[BACK]Return to k_rem_pio2.c CVS log [TXT][DIR] Up to [cvs.NetBSD.org] / src / lib / libm / src

Annotation of src/lib/libm/src/k_rem_pio2.c, Revision 1.11

1.1       jtc         1: /* @(#)k_rem_pio2.c 5.1 93/09/24 */
                      2: /*
                      3:  * ====================================================
                      4:  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
                      5:  *
                      6:  * Developed at SunPro, a Sun Microsystems, Inc. business.
                      7:  * Permission to use, copy, modify, and distribute this
1.9       simonb      8:  * software is freely granted, provided that this notice
1.1       jtc         9:  * is preserved.
                     10:  * ====================================================
                     11:  */
1.3       jtc        12:
1.8       lukem      13: #include <sys/cdefs.h>
1.6       jtc        14: #if defined(LIBM_SCCS) && !defined(lint)
1.11    ! wiz        15: __RCSID("$NetBSD: k_rem_pio2.c,v 1.10 2002/05/26 22:01:53 wiz Exp $");
1.3       jtc        16: #endif
1.1       jtc        17:
                     18: /*
                     19:  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
                     20:  * double x[],y[]; int e0,nx,prec; int ipio2[];
1.9       simonb     21:  *
                     22:  * __kernel_rem_pio2 return the last three digits of N with
1.1       jtc        23:  *             y = x - N*pi/2
                     24:  * so that |y| < pi/2.
                     25:  *
1.9       simonb     26:  * The method is to compute the integer (mod 8) and fraction parts of
1.1       jtc        27:  * (2/pi)*x without doing the full multiplication. In general we
                     28:  * skip the part of the product that are known to be a huge integer (
                     29:  * more accurately, = 0 mod 8 ). Thus the number of operations are
                     30:  * independent of the exponent of the input.
                     31:  *
                     32:  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
                     33:  *
                     34:  * Input parameters:
1.9       simonb     35:  *     x[]     The input value (must be positive) is broken into nx
1.1       jtc        36:  *             pieces of 24-bit integers in double precision format.
1.9       simonb     37:  *             x[i] will be the i-th 24 bit of x. The scaled exponent
                     38:  *             of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
1.1       jtc        39:  *             match x's up to 24 bits.
                     40:  *
                     41:  *             Example of breaking a double positive z into x[0]+x[1]+x[2]:
                     42:  *                     e0 = ilogb(z)-23
                     43:  *                     z  = scalbn(z,-e0)
                     44:  *             for i = 0,1,2
                     45:  *                     x[i] = floor(z)
                     46:  *                     z    = (z-x[i])*2**24
                     47:  *
                     48:  *
1.11    ! wiz        49:  *     y[]     output result in an array of double precision numbers.
1.1       jtc        50:  *             The dimension of y[] is:
                     51:  *                     24-bit  precision       1
                     52:  *                     53-bit  precision       2
                     53:  *                     64-bit  precision       2
                     54:  *                     113-bit precision       3
                     55:  *             The actual value is the sum of them. Thus for 113-bit
                     56:  *             precison, one may have to do something like:
                     57:  *
                     58:  *             long double t,w,r_head, r_tail;
                     59:  *             t = (long double)y[2] + (long double)y[1];
                     60:  *             w = (long double)y[0];
                     61:  *             r_head = t+w;
                     62:  *             r_tail = w - (r_head - t);
                     63:  *
                     64:  *     e0      The exponent of x[0]
                     65:  *
                     66:  *     nx      dimension of x[]
                     67:  *
                     68:  *     prec    an integer indicating the precision:
                     69:  *                     0       24  bits (single)
                     70:  *                     1       53  bits (double)
                     71:  *                     2       64  bits (extended)
                     72:  *                     3       113 bits (quad)
                     73:  *
                     74:  *     ipio2[]
1.9       simonb     75:  *             integer array, contains the (24*i)-th to (24*i+23)-th
                     76:  *             bit of 2/pi after binary point. The corresponding
1.1       jtc        77:  *             floating value is
                     78:  *
                     79:  *                     ipio2[i] * 2^(-24(i+1)).
                     80:  *
                     81:  * External function:
                     82:  *     double scalbn(), floor();
                     83:  *
                     84:  *
                     85:  * Here is the description of some local variables:
                     86:  *
                     87:  *     jk      jk+1 is the initial number of terms of ipio2[] needed
                     88:  *             in the computation. The recommended value is 2,3,4,
                     89:  *             6 for single, double, extended,and quad.
