR for each one,
it's easier for us to track things that way.

Alternatively, you can also import new packages into pkgsrc-wip ("pkgsrc
work-in-progress"); see the homepage at http://pkgsrc-wip.sourceforge.net/ for
details.

21.3. General notes when adding, updating, or removing packages

Please note all package additions, updates, moves, and removals in pkgsrc/doc/
CHANGES-YYYY. It's very important to keep this file up to date and conforming
to the existing format, because it will be used by scripts to automatically
update pages on www.NetBSD.org and other sites. Additionally, check the pkgsrc/
doc/TODO file and remove the entry for the package you updated or removed, in
case it was mentioned there.

When the PKGREVISION of a package is bumped, the change should appear in pkgsrc
/doc/CHANGES-YYYY if it is security related or otherwise relevant. Mass bumps
that result from a dependency being updated should not be mentioned. In all
other cases it's the developer's decision.

There is a make target that helps in creating proper CHANGES-YYYY entries: make
changes-entry. It uses the optional CTYPE and NETBSD_LOGIN_NAME variables. The
general usage is to first make sure that your CHANGES-YYYY file is up-to-date
(to avoid having to resolve conflicts later-on) and then to cd to the package
directory. For package updates, make changes-entry is enough. For new packages,
or package moves or removals, set the CTYPE variable on the command line to
"Added", "Moved", or "Removed". You can set NETBSD_LOGIN_NAME in mk.conf if
your local login name is not the same as your NetBSD login name. The target
also automatically removes possibly existing entries for the package in the
TODO file. Don't forget to commit the changes, e.g. by using make
commit-changes-entry! If you are not using a checkout directly from
cvs.NetBSD.org, but e.g. a local copy of the repository, you can set
USE_NETBSD_REPO=yes. This makes the cvs commands use the main repository.

21.4. Committing: Adding a package to CVS

This section is only of interest for pkgsrc developers with write access to the
pkgsrc repository.

When the package is finished, "cvs add" the files. Start by adding the
directory and then files in the directory. Don't forget to add the new package
to the category's Makefile. Make sure you don't forget any files; you can check
by running "cvs status". An example:

$ cd .../pkgsrc/category
$ cvs add pkgname
$ cd pkgname
$ cvs add DESCR Makefile PLIST distinfo buildlink3.mk patches
$ cvs add patches/p*
$ cvs status | less
$ cvs commit
$ cd ..
$ vi Makefile # add SUBDIRS+=pkgname line
$ cvs commit Makefile
$ cd pkgname
$ make CTYPE=Added changes-entry
$ make commit-changes-entry

The commit message of the initial import should include part of the DESCR file,
so people reading the mailing lists know what the package is/does.

Also mention the new package in pkgsrc/doc/CHANGES-20xx.

Previously, "cvs import" was suggested, but it was much easier to get wrong
than "cvs add".

21.5. Updating a package to a newer version

Please always put a concise, appropriate and relevant summary of the changes
between old and new versions into the commit log when updating a package. There
are various reasons for this:

  * A URL is volatile, and can change over time. It may go away completely or
    its information may be overwritten by newer information.

  * Having the change information between old and new versions in our CVS
    repository is very useful for people who use either cvs or anoncvs.

  * Having the change information between old and new versions in our CVS
    repository is very useful for people who read the pkgsrc-changes mailing
    list, so that they can make tactical decisions about when to upgrade the
    package.

Please also recognize that, just because a new version of a package has been
released, it should not automatically be upgraded in the CVS repository. We
prefer to be conservative in the packages that are included in pkgsrc -
development or beta packages are not really the best thing for most places in
which pkgsrc is used. Please use your judgement about what should go into
pkgsrc, and bear in mind that stability is to be preferred above new and
possibly untested features.

21.6. Renaming a package in pkgsrc

Renaming packages is not recommended.

When renaming packages, be sure to fix any references to old name in other
Makefiles, options, buildlink files, etc.

Also When renaming a package, please define SUPERSEDES to the package name and
dewey version pattern(s) of the previous package name. This may be repeated for
multiple renames. The new package would be an exact replacement.

Note that "successor" in the CHANGES-YYYY file doesn't necessarily mean that it
supersedes, as that successor may not be an exact replacement but is a
suggestion for the replaced functionality.

21.7. Moving a package in pkgsrc

It is preferred that packages are not renamed or moved, but if needed please
follow these steps.

 1. Make a copy of the directory somewhere else.

 2. Remove all CVS dirs.

    Alternatively to the first two steps you can also do:

    % cvs -d user@cvs.NetBSD.org:/cvsroot export -D today pkgsrc/category/package

    and use that for further work.

 3. Fix CATEGORIES and any DEPENDS paths that just did "../package" instead of 
    "../../category/package".

 4. In the modified package's Makefile, consider setting PREV_PKGPATH to the
    previous category/package pathname. The PREV_PKGPATH can be used by tools
    for doing an update using pkgsrc building; for example, it can search the
    pkg_summary(5) database for PREV_PKGPATH (if no SUPERSEDES) and then use
    the corresponding new PKGPATH for that moved package. Note that it may have
    multiple matches, so the tool should also check on the PKGBASE too. The
    PREV_PKGPATH probably has no value unless SUPERSEDES is not set, i.e.
    PKGBASE stays the same.

 5. cvs import the modified package in the new place.

 6. Check if any package depends on it:

    % cd /usr/pkgsrc
    % grep /package */*/Makefile* */*/buildlink*

 7. Fix paths in packages from step 5 to point to new location.

 8. cvs rm (-f) the package at the old location.

 9. Remove from oldcategory/Makefile.

10. Add to newcategory/Makefile.

11. Commit the changed and removed files:

    % cvs commit oldcategory/package oldcategory/Makefile newcategory/Makefile

    (and any packages from step 5, of course).

Chapter 22. Frequently Asked Questions

This section contains the answers to questions that may arise when you are
writing a package. If you don't find your question answered here, first have a
look in the other chapters, and if you still don't have the answer, ask on the
pkgsrc-users mailing list.

22.1. What is the difference between MAKEFLAGS, .MAKEFLAGS and MAKE_FLAGS?
22.2. What is the difference between MAKE, GMAKE and MAKE_PROGRAM?
22.3. What is the difference between CC, PKG_CC and PKGSRC_COMPILER?
22.4. What is the difference between BUILDLINK_LDFLAGS, BUILDLINK_LDADD and
    BUILDLINK_LIBS?
22.5. Why does make show-var VARNAME=BUILDLINK_PREFIX.foo say it's empty?
22.6. What does ${MASTER_SITE_SOURCEFORGE:=package/} mean? I don't understand
    the := inside it.
22.7. Which mailing lists are there for package developers?
22.8. Where is the pkgsrc documentation?
22.9. I have a little time to kill. What shall I do?

22.1. What is the difference between MAKEFLAGS, .MAKEFLAGS and MAKE_FLAGS?

      MAKEFLAGS are the flags passed to the pkgsrc-internal invocations of make
      (1), while MAKE_FLAGS are the flags that are passed to the MAKE_PROGRAM
      when building the package. [FIXME: What is .MAKEFLAGS for?]

22.2. What is the difference between MAKE, GMAKE and MAKE_PROGRAM?

      MAKE is the path to the make(1) program that is used in the pkgsrc
      infrastructure. GMAKE is the path to GNU Make, but you need to say
      USE_TOOLS+=gmake to use that. MAKE_PROGRAM is the path to the Make
      program that is used for building the package.

22.3. What is the difference between CC, PKG_CC and PKGSRC_COMPILER?

      CC is the path to the real C compiler, which can be configured by the
      pkgsrc user. PKG_CC is the path to the compiler wrapper. PKGSRC_COMPILER
      is not a path to a compiler, but the type of compiler that should be
      used. See mk/compiler.mk for more information about the latter variable.

22.4. What is the difference between BUILDLINK_LDFLAGS, BUILDLINK_LDADD and
      BUILDLINK_LIBS?

      [FIXME]

22.5. Why does make show-var VARNAME=BUILDLINK_PREFIX.foo say it's empty?

      For optimization reasons, some variables are only available in the "
      wrapper" phase and later. To "simulate" the wrapper phase, append 
      PKG_PHASE=wrapper to the above command.

22.6. What does ${MASTER_SITE_SOURCEFORGE:=package/} mean? I don't understand
      the := inside it.

      The := is not really an assignment operator, like you might expect at
      first sight. Instead, it is a degenerate form of ${LIST:old_string=
      new_string}, which is documented in the make(1) man page and which you
      may have seen as in ${SRCS:.c=.o}. In the case of MASTER_SITE_*,
      old_string is the empty string and new_string is package/. That's where
      the : and the = fall together.

22.7. Which mailing lists are there for package developers?

      tech-pkg

          This is a list for technical discussions related to pkgsrc
          development, e.g. soliciting feedback for changes to pkgsrc
          infrastructure, proposed new features, questions related to porting
          pkgsrc to a new platform, advice for maintaining a package, patches
          that affect many packages, help requests moved from pkgsrc-users when
          an infrastructure bug is found, etc.

      pkgsrc-bugs

          All bug reports in category "pkg" sent with send-pr(1) appear here.
          Please do not report your bugs here directly; use one of the other
          mailing lists.

22.8. Where is the pkgsrc documentation?

      There are many places where you can find documentation about pkgsrc:

        * The pkgsrc guide (this document) is a collection of chapters that
          explain large parts of pkgsrc, but some chapters tend to be outdated.
          Which ones they are is hard to say.

        * On the mailing list archives (see http://mail-index.NetBSD.org/), you
          can find discussions about certain features, announcements of new
          parts of the pkgsrc infrastructure and sometimes even announcements
          that a certain feature has been marked as obsolete. The benefit here
          is that each message has a date appended to it.

        * Many of the files in the mk/ directory start with a comment that
          describes the purpose of the file and how it can be used by the
          pkgsrc user and package authors. An easy way to find this
          documentation is to run bmake help.

        * The CVS log messages are a rich source of information, but they tend
          to be highly abbreviated, especially for actions that occur often.
          Some contain a detailed description of what has changed, but they are
          geared towards the other pkgsrc developers, not towards an average
          pkgsrc user. They also only document changes, so if you don't know
          what has been before, these messages may not be worth too much to
          you.

        * Some parts of pkgsrc are only "implicitly documented", that is the
          documentation exists only in the mind of the developer who wrote the
          code. To get this information, use the cvs annotate command to see
          who has written it and ask on the tech-pkg mailing list, so that
          others can find your questions later (see above). To be sure that the
          developer in charge reads the mail, you may CC him or her.

22.9. I have a little time to kill. What shall I do?

      This is not really an FAQ yet, but here's the answer anyway.

        * Run pkg_chk -N (from the pkgtools/pkg_chk package). It will tell you
          about newer versions of installed packages that are available, but
          not yet updated in pkgsrc.

        * Browse pkgsrc/doc/TODO ? it contains a list of suggested new packages
          and a list of cleanups and enhancements for pkgsrc that would be nice
          to have.

        * Review packages for which review was requested on the pkgsrc-wip
          review mailing list.

Chapter 23. GNOME packaging and porting

Table of Contents

23.1. Meta packages
23.2. Packaging a GNOME application
23.3. Updating GNOME to a newer version
23.4. Patching guidelines

Quoting GNOME's web site:

    The GNOME project provides two things: The GNOME desktop environment, an
    intuitive and attractive desktop for users, and the GNOME development
    platform, an extensive framework for building applications that integrate
    into the rest of the desktop.

pkgsrc provides a seamless way to automatically build and install a complete
GNOME environment under many different platforms. We can say with confidence
that pkgsrc is one of the most advanced build and packaging systems for GNOME
due to its included technologies buildlink3, the wrappers and tools framework
and automatic configuration file management. Lots of efforts are put into
achieving a completely clean deinstallation of installed software components.