                     90:  *
1.9       simonb     91:  *     jz      local integer variable indicating the number of
                     92:  *             terms of ipio2[] used.
1.1       jtc        93:  *
                     94:  *     jx      nx - 1
                     95:  *
                     96:  *     jv      index for pointing to the suitable ipio2[] for the
                     97:  *             computation. In general, we want
                     98:  *                     ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
                     99:  *             is an integer. Thus
                    100:  *                     e0-3-24*jv >= 0 or (e0-3)/24 >= jv
                    101:  *             Hence jv = max(0,(e0-3)/24).
                    102:  *
                    103:  *     jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
                    104:  *
                    105:  *     q[]     double array with integral value, representing the
                    106:  *             24-bits chunk of the product of x and 2/pi.
                    107:  *
                    108:  *     q0      the corresponding exponent of q[0]. Note that the
                    109:  *             exponent for q[i] would be q0-24*i.
                    110:  *
                    111:  *     PIo2[]  double precision array, obtained by cutting pi/2
1.9       simonb    112:  *             into 24 bits chunks.
1.1       jtc       113:  *
1.9       simonb    114:  *     f[]     ipio2[] in floating point
1.1       jtc       115:  *
                    116:  *     iq[]    integer array by breaking up q[] in 24-bits chunk.
                    117:  *
                    118:  *     fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
                    119:  *
                    120:  *     ih      integer. If >0 it indicates q[] is >= 0.5, hence
                    121:  *             it also indicates the *sign* of the result.
                    122:  *
                    123:  */
                    124:
                    125:
                    126: /*
                    127:  * Constants:
1.9       simonb    128:  * The hexadecimal values are the intended ones for the following
                    129:  * constants. The decimal values may be used, provided that the
                    130:  * compiler will convert from decimal to binary accurately enough
1.1       jtc       131:  * to produce the hexadecimal values shown.
                    132:  */
                    133:
1.4       jtc       134: #include "math.h"
                    135: #include "math_private.h"
1.1       jtc       136:
                    137: static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
                    138:
                    139: static const double PIo2[] = {
                    140:   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
                    141:   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
                    142:   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
                    143:   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
                    144:   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
                    145:   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
                    146:   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
                    147:   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
                    148: };
                    149:
1.9       simonb    150: static const double
1.1       jtc       151: zero   = 0.0,
                    152: one    = 1.0,
                    153: two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
                    154: twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
                    155:
1.10      wiz       156: int
                    157: __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
1.1       jtc       158: {
1.5       jtc       159:        int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
1.1       jtc       160:        double z,fw,f[20],fq[20],q[20];
                    161:
                    162:     /* initialize jk*/
                    163:        jk = init_jk[prec];
                    164:        jp = jk;
                    165:
                    166:     /* determine jx,jv,q0, note that 3>q0 */
                    167:        jx =  nx-1;
                    168:        jv = (e0-3)/24; if(jv<0) jv=0;
                    169:        q0 =  e0-24*(jv+1);
                    170:
                    171:     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
                    172:        j = jv-jx; m = jx+jk;
                    173:        for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
                    174:
                    175:     /* compute q[0],q[1],...q[jk] */
                    176:        for (i=0;i<=jk;i++) {
                    177:            for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
                    178:        }
                    179:
                    180:        jz = jk;
                    181: recompute:
                    182:     /* distill q[] into iq[] reversingly */
                    183:        for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
1.5       jtc       184:            fw    =  (double)((int32_t)(twon24* z));
                    185:            iq[i] =  (int32_t)(z-two24*fw);
1.1       jtc       186:            z     =  q[j-1]+fw;
                    187:        }
                    188:
                    189:     /* compute n */
                    190:        z  = scalbn(z,q0);              /* actual value of z */
                    191:        z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
1.5       jtc       192:        n  = (int32_t) z;
1.1       jtc       193:        z -= (double)n;
                    194:        ih = 0;
                    195:        if(q0>0) {      /* need iq[jz-1] to determine n */
                    196:            i  = (iq[jz-1]>>(24-q0)); n += i;
                    197:            iq[jz-1] -= i<<(24-q0);