Given that pkgsrc is NetBSD's official packaging system, the above also means
that great efforts are put into making GNOME work under this operating system.
Recently, DragonFly BSD also adopted pkgsrc as its preferred packaging system,
contributing lots of portability fixes to make GNOME build and install under
it.

This chapter is aimed at pkgsrc developers and other people interested in
helping our GNOME porting and packaging efforts. It provides instructions on
how to manage the existing packages and some important information regarding
their internals.

We need your help!

Should you have some spare cycles to devote to NetBSD, pkgsrc and GNOME and are
willing to learn new exciting stuff, please jump straight to the pending work
list! There is still a long way to go to get a fully-functional GNOME desktop
under NetBSD and we need your help to achieve it!

23.1. Meta packages

pkgsrc includes three GNOME-related meta packages:

  * meta-pkgs/gnome-base: Provides the core GNOME desktop environment. It only
    includes the necessary bits to get it to boot correctly, although it may
    lack important functionality for daily operation. The idea behind this
    package is to let end users build their own configurations on top of this
    one, first installing this meta package to achieve a functional setup and
    then adding individual applications.

  * meta-pkgs/gnome: Provides a complete installation of the GNOME platform and
    desktop as defined by the GNOME project; this is based on the components
    distributed in the platform/x.y/x.y.z/sources and desktop/x.y/x.y.z/sources
    directories of the official FTP server. Developer-only tools found in those
    directories are not installed unless required by some other component to
    work properly. Similarly, packages from the bindings set (bindings/x.y/
    x.y.z/sources) are not pulled in unless required as a dependency for an
    end-user component. This package "extends" meta-pkgs/gnome-base.

  * meta-pkgs/gnome-devel: Installs all the tools required to build a GNOME
    component when fetched from the CVS repository. These are required to let
    the autogen.sh scripts work appropriately.

In all these packages, the DEPENDS lines are sorted in a way that eases
updates: a package may depend on other packages listed before it but not on any
listed after it. It is very important to keep this order to ease updates so... 
do not change it to alphabetical sorting!

23.2. Packaging a GNOME application

Almost all GNOME applications are written in C and use a common set of tools as
their build system. Things get different with the new bindings to other
languages (such as Python), but the following will give you a general idea on
the minimum required tools:

  * Almost all GNOME applications use the GNU Autotools as their build system.
    As a general rule you will need to tell this to your package:

    GNU_CONFIGURE=yes
    USE_LIBTOOL=yes
    USE_TOOLS+=gmake

  * If the package uses pkg-config to detect dependencies, add this tool to the
    list of required utilities:

    USE_TOOLS+=pkg-config

    Also use pkgtools/verifypc at the end of the build process to ensure that
    you did not miss to specify any dependency in your package and that the
    version requirements are all correct.

  * If the package uses intltool, be sure to add intltool to the USE_TOOLS to
    handle dependencies and to force the package to use the latest available
    version.

  * If the package uses gtk-doc (a documentation generation utility), do not
    add a dependency on it. The tool is rather big and the distfile should come
    with pregenerated documentation anyway; if it does not, it is a bug that
    you ought to report. For such packages you should disable gtk-doc (unless
    it is the default):

    CONFIGURE_ARGS+=--disable-gtk-doc

    The default location of installed HTML files (share/gtk-doc/<package-name>)
    is correct and should not be changed unless the package insists on
    installing them somewhere else. Otherwise programs as devhelp will not be
    able to open them. You can do that with an entry similar to:

    CONFIGURE_ARGS+=--with-html-dir=${PREFIX}/share/gtk-doc/...

GNOME uses multiple shared directories and files under the installation prefix
to maintain databases. In this context, shared means that those exact same
directories and files are used among several different packages, leading to
conflicts in the PLIST. pkgsrc currently includes functionality to handle the
most common cases, so you have to forget about using @unexec ${RMDIR} lines in
your file lists and omitting shared files from them. If you find yourself doing
those, your package is most likely incorrect.

The following table lists the common situations that result in using shared
directories or files. For each of them, the appropriate solution is given.
After applying the solution be sure to regenerate the package's file list with 
make print-PLIST and ensure it is correct.

Table 23.1. PLIST handling for GNOME packages

+-----------------------------------------------------------------------------+
|             If the package...             |             Then...             |
|-------------------------------------------+---------------------------------|
|                                           |See Section 19.6.10, "Packages   |
|Installs OMF files under share/omf.        |installing scrollkeeper/rarian   |
|                                           |data files".                     |
|-------------------------------------------+---------------------------------|
|Installs icons under the share/icons/      |See Section 19.6.19, "Packages   |
|hicolor hierarchy or updates share/icons/  |installing hicolor theme icons". |
|hicolor/icon-theme.cache.                  |                                 |
|-------------------------------------------+---------------------------------|
|                                           |See Section 19.6.14, "Packages   |
|Installs files under share/mime/packages.  |installing extensions to the MIME|
|                                           |database".                       |
|-------------------------------------------+---------------------------------|
|Installs .desktop files under share/       |See Section 19.6.20, "Packages   |
|applications and these include MIME        |installing desktop files".       |
|information.                               |                                 |
+-----------------------------------------------------------------------------+


23.3. Updating GNOME to a newer version

When seeing GNOME as a whole, there are two kinds of updates:

Major update

    Given that there is still a very long way for GNOME 3 (if it ever appears),
    we consider a major update one that goes from a 2.X version to a 2.Y one,
    where Y is even and greater than X. These are hard to achieve because they
    introduce lots of changes in the components' code and almost all GNOME
    distfiles are updated to newer versions. Some of them can even break API
    and ABI compatibility with the previous major version series. As a result,
    the update needs to be done all at once to minimize breakage.

    A major update typically consists of around 80 package updates and the
    addition of some new ones.

Minor update

    We consider a minor update one that goes from a 2.A.X version to a 2.A.Y
    one where Y is greater than X. These are easy to achieve because they do
    not update all GNOME components, can be done in an incremental way and do
    not break API nor ABI compatibility.

    A minor update typically consists of around 50 package updates, although
    the numbers here may vary a lot.

In order to update the GNOME components in pkgsrc to a new stable release
(either major or minor), the following steps should be followed:

 1. Get a list of all the tarballs that form the new release by using the
    following commands. These will leave the full list of the components'
    distfiles into the list.txt file:

    % echo ls "*.tar.bz2" | \
        ftp -V ftp://ftp.gnome.org/pub/gnome/platform/x.y/x.y.z/sources/ | \
        awk '{ print $9 }' >list.txt
    % echo ls "*.tar.bz2" | \
        ftp -V ftp://ftp.gnome.org/pub/gnome/desktop/x.y/x.y.z/sources/ | \
        awk '{ print $9 }' >>list.txt

 2. Open each meta package's Makefile and bump their version to the release you
    are updating them to. The three meta packages should be always consistent
    with versioning. Obviously remove any PKGREVISIONs that might be in them.

 3. For each meta package, update all its DEPENDS lines to match the latest
    versions as shown by the above commands. Do not list any newer version
    (even if found in the FTP) because the meta packages are supposed to list
    the exact versions that form a specific GNOME release. Exceptions are
    permitted here if a newer version solves a serious issue in the overall
    desktop experience; these typically come in the form of a revision bump in
    pkgsrc, not in newer versions from the developers.

    Packages not listed in the list.txt file should be updated to the latest
    version available (if found in pkgsrc). This is the case, for example, of
    the dependencies on the GNU Autotools in the meta-pkgs/gnome-devel meta
    package.

 4. Generate a patch from the modified meta packages and extract the list of
    "new" lines. This will provide you an outline on what packages need to be
    updated in pkgsrc and in what order:

    % cvs diff -u gnome-devel gnome-base gnome | grep '^+D' >todo.txt

 5. For major desktop updates it is recommended to zap all your installed
    packages and start over from scratch at this point.

 6. Now comes the longest step by far: iterate over the contents of todo.txt
    and update the packages listed in it in order. For major desktop updates
    none of these should be committed until the entire set is completed because
    there are chances of breaking not-yet-updated packages.

 7. Once the packages are up to date and working, commit them to the tree one
    by one with appropriate log messages. At the end, commit the three meta
    package updates and all the corresponding changes to the doc/CHANGES-<YEAR>
    and pkgsrc/doc/TODO files.

23.4. Patching guidelines

GNOME is a very big component in pkgsrc which approaches 100 packages. Please,
it is very important that you always, always, always feed back any portability
fixes you do to a GNOME package to the mainstream developers (see
Section 11.3.5, "Feedback to the author"). This is the only way to get their
attention on portability issues and to ensure that future versions can be built
out-of-the box on NetBSD. The less custom patches in pkgsrc, the easier further
updates are. Those developers in charge of issuing major GNOME updates will be
grateful if you do that.

The most common places to report bugs are the GNOME's Bugzilla and the
freedesktop.org's Bugzilla. Not all components use these to track bugs, but
most of them do. Do not be short on your reports: always provide detailed
explanations of the current failure, how it can be improved to achieve maximum
portability and, if at all possible, provide a patch against CVS head. The more
verbose you are, the higher chances of your patch being accepted.

Also, please avoid using preprocessor magic to fix portability issues. While
the FreeBSD GNOME people are doing a great job in porting GNOME to their
operating system, the official GNOME sources are now plagued by conditionals
that check for __FreeBSD__ and similar macros. This hurts portability. Please
see our patching guidelines (Section 11.3.4, "Patching guidelines") for more
details.

Part III. The pkgsrc infrastructure internals

This part of the guide deals with everything from the infrastructure that is
behind the interfaces described in the developer's guide. A casual package
maintainer should not need anything from this part.

Table of Contents

24. Design of the pkgsrc infrastructure

    24.1. The meaning of variable definitions
    24.2. Avoiding problems before they arise
    24.3. Variable evaluation

        24.3.1. At load time
        24.3.2. At runtime

    24.4. How can variables be specified?
    24.5. Designing interfaces for Makefile fragments

        24.5.1. Procedures with parameters
        24.5.2. Actions taken on behalf of parameters

    24.6. The order in which files are loaded

        24.6.1. The order in bsd.prefs.mk
        24.6.2. The order in bsd.pkg.mk

25. Regression tests

    25.1. The regression tests framework
    25.2. Running the regression tests
    25.3. Adding a new regression test

        25.3.1. Overridable functions
        25.3.2. Helper functions

26. Porting pkgsrc

    26.1. Porting pkgsrc to a new operating system
    26.2. Adding support for a new compiler

Chapter 24. Design of the pkgsrc infrastructure

Table of Contents

24.1. The meaning of variable definitions
24.2. Avoiding problems before they arise
24.3. Variable evaluation

    24.3.1. At load time
    24.3.2. At runtime

24.4. How can variables be specified?
24.5. Designing interfaces for Makefile fragments

    24.5.1. Procedures with parameters
    24.5.2. Actions taken on behalf of parameters

24.6. The order in which files are loaded

    24.6.1. The order in bsd.prefs.mk
    24.6.2. The order in bsd.pkg.mk

The pkgsrc infrastructure consists of many small Makefile fragments. Each such
fragment needs a properly specified interface. This chapter explains how such
an interface looks like.

24.1. The meaning of variable definitions

Whenever a variable is defined in the pkgsrc infrastructure, the location and
the way of definition provide much information about the intended use of that
variable. Additionally, more documentation may be found in a header comment or
in this pkgsrc guide.

A special file is mk/defaults/mk.conf, which lists all variables that are
intended to be user-defined. They are either defined using the ?= operator or
they are left undefined because defining them to anything would effectively
mean "yes". All these variables may be overridden by the pkgsrc user in the
MAKECONF file.

Outside this file, the following conventions apply: Variables that are defined
using the ?= operator may be overridden by a package.

Variables that are defined using the = operator may be used read-only at
run-time.