                    198:            ih = iq[jz-1]>>(23-q0);
1.9       simonb    199:        }
1.1       jtc       200:        else if(q0==0) ih = iq[jz-1]>>23;
                    201:        else if(z>=0.5) ih=2;
                    202:
                    203:        if(ih>0) {      /* q > 0.5 */
                    204:            n += 1; carry = 0;
                    205:            for(i=0;i<jz ;i++) {        /* compute 1-q */
                    206:                j = iq[i];
                    207:                if(carry==0) {
                    208:                    if(j!=0) {
                    209:                        carry = 1; iq[i] = 0x1000000- j;
                    210:                    }
                    211:                } else  iq[i] = 0xffffff - j;
                    212:            }
                    213:            if(q0>0) {          /* rare case: chance is 1 in 12 */
                    214:                switch(q0) {
                    215:                case 1:
                    216:                   iq[jz-1] &= 0x7fffff; break;
                    217:                case 2:
                    218:                   iq[jz-1] &= 0x3fffff; break;
                    219:                }
                    220:            }
                    221:            if(ih==2) {
                    222:                z = one - z;
                    223:                if(carry!=0) z -= scalbn(one,q0);
                    224:            }
                    225:        }
                    226:
                    227:     /* check if recomputation is needed */
                    228:        if(z==zero) {
                    229:            j = 0;
                    230:            for (i=jz-1;i>=jk;i--) j |= iq[i];
                    231:            if(j==0) { /* need recomputation */
                    232:                for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
                    233:
                    234:                for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
                    235:                    f[jx+i] = (double) ipio2[jv+i];
                    236:                    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
                    237:                    q[i] = fw;
                    238:                }
                    239:                jz += k;
                    240:                goto recompute;
                    241:            }
                    242:        }
                    243:
                    244:     /* chop off zero terms */
                    245:        if(z==0.0) {
                    246:            jz -= 1; q0 -= 24;
                    247:            while(iq[jz]==0) { jz--; q0-=24;}
                    248:        } else { /* break z into 24-bit if necessary */
                    249:            z = scalbn(z,-q0);
1.9       simonb    250:            if(z>=two24) {
1.5       jtc       251:                fw = (double)((int32_t)(twon24*z));
                    252:                iq[jz] = (int32_t)(z-two24*fw);
1.1       jtc       253:                jz += 1; q0 += 24;
1.5       jtc       254:                iq[jz] = (int32_t) fw;
                    255:            } else iq[jz] = (int32_t) z ;
1.1       jtc       256:        }
                    257:
                    258:     /* convert integer "bit" chunk to floating-point value */
                    259:        fw = scalbn(one,q0);
                    260:        for(i=jz;i>=0;i--) {
                    261:            q[i] = fw*(double)iq[i]; fw*=twon24;
                    262:        }
                    263:
                    264:     /* compute PIo2[0,...,jp]*q[jz,...,0] */
                    265:        for(i=jz;i>=0;i--) {
                    266:            for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
                    267:            fq[jz-i] = fw;
                    268:        }
                    269:
                    270:     /* compress fq[] into y[] */
                    271:        switch(prec) {
                    272:            case 0:
                    273:                fw = 0.0;
                    274:                for (i=jz;i>=0;i--) fw += fq[i];
1.9       simonb    275:                y[0] = (ih==0)? fw: -fw;
1.1       jtc       276:                break;
                    277:            case 1:
                    278:            case 2:
                    279:                fw = 0.0;
1.9       simonb    280:                for (i=jz;i>=0;i--) fw += fq[i];
                    281:                y[0] = (ih==0)? fw: -fw;
1.1       jtc       282:                fw = fq[0]-fw;
                    283:                for (i=1;i<=jz;i++) fw += fq[i];
1.9       simonb    284:                y[1] = (ih==0)? fw: -fw;
1.1       jtc       285:                break;
                    286:            case 3:     /* painful */
                    287:                for (i=jz;i>0;i--) {
1.9       simonb    288:                    fw      = fq[i-1]+fq[i];
1.1       jtc       289:                    fq[i]  += fq[i-1]-fw;
                    290:                    fq[i-1] = fw;
                    291:                }
                    292:                for (i=jz;i>1;i--) {
1.9       simonb    293:                    fw      = fq[i-1]+fq[i];
1.1       jtc       294:                    fq[i]  += fq[i-1]-fw;
                    295:                    fq[i-1] = fw;
                    296:                }
1.9       simonb    297:                for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
1.1       jtc       298:                if(ih==0) {
                    299:                    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
                    300:                } else {
                    301:                    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
                    302:                }
                    303:        }
                    304:        return n&7;
                    305: }

CVSweb <webmaster@jp.NetBSD.org>