Variables whose name starts with an underscore must not be accessed outside the
pkgsrc infrastructure at all. They may change without further notice.

Note

These conventions are currently not applied consistently to the complete pkgsrc
infrastructure.

24.2. Avoiding problems before they arise

All variables that contain lists of things should default to being empty. Two
examples that do not follow this rule are USE_LANGUAGES and DISTFILES. These
variables cannot simply be modified using the += operator in package Makefiles
(or other files included by them), since there is no guarantee whether the
variable is already set or not, and what its value is. In the case of
DISTFILES, the packages "know" the default value and just define it as in the
following example.

DISTFILES=      ${DISTNAME}${EXTRACT_SUFX} additional-files.tar.gz

Because of the selection of this default value, the same value appears in many
package Makefiles. Similarly for USE_LANGUAGES, but in this case the default
value ("c") is so short that it doesn't stand out. Nevertheless it is mentioned
in many files.

24.3. Variable evaluation

24.3.1. At load time

Variable evaluation takes place either at load time or at runtime, depending on
the context in which they occur. The contexts where variables are evaluated at
load time are:

  * The right hand side of the := and != operators,

  * Make directives like .if or .for,

  * Dependency lines.

A special exception are references to the iteration variables of .for loops,
which are expanded inline, no matter in which context they appear.

As the values of variables may change during load time, care must be taken not
to evaluate them by accident. Typical examples for variables that should not be
evaluated at load time are DEPENDS and CONFIGURE_ARGS. To make the effect more
clear, here is an example:

CONFIGURE_ARGS=         # none
CFLAGS=                 -O
CONFIGURE_ARGS+=        CFLAGS=${CFLAGS:Q}

CONFIGURE_ARGS:=        ${CONFIGURE_ARGS}

CFLAGS+=                -Wall


This code shows how the use of the := operator can quickly lead to unexpected
results. The first paragraph is fairly common code. The second paragraph
evaluates the CONFIGURE_ARGS variable, which results in CFLAGS=-O. In the third
paragraph, the -Wall is appended to the CFLAGS, but this addition will not
appear in CONFIGURE_ARGS. In actual code, the three paragraphs from above
typically occur in completely unrelated files.

24.3.2. At runtime

After all the files have been loaded, the values of the variables cannot be
changed anymore. Variables that are used in the shell commands are expanded at
this point.

24.4. How can variables be specified?

There are many ways in which the definition and use of a variable can be
restricted in order to detect bugs and violations of the (mostly unwritten)
policies. See the pkglint developer's documentation for further details.

24.5. Designing interfaces for Makefile fragments

Most of the .mk files fall into one of the following classes. Cases where a
file falls into more than one class should be avoided as it often leads to
subtle bugs.

24.5.1. Procedures with parameters

In a traditional imperative programming language some of the .mk files could be
described as procedures. They take some input parameters and?after
inclusion?provide a result in output parameters. Since all variables in
Makefiles have global scope care must be taken not to use parameter names that
have already another meaning. For example, PKGNAME is a bad choice for a
parameter name.

Procedures are completely evaluated at preprocessing time. That is, when
calling a procedure all input parameters must be completely resolvable. For
example, CONFIGURE_ARGS should never be an input parameter since it is very
likely that further text will be added after calling the procedure, which would
effectively apply the procedure to only a part of the variable. Also,
references to other variables wit will be modified after calling the procedure.

A procedure can declare its output parameters either as suitable for use in
preprocessing directives or as only available at runtime. The latter
alternative is for variables that contain references to other runtime
variables.

Procedures shall be written such that it is possible to call the procedure more
than once. That is, the file must not contain multiple-inclusion guards.

Examples for procedures are mk/bsd.options.mk and mk/buildlink3/bsd.builtin.mk.
To express that the parameters are evaluated at load time, they should be
assigned using the := operator, which should be used only for this purpose.

24.5.2. Actions taken on behalf of parameters

Action files take some input parameters and may define runtime variables. They
shall not define loadtime variables. There are action files that are included
implicitly by the pkgsrc infrastructure, while other must be included
explicitly.

An example for action files is mk/subst.mk.

24.6. The order in which files are loaded

Package Makefiles usually consist of a set of variable definitions, and include
the file ../../mk/bsd.pkg.mk in the very last line. Before that, they may also
include various other *.mk files if they need to query the availability of
certain features like the type of compiler or the X11 implementation. Due to
the heavy use of preprocessor directives like .if and .for, the order in which
the files are loaded matters.

This section describes at which point the various files are loaded and gives
reasons for that order.

24.6.1. The order in bsd.prefs.mk

The very first action in bsd.prefs.mk is to define some essential variables
like OPSYS, OS_VERSION and MACHINE_ARCH.

Then, the user settings are loaded from the file specified in MAKECONF, which
is usually mk.conf. After that, those variables that have not been overridden
by the user are loaded from mk/defaults/mk.conf.

After the user settings, the system settings and platform settings are loaded,
which may override the user settings.

Then, the tool definitions are loaded. The tool wrappers are not yet in effect.
This only happens when building a package, so the proper variables must be used
instead of the direct tool names.

As the last steps, some essential variables from the wrapper and the package
system flavor are loaded, as well as the variables that have been cached in
earlier phases of a package build.

24.6.2. The order in bsd.pkg.mk

First, bsd.prefs.mk is loaded.

Then, the various *-vars.mk files are loaded, which fill default values for
those variables that have not been defined by the package. These variables may
later be used even in unrelated files.

Then, the file bsd.pkg.error.mk provides the target error-check that is added
as a special dependency to all other targets that use DELAYED_ERROR_MSG or
DELAYED_WARNING_MSG.

Then, the package-specific hacks from hacks.mk are included.

Then, various other files follow. Most of them don't have any dependencies on
what they need to have included before or after them, though some do.

The code to check PKG_FAIL_REASON and PKG_SKIP_REASON is then executed, which
restricts the use of these variables to all the files that have been included
before. Appearances in later files will be silently ignored.

Then, the files for the main targets are included, in the order of later
execution, though the actual order should not matter.

At last, some more files are included that don't set any interesting variables
but rather just define make targets to be executed.

Chapter 25. Regression tests

Table of Contents

25.1. The regression tests framework
25.2. Running the regression tests
25.3. Adding a new regression test

    25.3.1. Overridable functions
    25.3.2. Helper functions

The pkgsrc infrastructure consists of a large codebase, and there are many
corners where every little bit of a file is well thought out, making pkgsrc
likely to fail as soon as anything is changed near those parts. To prevent most
changes from breaking anything, a suite of regression tests should go along
with every important part of the pkgsrc infrastructure. This chapter describes
how regression tests work in pkgsrc and how you can add new tests.

25.1. The regression tests framework

25.2. Running the regression tests

You first need to install the pkgtools/pkg_regress package, which provides the 
pkg_regress command. Then you can simply run that command, which will run all
tests in the regress category.

25.3. Adding a new regression test

Every directory in the regress category that contains a file called spec is
considered a regression test. This file is a shell program that is included by
the pkg_regress command. The following functions can be overridden to suit your
needs.

25.3.1. Overridable functions

These functions do not take any parameters. They are all called in "set -e"
mode, so you should be careful to check the exitcodes of any commands you run
in the test.

do_setup()

    This function prepares the environment for the test. By default it does
    nothing.

do_test()

    This function runs the actual test. By default, it calls TEST_MAKE with the
    arguments MAKEARGS_TEST and writes its output including error messages into
    the file TEST_OUTFILE.

check_result()

    This function is run after the test and is typically used to compare the
    actual output from the one that is expected. It can make use of the various
    helper functions from the next section.

do_cleanup()

    This function cleans everything up after the test has been run. By default
    it does nothing.

25.3.2. Helper functions

exit_status(expected)

    This function compares the exitcode of the do_test() function with its
    first parameter. If they differ, the test will fail.

output_require(regex...)

    This function checks for each of its parameters if the output from do_test
    () matches the extended regular expression. If it does not, the test will
    fail.

output_prohibit(regex...)

    This function checks for each of its parameters if the output from do_test
    () does not match the extended regular expression. If any of the regular
    expressions matches, the test will fail.

Chapter 26. Porting pkgsrc

Table of Contents

26.1. Porting pkgsrc to a new operating system
26.2. Adding support for a new compiler

The pkgsrc system has already been ported to many operating systems, hardware
architectures and compilers. This chapter explains the necessary steps to make
pkgsrc even more portable.

26.1. Porting pkgsrc to a new operating system

To port pkgsrc to a new operating system (called MyOS in this example), you
need to touch the following files:

pkgtools/bootstrap-mk-files/files/mods/MyOS.sys.mk

    This file contains some basic definitions, for example the name of the C
    compiler.

mk/bsd.prefs.mk

    Insert code that defines the variables OPSYS, OS_VERSION, LOWER_OS_VERSION,
    LOWER_VENDOR, MACHINE_ARCH, OBJECT_FMT, APPEND_ELF, and the other variables
    that appear in this file.

mk/platform/MyOS.mk

    This file contains the platform-specific definitions that are used by
    pkgsrc. Start by copying one of the other files and edit it to your needs.

mk/platform/MyOS.pkg.dist

    This file contains a list of directories, together with their permission
    bits and ownership. These directories will be created automatically with
    every package that explicitly sets USE_MTREE. This feature will be removed.

mk/platform/MyOS.x11.dist

    Just copy one of the pre-existing x11.dist files to your MyOS.x11.dist.

mk/tools/bootstrap.mk

    On some operating systems, the tools that are provided with the base system
    are not good enough for pkgsrc. For example, there are many versions of sed
    (1) that have a narrow limit on the line length they can process. Therefore
    pkgsrc brings its own tools, which can be enabled here.

mk/tools/tools.MyOS.mk

    This file defines the paths to all the tools that are needed by one or the
    other package in pkgsrc, as well as by pkgsrc itself. Find out where these
    tools are on your platform and add them.

Now, you should be able to build some basic packages, like lang/perl5, shells/
bash.

26.2. Adding support for a new compiler

TODO

Appendix A. A simple example package: bison

Table of Contents

A.1. files

    A.1.1. Makefile
    A.1.2. DESCR
    A.1.3. PLIST
    A.1.4. Checking a package with pkglint

A.2. Steps for building, installing, packaging

We checked to find a piece of software that wasn't in the packages collection,
and picked GNU bison. Quite why someone would want to have bison when Berkeley 
yacc is already present in the tree is beyond us, but it's useful for the
purposes of this exercise.

A.1. files

A.1.1. Makefile

# $NetBSD$
#

DISTNAME=       bison-1.25
CATEGORIES=     devel
MASTER_SITES=   ${MASTER_SITE_GNU}

MAINTAINER=     pkgsrc-users@NetBSD.org
HOMEPAGE=       http://www.gnu.org/software/bison/bison.html
COMMENT=        GNU yacc clone

GNU_CONFIGURE=  yes
INFO_FILES=     yes

.include "../../mk/bsd.pkg.mk"

A.1.2. DESCR

GNU version of yacc.  Can make re-entrant parsers, and numerous other
improvements.  Why you would want this when Berkeley yacc(1) is part
of the NetBSD source tree is beyond me.

A.1.3. PLIST

@comment $NetBSD$
bin/bison
man/man1/bison.1.gz
share/bison.simple
share/bison.hairy

A.1.4. Checking a package with pkglint

The NetBSD package system comes with pkgtools/pkglint which helps to check the
contents of these files. After installation it is quite easy to use, just
change to the directory of the package you wish to examine and execute pkglint:

$ pkglint
looks fine.

Depending on the supplied command line arguments (see pkglint(1)), more checks
will be performed. Use e.g. pkglint -Call -Wall for a very thorough check.

A.2. Steps for building, installing, packaging

Create the directory where the package lives, plus any auxiliary directories:

# cd /usr/pkgsrc/lang
# mkdir bison
# cd bison
# mkdir patches

Create Makefile, DESCR and PLIST (see Chapter 11, Package components - files,
directories and contents) then continue with fetching the distfile:

# make fetch
>> bison-1.25.tar.gz doesn't seem to exist on this system.
>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gnu//.
Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/systems/gnu//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
Successfully retrieved file.

Generate the checksum of the distfile into distinfo:

# make makedistinfo

Now compile:

# make
>> Checksum OK for bison-1.25.tar.gz.
===>  Extracting for bison-1.25
===>  Patching for bison-1.25
===>   Ignoring empty patch directory
===>  Configuring for bison-1.25
creating cache ./config.cache
checking for gcc... cc
checking whether we are using GNU C... yes
checking for a BSD compatible install... /usr/bin/install -c -o bin -g bin
checking how to run the C preprocessor... cc -E
checking for minix/config.h... no
checking for POSIXized ISC... no
checking whether cross-compiling... no
checking for ANSI C header files... yes
checking for string.h... yes
checking for stdlib.h... yes
checking for memory.h... yes
checking for working const... yes
checking for working alloca.h... no
checking for alloca... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
===>  Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g LR0.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g allocate.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g closure.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g conflicts.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g derives.c
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\"  -DXPFILE1=\"/usr/pkg/share/bison.hairy\" -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1  -g  ./files.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g getargs.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g gram.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g lalr.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g lex.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g main.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g nullable.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g output.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g print.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g reader.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g reduce.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g symtab.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g warshall.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g version.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g getopt.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g getopt1.c
cc  -g -o bison LR0.o allocate.o closure.o conflicts.o derives.o files.o         getargs.o gram.o lalr.o lex.o                                   main.o nullable.o output.o print.o reader.o reduce.o symtab.o   warshall.o version.o getopt.o getopt1.o
./files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
rm -f bison.s1
sed -e "/^#line/ s|bison|/usr/pkg/share/bison|" < ./bison.simple > bison.s1

Everything seems OK, so install the files:

# make install
>> Checksum OK for bison-1.25.tar.gz.
===>  Installing for bison-1.25
sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share  /usr/pkg/info /usr/pkg/man/man1
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy
rm -f /usr/pkg/man/man1/bison.1 /usr/pkg/info/bison.info*
install -c  -o bin -g bin -m 555 bison /usr/pkg/bin/bison
/usr/bin/install -c -o bin -g bin -m 644 bison.s1 /usr/pkg/share/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 ./bison.hairy /usr/pkg/share/bison.hairy
cd .; for f in bison.info*;  do /usr/bin/install -c -o bin -g bin -m 644 $f /usr/pkg/info/$f; done
/usr/bin/install -c -o bin -g bin -m 644 ./bison.1 /usr/pkg/man/man1/bison.1
===>  Registering installation for bison-1.25

You can now use bison, and also - if you decide so - remove it with pkg_delete
bison. Should you decide that you want a binary package, do this now:

# make package
>> Checksum OK for bison-1.25.tar.gz.
===>  Building package for bison-1.25
Creating package bison-1.25.tgz
Registering depends:.
Creating gzip'd tar ball in '/u/pkgsrc/lang/bison/bison-1.25.tgz'

Now that you don't need the source and object files any more, clean up:

# make clean
===>  Cleaning for bison-1.25

Appendix B. Build logs

Table of Contents

B.1. Building figlet
B.2. Packaging figlet

B.1. Building figlet

# make
===> Checking for vulnerabilities in figlet-2.2.1nb2
=> figlet221.tar.gz doesn't seem to exist on this system.
=> Attempting to fetch figlet221.tar.gz from ftp://ftp.figlet.org/pub/figlet/program/unix/.
=> [172219 bytes]
Connected to ftp.plig.net.
220 ftp.plig.org NcFTPd Server (licensed copy) ready.
331 Guest login ok, send your complete e-mail address as password.
230-You are user #5 of 500 simultaneous users allowed.
230-
230-  ___ _             _ _
230- |  _| |_ ___   ___| |_|___   ___ ___ ___
230- |  _|  _| . |_| . | | | . |_| . |  _| . |
230- |_| |_| |  _|_|  _|_|_|_  |_|___|_| |_  |
230-         |_|   |_|     |___|         |___|
230-
230-** Welcome to ftp.plig.org **
230-
230-Please note that all transfers from this FTP site are logged. If you
230-do not like this, please disconnect now.
230-
230-This archive is available via
230-
230-HTTP:  http://ftp.plig.org/
230-FTP:   ftp://ftp.plig.org/     (max 500 connections)
230-RSYNC: rsync://ftp.plig.org/   (max  30 connections)
230-
230-Please email comments, bug reports and requests for packages to be
230-mirrored to ftp-admin@plig.org.
230-
230-
230 Logged in anonymously.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type okay.
250 "/pub" is new cwd.
250-"/pub/figlet" is new cwd.
250-
250-Welcome to the figlet archive at ftp.figlet.org
250-
250-    ftp://ftp.figlet.org/pub/figlet/
250-
250-The official FIGlet web page is:
250-    http://www.figlet.org/
250-
250-If you have questions, please mailto:info@figlet.org. If you want to
250-contribute a font or something else, you can email us.
250
250 "/pub/figlet/program" is new cwd.
250 "/pub/figlet/program/unix" is new cwd.
local: figlet221.tar.gz remote: figlet221.tar.gz
502 Unimplemented command.
227 Entering Passive Mode (195,40,6,41,246,104)
150 Data connection accepted from 84.128.86.72:65131; transfer starting for figlet221.tar.gz (172219 bytes).
38% |**************                       | 65800      64.16 KB/s    00:01 ETA
226 Transfer completed.
172219 bytes received in 00:02 (75.99 KB/s)
221 Goodbye.
=> Checksum OK for figlet221.tar.gz.
===> Extracting for figlet-2.2.1nb2
===> Required installed package ccache-[0-9]*: ccache-2.3nb1 found
===> Patching for figlet-2.2.1nb2
===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Overriding tools for figlet-2.2.1nb2
===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2
===> Building for figlet-2.2.1nb2
gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\"  -DDEFAULTFONTFILE=\"standard.flf\"  figlet.c zipio.c crc.c inflate.c -o figlet
chmod a+x figlet
gcc -O2 -o chkfont chkfont.c
=> Unwrapping files-to-be-installed.
#
# make install
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Installing for figlet-2.2.1nb2
install -d -o root -g wheel -m 755 /usr/pkg/bin
install -d -o root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet
cp figlet /usr/pkg/bin
cp chkfont /usr/pkg/bin
chmod 555 figlist showfigfonts
cp figlist /usr/pkg/bin
cp showfigfonts /usr/pkg/bin
cp fonts/*.flf /usr/pkg/share/figlet
cp fonts/*.flc /usr/pkg/share/figlet
cp figlet.6 /usr/pkg/man/man6
===> Registering installation for figlet-2.2.1nb2
#

B.2. Packaging figlet

# make package
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Packaging figlet-2.2.1nb2
===> Building binary package for figlet-2.2.1nb2
Creating package /home/cvs/pkgsrc/packages/i386/All/figlet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg
Registering depends:.
#

Appendix C. Directory layout of the pkgsrc FTP server

Table of Contents

C.1. distfiles: The distributed source files
C.2. misc: Miscellaneous things
C.3. packages: Binary packages
C.4. reports: Bulk build reports
C.5. current, pkgsrc-20xxQy: source packages

As in other big projects, the directory layout of pkgsrc is quite complex for
newbies. This chapter explains where you find things on the FTP server. The
base directory on ftp.NetBSD.org is /pub/pkgsrc/. On other servers it may be
different, but inside this directory, everything should look the same, no
matter on which server you are. This directory contains some subdirectories,
which are explained below.

C.1. distfiles: The distributed source files

The directory distfiles contains lots of archive files from all pkgsrc
packages, which are mirrored here. The subdirectories are called after their
package names and are used when the distributed files have names that don't
explicitly contain a version number or are otherwise too generic (for example
release.tar.gz).

C.2. misc: Miscellaneous things

This directory contains things that individual pkgsrc developers find worth
publishing.

C.3. packages: Binary packages

This directory contains binary packages for the various platforms that are
supported by pkgsrc. Each subdirectory is of the form OPSYS/ARCH/OSVERSION_TAG.
The meaning of these variables is:

  * OPSYS is the name of the operating system for which the packages have been
    built. The name is taken from the output of the uname command, so it may
    differ from the one you are used to hear.

  * ARCH is the hardware architecture of the platform for which the packages
    have been built. It also includes the ABI (Application Binary Interface)
    for platforms that have several of them.

  * OSVERSION is the version of the operating system. For version numbers that
    change often (for example NetBSD-current), the often-changing part should
    be replaced with an x, for example 4.99.x.

  * TAG is either 20xxQy for a stable branch, or head for packages built from
    the HEAD branch. The latter should only be used when the packages are
    updated on a regular basis. Otherwise the date from checking out pkgsrc
    should be appended, for example head_20071015.

The rationale for exactly this scheme is that the pkgsrc users looking for
binary packages can quickly click through the directories on the server and
find the best binary packages for their machines. Since they usually know the
operating system and the hardware architecture, OPSYS and ARCH are placed
first. After these choices, they can select the best combination of OSVERSION
and TAG together, since it is usually the case that packages stay compatible
between different version of the operating system.

In each of these directories, there is a whole binary packages collection for a
specific platform. It has a directory called All which contains all binary
packages. Besides that, there are various category directories that contain
symbolic links to the real binary packages.

C.4. reports: Bulk build reports

Here are the reports from bulk builds, for those who want to fix packages that
didn't build on some of the platforms. The structure of subdirectories should
look like the one in Section C.3, "packages: Binary packages".

C.5. current, pkgsrc-20xxQy: source packages

These directories contain the "real" pkgsrc, that is the files that define how
to create binary packages from source archives.

The directory pkgsrc contains a snapshot of the CVS repository, which is
updated regularly. The file pkgsrc.tar.gz contains the same as the directory,
ready to be downloaded as a whole.

In the directories for the quarterly branches, there is an additional file
called pkgsrc-20xxQy.tar.gz, which contains the state of pkgsrc when it was
branched.

Appendix D. Editing guidelines for the pkgsrc guide

Table of Contents

D.1. Make targets
D.2. Procedure

This section contains information on editing the pkgsrc guide itself.

D.1. Make targets

The pkgsrc guide's source code is stored in pkgsrc/doc/guide/files, and several
files are created from it:

  * pkgsrc/doc/pkgsrc.txt

  * pkgsrc/doc/pkgsrc.html

  * http://www.NetBSD.org/docs/pkgsrc/

  * http://www.NetBSD.org/docs/pkgsrc/pkgsrc.pdf: The PDF version of the pkgsrc
    guide.

  * http://www.NetBSD.org/docs/pkgsrc/pkgsrc.ps: PostScript version of the
    pkgsrc guide.

D.2. Procedure

The procedure to edit the pkgsrc guide is:

 1. Make sure you have the packages needed to regenerate the pkgsrc guide (and
    other XML-based NetBSD documentation) installed. These are automatically
    installed when you install the meta-pkgs/pkgsrc-guide-tools package.

 2. Run cd doc/guide to get to the right directory. All further steps will take
    place here.

 3. Edit the XML file(s) in files/.

 4. Run bmake to check the pkgsrc guide for valid XML and to build the final
    output files. If you get any errors at this stage, you can just edit the
    files, as there are only symbolic links in the working directory, pointing
    to the files in files/.

 5. (cd files && cvs commit)

 6. Run bmake clean && bmake to regenerate the output files with the proper RCS
    Ids.

 7. Run bmake regen to install and commit the files in both pkgsrc/doc and
    htdocs.

    Note

    If you have added, removed or renamed some chapters, you need to
    synchronize them using cvs add or cvs delete in the htdocs directory.